ESERCIZI SULLE MATRICI
|
|
|
- Lucrezia Pepe
- 8 anni fa
- Visualizzazioni
Transcript
1 ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a m,n matrice m n come matrice di coefficienti e b b = b m come vettore dei termini noti Per compattezza tale sistema si indica a volte come A x = b dove x x = x n sono le incognite Se si pensa ad un sistema di una equazione in una incognita a, x A = a, è un numero Ci sono tre possibilità: Se a, c è sempre una ed una sola soluzione x = a, /b Se a, = e b non ci sono soluzioni Se a, = e b = ci sono infinite soluzioni = b allora Nel caso di sistemi m n si possono verificare di nuovo queste tre possibilità Per discuterle diamo alcune definizioni: Definizione Sottomatrici Da una matrice A si possono ottenere matrici piú piccole eliminando alcune righe e colonne Per esempio si indica con M i,j la matrice ottenuta cancellando l i ma riga e la j ma colonna Definizione Determinante Per le matrici quadrate, cioè con n = m, si definisce ricorsivamente il erminante Per una matrice, A = a,, si pone A = a,
2 ESERCIZI SULLE MATRICI Per una matrice A n n si sceglie una qualsiasi riga, supponiamo che sia la i ma: A = a i+ i, M i, a i, M i, +a i, M i, + n a i,n M i,n Dove M i,j è la matrice che si ottiene da A cancellando la i ma riga e la j ma colonna Si noti che la somma è a segni alterni e parte con il + se i + è pari cioè se i è dispari se i è pari la somma parte con il meno Lo stesso risultato si ottiene scegliendo una qualsiasi colonna, supponiamo che sia la j ma: A = a j+,j M,j a,j M,j +a,j M,j + n a n,j M n,j Per una matrice si ha: a, a A =,, A = a a, a, a, a, a,, Per esempio data la matrice A = si ha usando la prima riga A = + si ottiene lo stesso risultato usando la seconda colonna: A = + Definizione rango Data una matrice m n consideriamone le sottomatrici quadrate ottenute cancellando alcune righe e colonne Si dice che A ha rango r se sono verificate le seguenti due condizioni: esiste una sottomatrice r r il cui erminante è diverso da zero tutte le sottomatrici r + r + hanno erminante uguale a zero Puo essere utile il seguente Teorema degli orlati Teorema Data una matrice A tale che: esiste una sottomatrice r r il cui erminante è diverso da zero le sottomatrici r + r + ottenute aggiungendo una riga ed una colonna alla matrice r r del punto hanno tutte erminante uguale a zero Allora A ha rango r Notare che il teorema permette di calcolare meno erminanti r + r + Il rango è anche legato al concetto di vettori linearmente indipendenti Un vettore colonna di dimensione n è una lista di n numeri le sue componenti messi in colonna Lo stesso vale per un vettore riga di dimensione n Per esempio i punti nel piano cartesiano sono rappresentati come vettori riga di dimensione
3 ESERCIZI SULLE MATRICI I vettori colonna della stessa dimensione si possono sommare tra di loro sommandone le componenti: v = v v, w = w w, v + w = v + w v + w v m w m v m + w m allo stesso modo i vettori colonna si possono moltiplicare per un numero α R: v = v v v m, α v = αv αv αv m Naturalmente la stessa cosa si puo fare con le righe Una somma di vettori α v + α v + α n v n, dove almeno uno degli α i è diverso da zero, si dice una combinazione lineare dei vettori Definizione 4 indipendenza lineare I vettori v, v,, v n si dicono linearmente indipendenti se non esiste nessuna loro combinazione lineare che dia il vettore nullo Teorema Data una matrice A, consideriamo i vettori colonna dati dalle colonne di A Il rango di A è pari al massimo numero di colonne linearmente indipendenti Equivalentemente il rango di A è pari al massimo numero di righe linearmente indipendenti notare che questo puo servire anche per capire se dei vettori sono linearmente indipendenti: si considera la matrice che ha come colonne i vettori e se ne calcola il rango Per esempio i tre vettori: v = v = sono indipendenti dato che la matrice v = ha erminante pari a e quindi rango Reciprocamente la matrice A =
4 4 ESERCIZI SULLE MATRICI ha rango infatti la terza e quarta riga si esprimono come combinazione lineare della prima e seconda riga: =, = D altro canto la prima e la seconda riga sono fra loro indipendenti visto che la sottomatrice ha erminante diverso da zero Si noti che per dimostrare che il rango di A è due col teorema degli orlati bisogna calcolare i erminanti delle due seguenti matrici : A =, A = Metodi di risoluzione dei sistemi lineari A Per risolvere sistemi lineari di n equazioni in n incognite in cui la matrice dei coefficienti A ha erminante diverso da zero si può usare il metodo di Kramer Sia b is vettore dei termini noti; esiste una ed una sola soluzione del sistema lineare ed essa è data da: x j = B j A dove la matrice B j si ottiene sostituendo alla j ma colonna di A la colonna dei termini noti b Esempio Si consideri il sistema dato da: A =, b == Si ha che A = 5 e quindi applicando la formula di Kramer: x = = A 5, x = A x = A = 4 5 = 7 5, B In generale se la matrice dei coefficienti non è quadrata o è quadrata ma con erminante nullo, si può seguire il metodo di Rouché Capelli che consiste in due
5 ESERCIZI SULLE MATRICI 5 passi Si consideri is sistema lineare con matrice di coefficienti A e vettore di termini noti b, supponiamo che A sia m n Calcolare il rango di A ed il rango della matrice indicata con B ottenuta aggiungendo ad A la colonna dei termini noti b Se i due ranghi non coincidono cioè se rangoa < rangob allora il sistema lineare non ha nessuna soluzione Se rangoa = rangob = r ci sono infinite soluzioni piú precisamente n r soluzioni cioè ci sono infinite soluzioni parametrizzate da n- rangoa parametri indipendenti Per erminare le soluzioni si va al passo Dato che rangoa = r esiste una matrice r r con erminante diverso da zero Se ne scelga una, chiamiamola A r Ora si lavora sul sistema di equazioni: Eliminare dal sistema tutte le equazioni le cui righe non fanno parte della matrice r r scelta Infatti queste equazioni si possono ottenere come combinazione lineare delle equazioni che compaiono in A r Passare al secondo membro nelle equazioni tutte le incognite le cui colonne non fanno parte di A r A questo punto si ottiene un sistema lineare con matrice dei coefficienti A r e con un vettore dei termini noti chiamiamolo b r che ha dimensione r e dipende da n r incognite tutte quelle che abbiamo passato a secondo membro Risolvere il sistema descritto sopra con il metodo di Kramer per ipotesi A r Si consideri il sistema dato da: A =, b = Il rango della matrice A è r = infatti la sottomatrice A ottenuta cancellando la terza colonna e la terza e quarta riga è invertibile; inoltre la terza colonna di A si ottiene dalle prime due colonne per combinazione lineare Esplicitamente La matrice B è: A =, = 5 ed ha rango due anch essa dato che b = 5 = 5
6 6 ESERCIZI SULLE MATRICI Quindi il sistema ha infinite soluzioni Scriviamo esplicitamente il sistema: x + x x = x x + x = 5 x x = x + x x = A l abbiamo ottenuta da A cancellando la terza e quarta riga e la terza colonna, quindi nel sistema cancelliamo la terza e quarta riga che non entrano in A e portiamo a secondo membro x la terza colonna non entra in A : { x + x = x x x = 5 x A questo punto abbiamo un sistema di due equazioni in due incognite con matrice dei coefficienti pari ad A e con vettore dei termini noti dipendente dal parametero x : x A =, 5 x Risolviamo con Kramer: x 5 x x = = x, x = x 5 x = x
Il teorema di Rouché-Capelli
Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
SISTEMI LINEARI, METODO DI GAUSS
SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =
Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire
Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009
Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :
Metodi per la risoluzione di sistemi lineari
Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante
LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.
LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
MATRICI E SISTEMI LINEARI
1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito
Dipendenza e indipendenza lineare
Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus
LEZIONE 4. { x + y + z = 1 x y + 2z = 3
LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.
Sui determinanti e l indipendenza lineare di vettori
Sui determinanti e l indipendenza lineare di vettori 1 Si dice che m vettori v 1, v 2,,v m di R n sono linearmente indipendenti, se una loro combinazione lineare può dare il vettore nullo solo se i coefficienti
Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale
Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora
Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di
Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici
Introduzione S S S Rango di matrici Si dice sottomatrice d'una matrice data la matrice ottenuta selezionando un certo numero di righe e di colonne della matrice iniziale. Lezione 24.wpd 08/01/2011 XXIV
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Sistemi di equazioni lineari
Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti
( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1
. Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo
SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.
SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
ALGEBRA LINEARE PARTE II
DIEM sez. Matematica Finanziaria Marina Resta Università degli studi di Genova Dicembre 005 Indice PREMESSA INVERSA DI UNA MATRICE DETERMINANTE. DETERMINANTE DI MATRICI ELEMENTARI................. MATRICI
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con
Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione
La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.
La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema
Argomento 13 Sistemi lineari
Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
Corso di Calcolo Numerico
Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due
Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.
Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.
SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:
SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)
+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato
Sistemi di equazioni SISTEMI LINEARI Un sistema di equazioni è un insieme di equazioni per le quali si cercano eventuali soluzioni comuni. +=7 =1 Ognuna delle due equazioni ha infinite soluzioni. La coppia
Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008
versione ottobre 2008 Lezioni di Algebra Lineare II. Aritmetica delle matrici e eliminazione di Gauss Contenuto. 1. Somma di matrici e prodotto di una matrice per uno scalare 2. Prodotto di matrici righe
Applicazioni eliminazione di Gauss
Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare
MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI
MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è
Le matrici. A cura di Benedetta Noris, 17 aprile Cos è una matrice. 2 Rappresentazione di una matrice generica 2
Le matrici A cura di Benedetta Noris, 17 aprile 2012 [email protected] Indice 1 Cos è una matrice 1 2 Rappresentazione di una matrice generica 2 3 Somma di matrici e prodotto di una matrice per
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)
ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?
A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento
Inversa di una matrice
Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:
Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico
Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga
1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.
1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI
Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore
Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice
Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine
Esercizi di ripasso: geometria e algebra lineare.
Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare
LEZIONE 12. v = α 1 v α n v n =
LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono
Geometria e Topologia I (U1-4) 2006-mag-10 61
Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca
Chi non risolve esercizi non impara la matematica.
5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi
Giuseppe Accascina. Note del corso di Geometria e Algebra
Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato
LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m
LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta
Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3
Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2 1 1 1 1 1 1 3 2 x 1 x 2 x 3 = 2 1 0 n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
Testi consigliati e contatti
Testi consigliati e contatti P.Bonacini, M. G. Cinquegrani, L. Marino, Algebra lineare: esercizi svolti, Cavallotto Edizioni, Catania P. Bonacini, M. G. Cinquegrani, L. Marino, Geometria analitica: esercizi
Geometria BIAR Esercizi 2
Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si
VETTORI NELLO SPAZIO ORDINARIO ,
VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto
Programmazione Lineare: problema del trasporto Ing. Valerio Lacagnina
Problemi di trasporto Consideriamo un problema di programmazione lineare con una struttura matematica particolare. Si può utilizzare, per risolverlo, il metodo del simplesso ma è possibile realizzare una
IV-2 Forme quadratiche
1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli
Matematica II,
Matematica II,.05.04 Diamo qui la nozione di determinante di una matrice quadrata, le sue prime proprieta, e ne deriviamo una caratterizzazione delle matrici non singolari e una formula per l inversa di
1 Combinazioni lineari.
Geometria Lingotto LeLing5: Spazi Vettoriali Ārgomenti svolti: Combinazioni lineari Sistemi lineari e combinazioni lineari Definizione di spazio vettoriale Ēsercizi consigliati: Geoling 6, Geoling 7 Combinazioni
5 Un applicazione: le matrici di rotazione
5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta
Fondamenti di ALGEBRA LINEARE E GEOMETRIA
Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 19 Capitolo
Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard
Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione
Informatica B
2013-2014 Matlab Laboratorio del 14/01/2014 Responsabili di laboratorio: Gianluca Durelli: [email protected] Luigi Malago : [email protected] Materiale di laboratorio reperibile all indirizzo: www.gianlucadurelli.com
Metodo di Gauss-Jordan 1
Metodo di Gauss-Jordan 1 Nota Bene: Questo materiale non debe essere considerato come sostituto delle lezioni. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi
Dipendenza e indipendenza lineare (senza il concetto di rango)
CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori
QUADERNI DI DIDATTICA
Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Marta Cardin Paola Ferretti Stefania Funari Introduzione soft alla matematica per l economia e la finanza: I SISTEMI LINEARI
Anno 4 Matrice inversa
Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere
Esercizi svolti sui sistemi lineari
Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1
Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari
Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare
Parte 8. Prodotto scalare, teorema spettrale
Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,
La riduzione a gradini e i sistemi lineari (senza il concetto di rango)
CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere
