Geometria BIAR Esercizi 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria BIAR Esercizi 2"

Transcript

1 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si trovi un vettore riga x (x, y, z) tale che x v a + kc Soluzione: i vettori cercati sono rispettivamente (, 0, 0) (0, k, 0) (, 0, k). Esercizio. Sia k R, si consideri la generica matrice quadrata di ordine tre: A d e f. (a) Si trovi una matrice E tale che E A kd ke kf d e f (b) Si trovi una matrice E tale che E A (c) Si trovi una matrice E tale che E A d e f g + ka h + kb i + kc Nota: Questo esercizio dovrebbe convincervi che le operazioni elementari dell algoritmo di Gauss possono essere effettuate mediante la moltiplicazione per matrici opportunamente scelte. Avendo un po di pratica con il prodotto righe per colonna, e pensando all esercizio precedente, per trovare queste matrici non è necessario risolvere il sistema. Soluzione: Le matrici sono rispettivamente a) k 0 b) c) k 0 Esercizio. Per ognuna delle seguenti matrici determinare, quando esiste, la sua inversa: A, A, A. a Soluzione: La matrice A non è invertibile, A 6 6 A 0 - a

2 Esercizio 4. Calcolare il determinante e l inversa (quando esiste) della matrice cos θ sin θ R θ, θ [0, π] sin θ cos θ Soluzione: Il determinante ( é cos θ ) + sin θ θ [0, π]. Quindi la matrice è sempre invertibile con inversa R cos θ sin θ θ. Usando le identità sin( θ) sin θ e cos( θ) cos θ si vede sin θ cos θ R θ R θ. Esercizio 5. x + y + z È dato il sistema di tre equazioni in tre incognite S : x + y + 6z. x + 6y + z 5 a) Usare il teorema di Cramer per concludere che S ammette un unica soluzione. b) Trovare la soluzione. Soluzione: Il determinante della matrice dei coefficienti è, quindi il sistema è Crameriano. soluzione è data da L unica Esercizio 6. kx + z Determinare per quali valori di k R il sistema di tre equazioni in tre incognite ky + z x + y + kz ammette un unica soluzione. Soluzione: Il determinante della matrice dei coeffcienti è k k. Quindi il sistema ammette una soluzione unica per k 0 e k ± Esercizio 7. x + y + z Si consideri il sistema lineare S : x + y + 4z 5x + 8y + 9z 5 (a) Si verifichi che il sistema è Crameriano. (b) Si applichi l algoritmo di Gauss alla matrice a blocchi fino ad arrivare ad avere la matrice identità nel blocco a sinistra come visto in classe, e si verifichi che il vettore nel blocco destro così ottenuto è la soluzione di S

3 Soluzione: a) Il determinante della matrice dei coefficienti è /. b) Con le operazioni elementari R R R, R R 5R, R R R, R R otteniamo la matrice Conle ulteriori operazioni R R R, R R R, R R R arriviamo alla matrice a blocchi (I,. Sostituendo si vede che il vettore è (l unica) soluzione. Esercizio 8. Si usi l algoritmo di Gauss sulla matrice a blocchi come visto in classe per trovare l inversa (se esiste) della matrice di ordine tre a sinistra. Soluzione: Una (possible) successione di operazioni elementari dà come risultato Esercizio 9. È data la matrice A. Risolvere le seguenti equazioni matriciali nell incognita X determinando in ciascun caso l insieme delle soluzioni. (a) AX. (b) AX X (c) AX X. (d) AX X +. (e) AX X + 0 Soluzione: a) La matrice inversa è A 4. Quindi l unica soluzione è A ( x x b) Poiché I possiamo scrivere l equazione come (A I y y) )X ( 0 )X 0 dunque le soluzioni sono tutti i vettori della forma X t/ t x + y x + y ( 4 4 ( 0 0), ossia 0 0 ) x, y

