LeLing12: Ancora sui determinanti.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LeLing12: Ancora sui determinanti."

Transcript

1 LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling 4. Sviluppo di Laplace Lo sviluppo di Laplace di un determinante det(a) n n permette di ridurre il calcolo a quello di n determinanti (n ) (n ). Ecco la formula dello sviluppo secondo la riga i-esima (dove A = (a ij )): det(a) = ( ) i+ a i det(a i ) + + ( ) i+n a in det(a in ) dove A ij e la matrice (n ) (n ) che risulta della A cancellando la riga i-esima e la colonna j -esima. Ecco lo sviluppo seconda la colonna j -esima: det(a) = ( ) j+ a j det(a j ) + + ( ) j+n a nj det(a nj ) Esempio 0.. Ecco lo sviluppo usando la prima riga = = (4 6) 2(3 5) + ( ) = 0 Vediamo la dimostrazione dello sviluppo secondo la prima riga. Osservare che la linearita del determinante dimostrata nella dispensa precedente implica det(a) = j= E j A 2 A n n a j det. Ingegneria dell Autoveicolo, LeLing2 Geometria

2 dove E j e la base canonica delle righe, cioe E j e nulla tranne nel posto j dove ha. Dunque per terminare la dimostrazione dobbiamo calcolare i determinanti a 2 a 22 a 2(j ) a 2j a 2(j+) a 2n a n a n2 a n(j ) a nj a n(j+) a nn Notiamo che tutta la colonna j -seima non interviene nel calcolo, cioe a 2 a 22 a 2(j ) 0 a 2(j+) a 2n a n a n2 a n(j ) 0 a n(j+) a nn Siccome scambiando due colonne il determinate cambia segno, risulta: E j A 2 det. = 0 a 2 a 22 a 2(j ) a 2(j+) a 2n ( )j = ( ) +j det(a j ) a n a n2 a n(j ) a n(j+) a nn A n Mettendo tutto insieme risulta lo sviluppo di Laplace rispetto alla prima riga: det(a) = a det(a i ) ± ± a n det(a n ). Osservare che il determinante a b c d = ad bc e un caso particolare dello sviluppo di Laplace. Prodotto vettoriale Dato un vettore del piano R 2 ( ) a v = vogliamo trovare un vettore perpendicolare ( ) b x w =. Consideriamo il determinate y x y a b. Sappiamo che questo determinate e zero quando x = a e y = a come risulta della formula x y ( ) ( ) x b a b = xb ya =. y a Dunque il vettore ( ) b w = e perpendicolare a ( ) ( ) ( ) a a b v =, cioe = 0. a b b a Ingegneria dell Autoveicolo, LeLing2 2 Geometria

3 Questo argomento si generalizza allo spazio R 3 e permette di risolvere il problema di trovare un vettore w perpendicolare a due vettori dati v, v 2. Infatti, siano v = b, c a 2 v2 = b 2 e x w = y. Consideriamo il seguente determinante: c 2 z x y z a b c a 2 b 2 c 2 = x b c b 2 c 2 y a c a 2 c 2 + z a b a 2 b 2 dove l uguaglianza e conseguenza dello svillupo di Laplace respetto alla prima riga. Possiamo interpretare quest ultima uguaglianza come un prodotto scalare, cioe b c x y z a b c a 2 b 2 c 2 = x b c b 2 c 2 y a c a 2 c 2 + z a b x b 2 c 2 a 2 b 2 = y a c z a 2 c 2 a b a 2 b 2 b c b 2 c 2 dunque il vettore w = a c a 2 c 2 e perpendicolare a v e v 2. a b a 2 b 2 Il vettore w si chiama prodotto vettoriale di v e v 2 e lo si denota con v v 2. In modo analogo, usando un determinante n n e lo sviluppo di Laplace si puo risolvere il problema di trovare un vettore w R n perpendicolare a n vettori dati. Il prodotto vettoriale visto geometricamente Abbiamo visto che il prodotto vettoriale v v 2 e perpendicolare a v e v 2. Siccome sappiamo che i vettori perpendicolari a v e v 2 costituiscono una retta, per individuare v v 2 basta conoscere il suo modulo, cioe la lunghezza, e il suo verso. Proposizione 0.2. Il modulo di v v 2 tra v e v 2. e v v 2 sin(θ), dove 0 θ < π e l angolo a Ingegneria dell Autoveicolo, LeLing2 3 Geometria

