Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)
|
|
|
- Baldo Falco
- 9 anni fa
- Visualizzazioni
Transcript
1 Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione di una funzione obiettivo sotto un certo numero di vincoli: si vuole trovare la soluzione che massimizza o minimizza la funzione obiettivo f tra tutte le soluzioni x che soddisfano un dato insieme di vincoli definiti come funzioni g i. In termini matematici possiamo scrivere: min(max) f(x) s.t. g i (x), oppure = b i i = 1..m x R n dove - x = (x 1, x 2,..., x n ) è un vettore di n variabili reali (ciascun vettore rappresenta una potenziale soluzione del problema); - f e g i sono funzioni R n R - b i R Un problema di Programmazione Lineare (PL) è un problema di ottimizzazione in cui la funzione obiettivo f e tutti i vincoli g i sono funzioni lineari delle variabili x: min(max) c 1 x 1 + c 2 x c n x n s.t. a i1 x 1 + a i2 x a in x n = b i (i = 1... k) a i1 x 1 + a i2 x a in x n b i (i = k k ) a i1 x 1 + a i2 x a in x n b i (i = k m) x i R (i = 1... n) Una soluzione ammissibile di un problema di PL è un vettore che soddisfa tutti i vincoli. L insieme di tutte le soluzioni ammissibili si dice regione ammissibile. Una soluzione ottima è una soluzione ammissibile che ottimizza (miminizza o massimizza) il valore della funzione obiettivo tra tutte le soluzioni ammissibili. Non sempre un problema di PL ammette una soluzione ottima. Infatti, ogni problema di PL soddisfa sempre e solo uno dei 3 casi seguenti: 1
2 1. il problema è inammissibile: l insieme delle soluzioni ammissibili è vuoto; 2. il problema è illimitato: è possibile trovare delle soluzioni ammissibili che fanno diminuire (o aumentare per problemi di massimo) il valore della funzione obiettivo a piacere. 3. il problema ammette soluzione ottima: esiste almeno una soluzione ammissibile che ottimizza la funzione obiettivo (e il valore ottimo della funzione obiettivo è limitato). Risolvere un problema di PL significa riconoscere uno dei tre casi citati e dare, nel caso 3, una soluzione ottima e il corrispondete valore della funzione obiettivo. Da un punto di vista geometrico, una soluzione è un punto nello spazio n-dimensionale e la regione ammissibile è un poliedro convesso nello stesso spazio. Ad esempio: Si ha il seguente importante risultato: Figure 1: Un poliedro in R 3 Proprietà 1 Dato un problema di PL, se il poliedro P delle soluzioni ammissibili è non vuoto e limitato, allora esiste almeno una soluzione ottima corrispondente con un vertice di P (vertice di P ottimo). 2 Soluzione di un problema di PL Per poter manipolare algebricamente un problema di programmazione lineare, è conveniente vedere la regione ammissibile come l insieme delle soluzioni di un sistema di equazioni e disequazioni lineari. L. De Giovanni, G. Zambelli - Metodi e Modelli per l Ottimizzazione Combinatoria 2
3 Delle semplici trasformazioni permettono di scrivere un qualsiasi problema di PL nella seguente forma standard: min c 1 x 1 + c 2 x c n x n s.t. a i1 x 1 + a i2 x a in x n = b i (i = 1... m) x i R + (i = 1... n) dove - la funzione obiettivo è di minimo (si moltiplicano per -1 le funzioni di massimizzazione); - tutte le variabili sono positive o nulle (si effettuano sostituzioni di variabili per le variabili libere o negative); - tutti i vincoli sono delle equazioni (si aggiunge una variabile positiva di slack per i vincoli di e si sottrae una variabile positiva di surplus per i vincoli di ); - i termini noti b i sono tutti positivi o nulli (si moltiplicano per -1 i vincoli con termine noto negativo). Ciò permette, senza perdere in generalità, di risolvere un qualsiasi problema di PL tramite sistemi di equazioni lineari. Richiamiamo pertanto alcune notazioni e proprietà dell algebra lineare. 2.1 Richiami di algebra lineare Notazione Un vettore v R n è una n-upla di numeri reali (v 1, v 2... v n ). Una matrice A R m n è una tabella m n di numeri reali ordinati secondo righe a 11 a a 1n a 11 a a 1n e colonne: A = a m1 a m2... a mn Un vettore v R n può essere visto come una matrice particolare con una sola colonna o riga: v 1 - vettore colonna v R n 1 v 2 : v =. v n - vettore riga v T R 1 n : v T = [v 1, v 2,..., v n ] Dati due vettori v, w R n, il prodotto scalare v w può essere scritto come caso particolare del prodotto tra matrici righe colonne: v w = v T w = vw T = n i=1 v iw i L. De Giovanni, G. Zambelli - Metodi e Modelli per l Ottimizzazione Combinatoria 3
4 Una matrice A R m n può essere scritta come giustapposizione delle sue righe o a 11 a a 1n a T 1 a 11 a a 1n colonne: A = = a T 2. = [ ] A 1 A 2... A n a m1 a m2... a mn Il Rango di una matrice A R m n è indicato con ρ(a) ed è il massimo numero di righe linearmente indipendenti (coincide con il massimo numero di colonne linearmente indipendenti). Matrici quadrate B R m m : matrice inversa: B 1 R m m : B 1 B = BB 1 = I (matrice identità m m); B è invertibile det(b) 0 (matrice non singolare); det(b) 0 ρ(b) = m Sistemi di equazioni lineari Sistemi di equazioni in forma matriciale: un sistema di m equazioni in n incognite può essere messo in forma matriciale: Ax = b, con A R m n, b R m e x R n. Teorema di Rouché-Capelli: Ax = b ammette soluzioni ρ(a) = ρ(a b) = r ( n r soluzioni). Operazioni elementari su matrici: scambiare la riga i con la riga j; a T m moltiplicare la riga i per uno scalare non nullo; sostituire alla riga i, la riga i più α volte la riga j (α R). Le operazioni elementari sulla matrice aumentata [A b] non alterano l insieme delle soluzioni ammissibili del sistema Ax = b. Metodo di Gauss-Jordan per la soluzione di sistemi Ax = b: eseguire delle operazioni elementari sulla matrice aumentata in modo da ottenere in A una sottomatrice identità di dimensioni pari a ρ(a) = ρ(a b). 2.2 Soluzioni di base Un metodo per risolvere un sistema di equazioni lineari si ottiene ricorrendo al concetto di base di una matrice. Sia data una matrice A R m n di rango massimo. Una base di A è una sottomatrice quadrata di A di rango massimo o, in altri termimi, una matrice B R m m ottenuta scegliendo m colonne linearmente indipendenti della matrice A. L. De Giovanni, G. Zambelli - Metodi e Modelli per l Ottimizzazione Combinatoria 4
5 Dato un sistema Ax = b si scelga una base B della matrice A. Le colonne della matrice A e le variabili del vettore x possono essere riordinati opportunamente in modo da poter scrivere: [ ] A = [B F ] B R m m xb, det(b) 0 x =, x B R m, x F R n m dove B è l insieme delle colonne di A che formano la base, F l insieme delle restanti colonne, x B il vettore delle variabili corrispondenti alle colonne in base (variabili di base), x F il vettore delle variabili corrispondenti alle colonne fuori base (variabili non di base). Di conseguenza, il sistema [ Ax ] = b si può scrivere in forma a blocchi: xb Ax = b = [B F ] = Bx B + F x F = b x F Osservando che la matrice di base B è invertibile (ha rango massimo), una soluzione al sistema Ax = b si può ottenere ponendo a 0 tutte le variabili fuori base (x F = 0) e scrivendo [ ] [ ] xb B x = = 1 b x F 0 Scegliendo una matrice di base B diversa da B, cioé scegliendo un diverso insieme di m colonne [ di A] linearmente [ ] indipendenti, si ottiene una nuova soluzione del sistema xb B x = = 1 b. x F 0 Dato un sistema di equazioni Ax = b, le soluzioni ottenute scegliendo una base B della matrice si dicono soluzioni di base. Caratteristica delle soluzioni di base è di avere (al più) m variabili diverse da 0 (le variabili di base) e (almeno) m n variabili pari a 0 (variabili non di base). Si ha la seguente importante proprietà, nota come caratterizzazione algebrica dei vertici di un politopo: Proprietà 2 (Corrispondenza tra vertici e soluzioni di base). Dato un sistema di equazioni Ax = b e il corrispondente poliedro della regione ammissibile P = {x R n : Ax = b}, x è soluzione di base del sistema Ax = b x è vertice di P. 2.3 Il metodo del simplesso Un problema di programmazione lineare in forma standard può essere scritto in forma matriciale come segue: x F min s.t. c T x Ax = b x 0 Per la Proprietà 1, se il problema ammette soluzione ottima, allora esiste un vertice ottimo. Per la Proprietà 2, tale vertice ottimo corrisponde a una soluzione di base. L. De Giovanni, G. Zambelli - Metodi e Modelli per l Ottimizzazione Combinatoria 5
6 Pertanto la soluzione ottima, se esiste, può essere ricercata tra tutte le soluzioni di base del sistema di equazioni Ax = b. In particolare, siamo interessati alle soluzioni ammissibili di base, cioè le soluzioni di base in cui le variabili di base assumano valori positivi o nulli: B 1 b 0. Infatti, vale il seguente risultato: Proprietà 3 (Teorema fondamentale della programmazione lineare). Dato un problema di programmazione lineare, se esiste una soluzione ottima, allora esiste una soluzione ammissibile di base ottima. Mentre il numero di soluzioni ammissibili è, almeno per i casi di interesse, illimitato ( (n r) secondo il teorema di Rouché-Capelli), il numero di soluzioni ammissibili di base è limitato superiormente dal numero delle possibili combinazioni di m colonne scelte tra le n colonne di A e pertanto, si potrebbe derivare un algoritmo che ricerca esaustivamente tutte le possibili basi di A. Ovviamente, anche se non tutte le combinazioni di m colonne tra le n della matrice A corrispondono a soluzioni di base (le colonne potrebbero non essere linearmente indipendenti o la corrispondente soluzione di base potrebbe non essere ammissibile), il numero di soluzioni ammissibili di base è comunque molto elevato e la ricerca esaustiva non è un metodo efficiente. Il metodo del simplesso è un metodo iterativo che permette di esplorare in modo efficiente l insieme delle soluzioni ammissibili di base, a partire da una soluzione ammissibile di base data. L efficienza consiste nel garantire di generare, ad ogni iterazione: soluzioni ammissibili soluzioni che migliorino (o comunque non peggiorino) la soluzione all iterazione precedente, in termini di valore della funzione obiettivo. L algoritmo del simplesso è inoltre in grado di riconoscere il caso di problema di PL illimitato e, risolvendo un problema di PL artificiale (metodo delle due fasi) il caso di problema di PL non ammissibile. L. De Giovanni, G. Zambelli - Metodi e Modelli per l Ottimizzazione Combinatoria 6
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I)
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I) Luigi De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso Luigi De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
Soluzione dei Problemi di Programmazione Lineare
Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle
PROGRAMMAZIONE LINEARE E DUALITA'
PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali
Programmazione lineare: basi e soluzioni di base
Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria
Ricerca Operativa 2. Introduzione al metodo del Simplesso
Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione
Introduzione alla programmazione lineare
Introduzione alla programmazione lineare struttura del problema di PL forme equivalenti rappresentazione e soluzione grafica rif. Fi 1.2; BT 1.1, 1.4 Problema di programmazione lineare Dati: un vettore
Il metodo del simplesso
Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza
ALGEBRA LINEARE PARTE III
DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI
Geometria della Programmazione Lineare
Capitolo 2 Geometria della Programmazione Lineare In questo capitolo verranno introdotte alcune nozioni della teoria dei poliedri che permetteranno di cogliere gli aspetti geometrici della Programmazione
Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8
Teoria della Programmazione Lineare Teoria della Programmazione Lineare p. 1/8 I problemi di PL in forma canonica In forma scalare: max n j=1 c jx j n j=1 a ijx j b i x j 0 i = 1,...,m j = 1,...,n Teoria
Esercizi sulla Programmazione Lineare. min. cx Ax b x 0
Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )
Algoritmo del Simplesso
Algoritmo del Simplesso Renato Bruni [email protected] Univertà di Roma Sapienza Corso di Ricerca Operativa, Corso di Laurea Ingegneria dell Informazione Vertici e Punti Estremi di un Poliedro Un poliedro
Geometria della programmazione lineare
Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non
Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard
Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione
Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan
Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Note sull algoritmo di Gauss
Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n
SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.
SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga
MATRICI E SISTEMI LINEARI
1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito
Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..
Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine
Argomento 13 Sistemi lineari
Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto
Richiami di algebra delle matrici a valori reali
Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o
CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI
CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione
Prerequisiti didattici
Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 1 aprile 2015 Appunti di didattica della matematica applicata
Università Ca Foscari Venezia
Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano Brevi FAQ sul Metodo del SIMPLESSO Università Ca Foscari Venezia, Dipartimento di Management,
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare
Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari
Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema
4.5 Metodo del simplesso
4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una
Programmazione Non Lineare
Capitolo 1 Programmazione Non Lineare 1.1 Introduzione Un problema di ottimizzazione viene definito come la minimizzazione o la massimizzazione di una funzione a valori reali su un insieme specificato.
Sistemi di equazioni lineari
Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,
ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.
ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono
2 Sistemi lineari. Metodo di riduzione a scala.
Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1
SISTEMI LINEARI, METODO DI GAUSS
SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti
Risoluzione di sistemi lineari
Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini
0.1 Complemento diretto
1 0.1 Complemento diretto Dato U V, un complemento diretto di U é un sottospazio W V tale che U W = {0} U + W = V cioé la somma di U con il suo complemento diretto é diretta, e dá tutto lo spazio vettoriale
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Metodo delle due fasi
Metodo delle due fasi Il problema artificiale la fase I del Simplesso esempi rif. Fi 3.2.5; Osservazione Nel problema min{c T x : Ax = 0, x 0}, dell esempio precedente si ha che b 0 e A contiene una matrice
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
Esercizi svolti. delle matrici
Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa
Programmazione Lineare
Programmazione Lineare Andrea Scozzari a.a. 2012-2013 March 14, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare March 14, 2013 1 / 18 Metodo del Simplesso Dato un problema di PL in forma standard
(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.
5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola
