z =[a 4 a 3 a 2 a 1 a 0 ] 10
|
|
|
- Marco Moro
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercizio 1. Sia z =[a 4 a 3 a 2 a 1 a 0 ] 10 un numero intero (la notazione significa che le cifre con cui rappresento z in base 10 sono a 4,..., a 0 {0, 1,..., 9}, ecioè z = a a a a 1 10+a 0 ). Dimostrare che z divisibile per 8 4a 2 +2a 1 + a 0 è divisibile per 8 (1) Sfruttare questo criterio per dire se e 6784 sono divisibili per 8. Risposta. Calcoliamo i resti della divisione di una potenza di 10 per 8: 10 2 (mod8) (mod8) (mod8) (mod8) (2) ecc. (dalla terza in poi tutte le potenze di 10 sono divisibili per 8); notate che le (2) si ottengono facilmente dalla prima sfruttando il fatto che due congruenze modulo uno stesso numero si possono moltiplicare membro a membro (ad esempio: la seconda si ottiene moltiplicando la prima per sè stessa membro a membro: (mod 8); la terza si ottiene moltiplicando membro a membro prima e seconda e ricordando che 8 0 (mod 8), ecc.). Sempre tenendo conto del fatto che le congruenze (modulo uno stesso numero!) si possono moltiplicare e sommare tra loro membro a membro, ottengo dalle (2) le seguenti: a a 1 (mod 8) a a 2 (mod 8) a (mod8) a (mod8) (3) a cui aggiungo la congruenza banale Sommando membro a membro le (3), (4) ottengo: a 0 a 0 (mod 8) (4) z = a a a a a 0 4a 2 +2a 1 + a 0 (mod 8), da cui segue la (1). Applichiamo (1) al numero In questo caso a 4 =5,a 3 =1,a 2 =6, a 1 =1,a 0 = 4. Quindi 4a 2 +2a 1 + a 0 = = 30, 1
2 che non è divisibile per 8; di conseguenza, per la (1), non lo è nemmeno Nel caso di 6784, si ha che (a 4 =0e)a 3 =6,a 2 =7,a 1 =8,a 0 = 4; quindi 4a 2 +2a 1 + a 0 = = 48, che è divisibile per 8, per cui lo è anche Esercizio 2. Trovare il massimo comun divisore di 1638 e 255. Risposta. Dividiamo 1638 per 255: 1638 = Per l algoritmo di Euclide, M.C.D (1638, 255) = M.C.D (255, 108); riapplichiamo l algoritmo alla nuova coppia di numeri: 255 = Quindi M.C.D (255, 108) = M.C.D (108, 39); riapplichiamo l algoritmo: 108 = Quindi M.C.D (108, 39) = M.C.D (39, 30) = 3, che è quindi anche il M.C.D. dei due numeri iniziali. Esercizio 3. Trovare l inverso del numero complesso a + ib 0. Risposta. L inverso x + iy deve soddisfare la condizione (a + ib)(x + iy) =1, cioè, sviluppando il prodotto (e ricordando che i 2 = 1) ax by + i (bx + ay) =1 cioè separando parte reale e immaginaria: { ax by =1 bx + ay =0 (5) Il sistema lineare (5) nelle incognite x, y ammette un unica soluzione. Infatti la matrice dei coefficienti ha determinante a b b a = a2 + b 2 0 (se fosse uguale a zero sarebbe a = b = 0, contro l ipotesi che a + ib sia non nullo). Applicando la regola di Cramer si ottiene: 1 b 0 a a x = a 2 + b 2 = a 2 + b 2 2
3 e Quindi a 1 b 0 y = a 2 + b 2 = b a 2 + b 2 (a + ib) 1 = a ib a 2 + b 2 Esercizio 4. Sia (G, ) un gruppo e sia X un suo sottoinsieme. Sia C (X) l insieme degli elementi di G che commutano con tutti gli elementi di X, cioè C (X) ={g G gx = xg x X} (6) Dimostrare che C (X) è un sottogruppo normale di G. Risposta. Innanzitutto, 1 C (X) (per definizione, 1 x = x 1=x). Siano ora g, h C (X); dimostriamo che g h C (X). Infatti, se x X allora: ghx = gxh = xgh (si è sfruttata l associatività di e la definizione (6)). Resta da dimostrare che, se g C (X), allora anche g 1 C (X). Infatti, dato un x X, moltiplicando siaadestracheasinistraperg 1 l uguaglianza si ottiene gx = xg xg 1 = g 1 x, cioè l asserto. Per dimostrare che C (X) è un sottogruppo normale basta mostrare (v. appunti sui gruppi) che, per ogni y G e per ogni h C (X) vale Ma questo è vero perchè x 1 hx C (X) x 1 hx = x 1 xh = h Esercizio 5. Risolvere il sistema di equazioni congruenziali { x 3 (mod 5) x 2 (mod 6) (7) Risposta. Essendo 5 e 6 primi fra loro, per il teorema cinese del resto il sistema (7) ammette una soluzione. Più precisamente, se x è una soluzione 3
4 fissata di (7) ogni altra soluzione y è della forma y = x + h 5 6=x +30h, con h Z. Si tratta quindi di trovare una soluzione x. Dalla prima delle (7) segue che una soluzione x deve essere della forma x = 3+5t per qualche t intero. Sostituendo quest espressione di x nella seconda delle (7) si ottiene cioè ossia 3+5t 2 (mod 6) 5t 1(mod6) 5t = 1 =5 chehalasoluzionet = 1. Quindi la soluzione particolare cercata è x =3+5 1 = 8, e la soluzione generale è al variare di h in Z. y =8+30h, Esercizio 6. decimale è 152. Rappresentare in base 3 il numero la cui rappresentzione Risposta. come segue. Le cifre da usare per la rappresentazione sono 0, 1, 2. Si procede 1. Divido 152 per 3 : 152 = Il resto 2 è l ultima cifra della rappresentazione in base 3 di 152. Poichè il quoziente, 50, è maggiore di 3 bisogna continuare 2. Divido 50 per 3: 50 = Il resto 2 è la penultima cifra della rappresentazione in base 3; poichè il quoziente 16 è maggiore di 3 bisogna continuare 3. Divido 16 per 3: 16 = Quindi 1 è la terzultima cifra della rappresentazione in base 3. Poichè 5 è maggiore di 3 dobbiamo continuare 4
5 4. Divido 5 per 3: 5= è la quartultima cifra e, essendo stavolta il quoziente 1 minore di 3, esso è la prima cifra della rappresentazione di 152 in base 3. Quindi, in definitiva, tale rappresentazione è: 152 = [12122] 3 Controlliamo se il risultato è corretto. Cerchiamo di capire perchè la procedura appena esposta funziona. Chiamiamo z il numero da rappresentare in base b (nel nostro caso z è 152 e b è3). z è compreso fra due potenze successive della base b; nel nostro caso b 4 z<b 5 Quindi z è rappresentato in base b da una stringa di 5 cifre comprese fra 0 e b 1 (nel nostro caso 0, 1, 2): cioè che si può riscrivere con z =[a 4 a 3 a 2 a 1 a 0 ] b (8) z = a 4 b 4 + a 3 b 3 + a 2 b 2 + a 1 b + a 0 z = b z 1 + a 0, z 1 = a 4 b 3 + a 3 b 2 + a 2 b + a 1 (9) Quindi l ultima cifra a 0 nella rappresentazione (8) di z in base b è il resto della divisione di z per b. Per ottenere a 1 divido z 1 per b: con z 1 = b z 2 + a 1, z 2 = a 4 b 2 + a 3 b + a 2 cioè a 1 è il resto della divisione di z 1 per b. Ecc. ecc... (a questo punto dovreste aver capito come funziona). Esercizio 7. SiaS 8 il gruppo simmetrico su 8 oggetti (cioè il gruppo delle permutazioni di X 8 = {1, 2,..., 8}) esiag S 8 l elemento g =(1357) (237) 5
6 a) Si scriva g come prodotto di cicli digiunti. b) Si cacoli g 1 Risposta. g = h f,dovef =(237)eh = ( ). Calcoliamo le immagini successive di 1 mediante g: g (1) = h (f (1)) = h (1) = 3 g (3) = h (f (3)) = h (7) = 1 Quindi (1 3) è il primo ciclo nella scomposizione di g in cicli disgiunti. Vediamo ora che succede con le immagini successive di 2: g (2) = h (f (2)) = h (3) = 5 g (5) = h (f (5)) = h (5) = 7 g (7) = h (f (7)) = h (2) = 2 Quindi il secondo ciclo della decomposizione di g è (2 5 7). Vediamo che succede con le immagini successive di 4: g (4) = h (f (4)) = h (4) = 4 Quindi 4 è fisso rispetto a g. Vediamo che succede con le immagini successive di 6: g (6) = h (f (6)) = h (6) = 6 Quindi anche 6 è fisso, e di conseguenza anche 8 è fisso (è l unico elemento di X 8 rimasto libero). In definitiva: Calcoliamo g 1 : g =(13) (2 5 7) g 1 =(257) 1 (1 3) 1 = =(527) (1 3) Esercizio 8. Trovare le (eventuali) soluzioni in Z dell equazione lineare in due incognite 4x 3y + 5 = 0 (10) Risposta. La (10) può essere riscritta così: 4x = 5+3y 6
7 da cui segue che 4x 5(mod3) ovvero 4 x = 1, (11) dove con la barra indico la classe di congruenza modulo 3; ma 4=1, perchè 4 1è divisibile per 3, per cui la (11) mi dà: cioè x deve essere della forma x = 1, x =1+3h, h Z (12) Sostituiamo questa espressione di x nella (10) e determiniamo y: cioè da cui 4 (1 + 3h) 3y +5=0 3y =9+12h =3 (3 + 4h) y =3+4h (13) Quindi, affinchè la coppia di numeri interi (x, y) sia soluzione di (10) è necessario che x e y siano rispettivamente della forma (12) e (13) per qualche h Z. D altra parte, è immediato verificare che, sostituendo le espressioni (12) e (13) in (10), questa è identicamente soddisfatta. Quindi, in definitiva, le soluzioni di (10) sono tutte e sole le coppie (1 + 3h, 3+4h), al variare di h in Z. 7
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica
m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica
G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,
623 = , 413 = , 210 = , 203 =
Elementi di Algebra e Logica 2008. 3. Aritmetica dei numeri interi. 1. Determinare tutti i numeri primi 100 p 120. Sol. :) :) :) 2. (i) Dimostrare che se n 2 non è primo, allora esiste un primo p che divide
nota 1. Aritmetica sui numeri interi.
nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri
A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.
A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)
nota 1. Aritmetica sui numeri interi.
nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri
II Esonero di Matematica Discreta - a.a. 06/07. Versione B
II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
Piccolo teorema di Fermat
Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod
Esercizi e soluzioni relativi al Capitolo 10
Esercizi e soluzioni relativi al Capitolo 1 Esercizio 1.1 Sia (Mat 2 2 (R), +, ) l anello delle matrici quadrate di ordine 2 a coefficienti reali. [ Gli ] elementi unitari sono tutte e sole le matrici
2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =
Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):
4 0 = 4 2 = 4 4 = 4 6 = 0.
Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono
Tempo a disposizione. 90 minuti. 1 [6 punti] Dimostrare che, per ogni n N, n 1, vale la disuguaglianza:
Dipartimento di Matematica e Informatica Anno Accademico 05-06 Corso di Laurea in Informatica (L-) Prova in itinere di Matematica Discreta ( CFU) Febbraio 06 A Tempo a disposizione. 90 minuti [6 punti]
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.
Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione
TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione
TEORIA DEI NUMERI. Numeri naturali, interi relativi e principi d induzione Le proprietà dell insieme N = {0,, 2, } dei numeri naturali possono essere dedotte dai seguenti assiomi di Peano:. C è un applicazione
Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi.
MASSIMO COMUNE DIVISORE E ALGORITMO DI EUCLIDE L algoritmo di Euclide permette di calcolare il massimo comun divisore tra due numeri, anche se questi sono molto grandi, senza aver bisogno di fattorizzarli
Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9
Prova scritta di Algebra 9 settembre 2016 1. Si risolva il seguente sistema di congruenze lineari x 5 mod 7 11x 1 mod 13 x 3 mod 9 Si determini la sua minima soluzione positiva. 2. In S 9 sia α = (4, 9)(9,
Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.
LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
04 - Numeri Complessi
Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni
ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni (1) Verificare che l anello quoziente Z 5 [x]/(x 3 2) possiede divisori dello zero, e determinare tutti i suoi ideali non banali. Soluzione: Il polinomio
Monomi L insieme dei monomi
Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili
MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari
MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2
04 - Numeri Complessi
Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e
Esercizi svolti sui sistemi lineari
Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1
CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità
CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
0.1 Numeri complessi C
0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni
Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006
Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:
NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1
Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
TEOREMA DEL RESTO E REGOLA DI RUFFINI
TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente
1 Soluzione degli esercizi del capitolo 4
"Introduzione alla matematica discreta /ed" - M. G. Bianchi, A. Gillio degli esercizi del capitolo 4 Esercizio 4. (pag. 47) Sia X =,,3,4} e sia R la relazione su X così definita: R = (,),(,),(,),(,),(,4),(3,3),(4,)}.
Prova scritta di Algebra 4 Luglio Si risolva il seguente sistema di congruenze lineari x 2 mod 3 2x 1 mod 5 x 3 mod 2
Prova scritta di Algebra 4 Luglio 013 1. Si risolva il seguente sistema di congruenze lineari x mod 3 x 1 mod 5 x 3 mod. In S 9 sia α (1, 3(3, 5, 6(5, 3(4,, 7(, 1, 4, 7(8, 9 a Si scriva α come prodotto
Scomposizione in fattori di un polinomio. Prof. Walter Pugliese
Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
MATEMATICA DI BASE 1
MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme
Equazioni di primo grado
Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il
Laboratorio teorico-pratico per la preparazione alle gare di matematica
Laboratorio teorico-pratico per la preparazione alle gare di matematica Ercole Suppa Liceo Scientifico A. Einstein, Teramo e-mail: [email protected] Teramo, 10 dicembre 2014 USR Abruzzo - PLS 2014-2015,
1.5 DIVISIONE TRA DUE POLINOMI
Matematica C Algebra. Le basi del calcolo letterale.5 Divisione tra due polinomi..5 DIVISIONE TRA DUE POLINOMI Introduzione Ricordiamo la divisione tra due numeri, per esempio 47:4. Si tratta di trovare
Congruenze. Classi resto
Congruenze. Classi resto Congruenze modulo un intero DEFINIZIONE Siano a e b due numeri interi relativi; fissato un intero m si dice che a è congruo a b modulo m se la differenza a b è multipla di m, e
Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni
Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Programma di Algebra 1
Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
Geometria BIAR Esercizi 2
Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si
Geometria analitica del piano pag 12 Adolfo Scimone
Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due
1 Relazione di congruenza in Z
1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo
Le equazioni e i sistemi di primo grado
Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle
Massimi e minimi relativi in R n
Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)
FUNZIONI TRA INSIEMI. Indice
FUNZIONI TRA INSIEMI LORENZO BRASCO Indice. Definizioni e risultati.. Introduzione.. Iniettività e suriettività.3. Composizione di funzioni 4.4. Funzioni inverse 5. Esercizi 5.. Esercizi svolti 5.. Altri
Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari
Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema
Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni
Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5
+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato
Sistemi di equazioni SISTEMI LINEARI Un sistema di equazioni è un insieme di equazioni per le quali si cercano eventuali soluzioni comuni. +=7 =1 Ognuna delle due equazioni ha infinite soluzioni. La coppia
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.
LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente
Chi non risolve esercizi non impara la matematica.
5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi
CODICI CICLICI. TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A Prof.ssa Bambina Larato - Politecnico di Bari
CODICI CICLICI TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A. 2011-2012 Prof.ssa Bambina Larato - [email protected] Politecnico di Bari CODICI CICLICI Qualche richiamo Sia F=GF(q) e sia F[x] l insieme
+ 1)... (e k + 1). Si indica con (n), chiamato numero di Eulero di n, il numero dei numeri naturali minori di n e primi con n.
"Come si fa" a svolgere vari tipi di esercizi 1 numeri e congruenze (algoritmi avvertenze casi speciali esempi) Attenzione gli argomenti non sono in ordine Alcuni degli esercizi presentati erano parte
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da
ESERCIZI SULLE DISEQUAZIONI I
ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x
Aritmetica modulare. Veronica Gavagna
Aritmetica modulare Veronica Gavagna Aritmetica modulare o Aritmetica dell orologio Da http://proooof.blogspot.it/2010/04/alice-bob-e-eva-lorologio.html Alice, Bob e Eva L'orologio Che ore saranno tra
POLINOMI. (p+q)(x) = p(x)+q(x) (p q)(x) = p(x) q(x) x K
POLINOMI 1. Funzioni polinomiali e polinomi Sono noti campi infiniti (es. il campo dei complessi C, quello dei reali R, quello dei razionali Q) e campi finiti (es. Z p la classe dei resti modp con p numero
Lezione 2. Percentuali. Equazioni lineari
Lezione 2 Percentuali Equazioni lineari Percentuali Si usa la notazione a % per indicare a/100 Esempio: 25%= 25/100=0.25 30% = 30/100=0.30 Inoltre: Applicare la percentuale a % a un numero b è come moltiplicare
Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale
Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque
= < < < < < Matematica 1
NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato
ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.
ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono
Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli
Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica Discreta 1 / 29 index
Esercizi svolti sui sistemi lineari
Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1
La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : ax + by + c = 0 ( 1 ) Forma implicita
Prof. Marco La Fata La Retta nel piano Cartesiano La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : a + b + c = 0 ( ) Forma implicita Questa è in forma
ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n
Il calcolatore ad orologio di Gauss ESERCITAZIONE N.8 18 novembre L aritmetica dell orologio di Gauss Operazioni e calcoli in Z n 1, 1, -11, sono tra loro equivalenti ( modulo 12 ) Rosalba Barattero Sono
EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.
EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema
ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011
ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
Principio di induzione: esempi ed esercizi
Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante
MAPPA MULTIPLI E DIVISORI
MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo
Monomi. 9.1 L insieme dei monomi
Monomi 9 9.1 L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in cui compare l operazione di moltiplicazione, tralasceremo il puntino fin qui usato per evidenziare l operazione.
Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini
Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,
2 xab ; a2 x 3 y. 3a; 4b 2 ; 0,75y 3 z
1 Premessa. In questa sezione verranno richiamati alcuni concetti fondamentali dell algebra, quella parte della matematica che si occupa dello studio del cosiddetto calcolo letterale, utili ai fini della
ESERCIZI IN PIÙ I NUMERI COMPLESSI
ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè
( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =
1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.