4 v v 2 Dimostrazione. Ricordiamo che il determinante det( v ) e il volume del v2 parellelepipedo generato dai tre vettori v v 2, v, v 2 : V olume( v v 2, v, v v 2 v 2 ) = det( v ) = v v 2 2. v2 Osserviamo allora che: v v 2 v v 2 sin(θ) = Area( v, v 2 ) = det( v v 2 v ) = v v 2 v2 v v 2 Siccome il determinate det( v v 2 v ) e positivo, si v2 conclude che la regola della mano destra e adatta per trovare il verso di v v 2. Dunque v v 2 e l unico vettore che e perpendicolare a v, v 2 che ha lungheza uguale all area Area( v, v 2 ) del parallelogramma generato da v e v 2 e il cui verso si trova usando la regola della mano destra. Il prodotto vettoriale v w si puo anche interpretare in termini di un giro (o rotazione) di 90 gradi. Infatti, supponendo che v w, allora v w e il vettore che si ottiene girando 90 in verso anti-orario il vettore w nel piano normale a v. Questo poiche il determinante nasce nel tentativo di calcolare l area o volume dell paralelopipedo generato tra i vettori. Ingegneria dell Autoveicolo, LeLing2 4 Geometria

5 Rango e determinante: i minori Ricordare che il determinante ha senso soltanto per le matrici quadrate. Se la matrice non e quadrata possiamo calcolare certi determinati chiamati minori. Un minore d ordine k della matrice A e il determinate di una matrice k k che risulta scegliendo k righe e k colonne della matrice A. Ad esempio, ogni numero a ij e un minore d ordine. Esempio 0.3. Il determinate = 2 e un minore d ordine 2 della matrice , che corrisponde a scegliere la prima e terza riga e la prima e terza colonna. Anche il determinante = 2 e un minore della matrice A. Ecco 8 2 un minore d ordine 3 : = 8 c c n c 2 Osservare che una colonna C = e non nulla se e solo se almeno un minore e. non nullo. Infatti i minori sono i numeri c,, c n e dunque ovviamente C e non nulla se almeno uno di questi numeri e non nullo. Questo e vero in generale, cioe per una matrice A n m qualsiasi; ossia A e non nulla se e solo se almeno un minore e non nullo. Notare che possiamo dire che una matrice ha rango zero se e solo se tutti i minori sono nulli. Questa osservazione si generalizza e diventa il teorema di Kronecker 2. Teorema 0.4. Una matrice A n m ha rango ρ(a) = k se e solo se esiste un minore non nullo d ordine k e tutti i minori d ordine > k sono nulli. Dimostrazione. Sia M k un minore d ordine k. Se ci fosse una combinazione lineare non banale tra le k righe (risp. k colonne) coinvolte nella costruzione di M k allora questa combinazione lineare sarebbe anche una combinazione lineare non banale tra le k righe che si trovano dentro al minore d ordine M k. Questo implica M k = 0. Questo dimostra che M k = 0 se k > ρ(a). Per dimostrare che se k = ρ(a) allora esiste un minore d ordine k non nullo possiamo assumere che A e una matrice con k colonne, 2 Leopold Kronecker (823-89) matematico tedesco. Ingegneria dell Autoveicolo, LeLing2 5 Geometria

6 cioe facciamo attenzione semplicemente a k colonne linearmenti independenti. Siccome il rango righe e uguale al rango colonne esitono anche k righe linearmente independenti. Dunque il minore k k cosi costruito deve essere non nullo, poiche le k righe sono linearmente independenti. Scelta delle variabile libere Puo capitare di dover risolvere un sistema lineare lasciando libere qualche variabile. Osservare che nel metodo di Gauss-Jordan spiegato all inizio di questo corso le variabili libere sono le ultime, cioe se x, x 2,, x n allora le ultime variabli, x n, x n sono quelle che si cerca di lasciare libere. Cosa succede se vogliamo lasciare libere le variabili x, x 2?. O piu in generale, se vogliamo che un insieme x i, x i2,, x il siano variabili libere. Nella pratica semplicemente si cambia l ordine, cioe si mettono in fondo alla matrice dei coefficienti le colonne delle x i, x i2,, x il e si procede con il metodo di Gauss-Jordan. { x + 2x Esempio 0.5. Vogliamo risolvere il sistema 2 + x 3 + 5x 4 = 3x + 4x 2 + 8x 3 + 3x 4 = 0 libere le varibili x, x 2. Dunque usiamo la seguente matrice del sistema: ( 5 2 ) }, lasciando Notare che la prima colonna corrisponde alla incognita x 3, la seconda alla x 4, la terza alla x e l ultima alla x 2. Adesso procediamo con Gauss-Jordan: ( ) ( ) ( ( Dunque il sistema e equivalente a: sistema con le variabili x, x 2 libere: x x 2 x 3 = x ) ( { x4 + 2x + 4x 2 = 3 x 3 + 3x + 2x 2 = 8 + x x ) 8 ) Ecco la soluzione del Ingegneria dell Autoveicolo, LeLing2 6 Geometria

7 Invece nel seguente sistema x, x 2 non possono essere libere nella soluzione generale. Esempio 0.6. { x = 3x + 4x 2 + 8x 3 + 3x 4 = 0 Dopo questi esempi la domanda naturale e quando possiamo scegliere un gruppo di incognite x i, x i2,, x il come variabli libere? Ecco la risposta. Teorema 0.. Sia (A B) un sistema compatibile con n incognite x, x 2,, x n. Le incognite x i, x i2,, x il si possono scegliere come variabili libere se e soltanto se il rango di A e uguale al rango della matrice che risulta da A dopo aver cancellato le colonne delle variabili x i, x i2,, x il. Inoltre, questo e possibile se e soltanto se esiste un minore d ordine l non nullo nella matrice che risulta da A dopo aver cancellato le colonne delle variabili x i, x i2,, x il. La dimostrazione e un semplice corollario della teoria sviluppata fino ad ora. E interessante osservare che il teorema precedende e una versione lineare del Teorema della funzione implicita studiato nel corso di Analisi. Questo teorema permette di definire una funzione (vettoriale) usando un sistema di equazioni non necessariamente lineare. Il polinomio caratteristico Una matrice quadrata A ha associato un polinomio molto importante che si calcola usando il concetto di determinante. Questo polinomio si chiama polinomio caratteristico; eccolo qui: a x a 2 a n a 2 a 22 x a 2n χ A (x) = det(a xid) = a n a n2 a nn x Cioe si sottrae la x lungo la diagonale di A e si calcola il determinante. ( ) 2 Esempio 0.8. Ecco il polinomio caratteristico della matrice A = : 3 4 χ A (x) = x x = ( x)(4 x) 6 = x2 5x 2. Ingegneria dell Autoveicolo, LeLing2 Geometria

8 Notare che mettendo 0 al posto della x risulta det(a) dunque il termine costante del polinomio caratteristico e il determinante di A. Proposizione 0.9. Il polinomio caratteristico di una matrice n n ha grado n. Dimostrazione. E molto facile usando lo sviluppo ( di Laplace. ) a b Ecco il polinomio caratteristico della matrice A = : c d χ A (x) = a x c b d x = x2 (a + d)x + (ad bc) Notare che il polinomio caratteristico della matrice nulla n n e ( ) n x n e quello della matrice identica n n e ( x) n. Ecco un teorema importante. Teorema 0.0. Sia A una matrice e P una matrice invertibile. Allora il polinomio caratteristico di A e uguale al polinomio caratteristico di P AP. Dimostracione. La formula di Binet implica det(p (A xid)p ) = det(p )det(a xid)det(p ) = det(a xid) = χ A (x) ma det(p (A xid)p ) = det(p AP xid) = χ P AP (x) Ingegneria dell Autoveicolo, LeLing2 8 Geometria

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

LeLing9: Prodotto tra matrici.

LeLing9: Prodotto tra matrici. Geometria Lingotto LeLing9: Prodotto tra matrici Ārgomenti svolti: Prodotto tra matrici Dimostrazione del teorema del rango L algebra delle matrici quadrate: Il prodotto tra matrici non e commutativo Rotazioni

Dettagli

1 Indipendenza lineare e scrittura unica

1 Indipendenza lineare e scrittura unica Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza

Dettagli

1 Definizione di sistema lineare omogeneo.

1 Definizione di sistema lineare omogeneo. Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari

Dettagli

1 Riduzione per righe e matrici equivalenti per righe.

1 Riduzione per righe e matrici equivalenti per righe. Geometria Lingotto. LeLing2: Sistemi lineari omogenei. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi gia risolti. Il metodo di Gauss-Jordan e la forma echelon.

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

1 Definizione di sistema lineare non-omogeneo.

1 Definizione di sistema lineare non-omogeneo. Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale

Dettagli

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi.

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi. LeLing14: Ancora numeri complessi e polinomi Ārgomenti svolti: Risoluzione di ax + bx + c = 0 quando a, b, c sono numeri complessi La equazione di Eulero: e i θ = cos(θ) + i sin(θ) La equazione x n = a,

Dettagli

0.1. MATRICI SIMILI 1

0.1. MATRICI SIMILI 1 0.1. MATRICI SIMILI 1 0.1 Matrici simili Definizione 0.1.1. Due matrici A, B di ordine n si dicono simili se esiste una matrice invertibile P con la proprietà che P 1 AP = B. Con questa terminologia dunque

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

I numeri sulla Mole Antonelliana.

I numeri sulla Mole Antonelliana. Ārgomenti svolti: Serie di numeri di Fibonacci. Potenza n-esima di matrici. Autovalori ed autovettori. Formula di Binet. LeLing: Fibonacci, Autovalori e Autovettori. Ēsercizi consigliati: Geoling 6. I

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

I determinanti. a11 a A = 12 a 21 a 22

I determinanti. a11 a A = 12 a 21 a 22 I determinanti. Queste note, basate sugli appunti delle lezioni, riepilogano rapidamente la definizione e le proprietà del determinante. Vengono inoltre illustrati i metodi di calcolo e alcune dimostrazioni.

Dettagli

Metodo di Gauss-Jordan 1

Metodo di Gauss-Jordan 1 Metodo di Gauss-Jordan 1 Nota Bene: Questo materiale non debe essere considerato come sostituto delle lezioni. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Numeri di Fibonacci, Autovalori ed Autovettori.

Numeri di Fibonacci, Autovalori ed Autovettori. Numeri di Fibonacci, Autovalori ed Autovettori. I numeri sulla Mole Antonelliana. Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6, 987, dove ogni nuovo numero rappresenta la somma dei due

Dettagli

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

1 Combinazioni lineari.

1 Combinazioni lineari. Geometria Lingotto LeLing5: Spazi Vettoriali Ārgomenti svolti: Combinazioni lineari Sistemi lineari e combinazioni lineari Definizione di spazio vettoriale Ēsercizi consigliati: Geoling 6, Geoling 7 Combinazioni

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

Sui determinanti e l indipendenza lineare di vettori

Sui determinanti e l indipendenza lineare di vettori Sui determinanti e l indipendenza lineare di vettori 1 Si dice che m vettori v 1, v 2,,v m di R n sono linearmente indipendenti, se una loro combinazione lineare può dare il vettore nullo solo se i coefficienti

Dettagli

1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici

1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici Matrici R. Notari 1 1. Proprietà della somma di matrici 1. (A + B) + C = A + (B + C) qualunque siano le matrici A, B, C Mat(m, n; K). 2. A + B = B + A qualunque siano le matrici A, B Mat(m, n; K). 3. Sia

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Basi e coordinate. Applicazioni lineari. Matrici come applicazioni

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

Matematica II,

Matematica II, Matematica II,.05.04 Diamo qui la nozione di determinante di una matrice quadrata, le sue prime proprieta, e ne deriviamo una caratterizzazione delle matrici non singolari e una formula per l inversa di

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici Introduzione S S S Rango di matrici Si dice sottomatrice d'una matrice data la matrice ottenuta selezionando un certo numero di righe e di colonne della matrice iniziale. Lezione 24.wpd 08/01/2011 XXIV

Dettagli

Prodotti scalari e matrici

Prodotti scalari e matrici Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

VETTORI NELLO SPAZIO ORDINARIO ,

VETTORI NELLO SPAZIO ORDINARIO , VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

x n i sima pos. x, y = x T y = x i y i R. i=1

x n i sima pos. x, y = x T y = x i y i R. i=1 1 Elementi di Algebra Lineare In questo capitolo introduttivo al corso di Calcolo Numerico per la laurea triennale in Informatica, saranno presentate una serie di definizioni e proprietà di matrici e dei

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

I numeri sulla Mole Antonelliana.

I numeri sulla Mole Antonelliana. I numeri sulla Mole Antonelliana. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. I voli dei numeri Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6,

Dettagli

Geometria e algebra lineare (II parte) Bruno Martelli

Geometria e algebra lineare (II parte) Bruno Martelli Geometria e algebra lineare (II parte) Bruno Martelli Dipartimento di Matematica, Largo Pontecorvo 5, 56127 Pisa, Italy E-mail address: martelli at dm dot unipi dot it versione: 7 marzo 2017 Indice Introduzione

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Inversa. Inversa. Elisabetta Colombo

Inversa. Inversa. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 00-0, http://users.mat.unimi.it/users/colombo/programmabio.html e 3 con i Matrici inverse di matrici quadrate e con i Sia A una

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico ,

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico , Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, 1 n=2 2 3 con le 4 n=2 n=2 con le Ad ogni matrice quadrata A = (a ij ) j=1...n i=1...n di ordine n si può associare

Dettagli

Introduzione all algebra delle matrici. Appunti a cura di Lara Ercoli

Introduzione all algebra delle matrici. Appunti a cura di Lara Ercoli Introduzione all algebra delle matrici ppunti a cura di Lara Ercoli Indice Definizioni 3. Matrici particolari............................ 4 2 Operazioni con le matrici 8 2. Somma di matrici.............................

Dettagli

Funzioni di R n a R m e la matrice Jacobiana

Funzioni di R n a R m e la matrice Jacobiana 0.1 Funzioni di R n a R m. Politecnico di Torino. Funzioni di R n a R m e la matrice Jacobiana Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Funzioni di R n

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la

Dettagli

Testi consigliati e contatti

Testi consigliati e contatti Testi consigliati e contatti P.Bonacini, M. G. Cinquegrani, L. Marino, Algebra lineare: esercizi svolti, Cavallotto Edizioni, Catania P. Bonacini, M. G. Cinquegrani, L. Marino, Geometria analitica: esercizi

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

MATRICI. 1. Esercizi

MATRICI. 1. Esercizi MATICI Esercizio Siano A = 0, B = Esercizi 2, C = 0 2 2 Calcolare: a2a B; b3a + 2B 4C; c 2A + B + 2C 2B; d3b + 2(2A C (A + B + 2C isolvere, se possibile: ( 3X + 2(A X + B + 2(C + 2X = 0; (2 4A + 2(B +

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009 Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

RANGO DI UNA MATRICE ρ(a)

RANGO DI UNA MATRICE ρ(a) RANGO DI UNA MATRICE (A) a,... a A M M am,... a, n mn, K É il massimo ordine di un minore estratto con determinante non nullo. Equivalentemente è il massimo numero di righe (colonne) linearmente indipendenti.

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Volumi in spazi euclidei 12 dicembre 2014

Volumi in spazi euclidei 12 dicembre 2014 Volumi in spazi euclidei 12 dicembre 2014 1 Definizioni In uno spazio euclideo reale V di dimensione n siano dati k n vettori linearmente indipendenti e sia Π := Π(v 1 v 2... v k ) il parallelepipedo generato

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione.

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione. Corso di Matematica Discreta. Anno accademico 2008-2009 Appunti sulla diagonalizzazione. Autovalori e autovettori di un endomorfismo lineare. Sia T : V V una applicazione lineare da uno spazio vettoriale

Dettagli

Lezione 7: Il Teorema di Rouché-Capelli

Lezione 7: Il Teorema di Rouché-Capelli Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da

Dettagli