4 0 c) Procedendo come prima (X I X), otteniamo l equazione X 0, dove 0 è il vettore nullo. La matrice nell equazione precedente è invertibile, dunque l unica soluzione è X 0 d) Usando b), dobbiamo risolvere il sistema ( t)/. t { x + y x + y. Le soluzioni sono tutti i vettori del tipo e) Ragionando come prima, vediamo che in questo caso il sistema è incompatibile, quindi l equazione matriciale non ammette soluzioni. Esercizio 0. a a Calcolare il determinante della matrice b b, esprimendo il risultato come prodotto di tre c c binomi. Per quali valori di a, b, c la matrice è invertibile? Soluzione: Con le operazioni R R R, R R R, R R (c a)/(b a)r otteniamo una matrice triangolare superiore con elementi della diagonale, b a, c a (c a)(b a ) b a. Poichè (b a ) (a + b)(b a) l ultimo elemento della diagonale è c a (c a)(b + a) (c b)(c a); quindi il determinante è (b a)(c b)(c a) e la matrice è invertibile se e solo se a, b, c sono distinti. In effetti per dividere per (b a) bisogna osservare che se b a (o se due qualsiasi dei coefficienti sono uguali) allora due righe sono uguali e il determinante è nullo. Esercizio. a) Trovare una matrice quadrata, non nulla, di ordine, tale che A O. b) Dimostrare che, se A O, allora det A 0. c) Trovare una matrice A di ordine, diversa da O e da I, tale che A A. d) Se A A, quali valori può assumere det A? Soluzione: 0 a) Ad esempio 0 0 o anche. b) Per la formula di Binet 0 det A (det A)(det A) c) Ad esempio , oppure d) Qui la formula di Binet implica che il determinante di A soddisfi x x Esercizio. Siano A, B matrici quadrate invertibili. Si dimostri che AB è invertibile e si scriva l inversa. Soluzione: Poichè esistono le matrici A e B possiamo considerare il prodotto B A. moltiplicando ABB A AIA AA I. Analogamente moltiplicando a sinistra. Si noti che a causa della non commutatività del prodotto l inversa non è A B.

5 Esercizio. Sia A Mat(n) e b b. R n un vettore colonna. Denotiamo con A(i) la matrice ottenuta b n sostituendo la i-esima colonna di A con il vettore b. (a) Mostrare che det(a(i)) ( ) i+ b det(a i ) ( ) n+i b n det(a ni ) (b) Usare la parte precedente per mostrare che se j i si ha. ( ) i+ a j det(a i ) ( ) n+i a nj det(a ni ) 0 Soluzione: a) Sviluppando il determinante lungo la colonna i, abbiamo la formula det(a(i)) ( ) i+ b det(a(i) i ) ( ) n+i b n det(a(i) ni ) dove le matrici A(i) ki k,..., n sono ottenute da A(i) cancellando la riga k e la colonna i. colonna i di A(i) è l unica diversa dalle colonne della matrice A, quindi A(i) ki A ki. Ma la b) Utilizzando la parte precedente, stiamo calcolando il determinante della matrice ottenuta da A sostituendo la colonna i di A con un altra colonna j di A. Siccome j i, nella matrice così ottenuta abbiamo colonne uguali (la colonna j si ripete due volte), quindi il determinante è nullo. Esercizio 4. Perchè l algoritmo usato nell esercizio 8 per trovare l inversa di una matrice funziona? (Si pensi alla nota dell esercizio ). Soluzione: Per la nota dell esercizio, ogni operazione elementare dell algoritmo può essere effettuata moltiplicando (a sinistra) per una matrice appropriata. Se una matrice A si riduce alla matrice identità dopo k operazioni elementari, significa che esistono k matrici E,..., E k tali che E k E k E A I, dunque A E k E k E (attenzione, l ordine è importante visto che il prodotto di matrici non è commutativo). Quindi l algoritmo equivale a fare le moltiplicazioni (A I) (E A E I) (E A E )... (A A A )

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi 11 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

Geometria BAER Canale A-K Esercizi 9

Geometria BAER Canale A-K Esercizi 9 Geometria BAER 2016-2017 Canale A-K Esercizi 9 Esercizio 1. Si considerino i punti del piano A (1, 1), B (4, 1), C ( 1/2, 2) (a) Si determini se i punti A, B, C sono allineati e, in caso affermativo, si

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 9: soluzioni Esercizio 1. Nello spazio sono dati i punti A = (1, 2, 3), B = (2, 4, 5), C = (1, 1, 4). a) Scrivere equazioni parametriche della retta r 1 passante

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

ALGEBRA LINEARE PARTE III

ALGEBRA LINEARE PARTE III DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli