Metodo delle due fasi
|
|
|
- Aurelia Capone
- 8 anni fa
- Visualizzazioni
Transcript
1 Metodo delle due fasi Il problema artificiale la fase I del Simplesso esempi rif. Fi 3.2.5;
2 Osservazione Nel problema min{c T x : Ax = 0, x 0}, dell esempio precedente si ha che b 0 e A contiene una matrice identità di ordine m. Questo accade sempre se il problema in forma standard è stato ottenuto dalla trasformazione: min c T x Ax b x 0 n = min c T x Ax + Is = b x, s 0 n la matrice I può essere utilizzata come base ammissibile iniziale. In generale, c è bisogno di un metodo che calcoli una base ammissibile iniziale o certifichi che non esiste (problema inammissibile)
3 Metodo delle due fasi Fase I: calcolare una base iniziale o certificare che il problema è inammissibile (STOP); Fase II: (se esiste una base iniziale) risolvere il problema applicando il metodo del simplesso vediamo come anche la Fase I sia realizzata mediante il metodo del simplesso.
4 Problema artificiale Dato un problema in forma standard min{c T x : Ax = b, x 0}, con b 0, definiamo problema artificiale: m w = min i=1 s.t. Ax + Iy = b x, y 0 le variabili y sono dette artificiali. y i
5 Esempio min 3x 1 + 4x 2 + 6x 3 s.t. x 1 + 3x 2 + 4x 3 = 1 2x 1 + x 2 + 3x 3 = 2 x 1, x 2, x 3 0 min y 1 + y 2 s.t. x 1 + 3x 2 + 4x 3 + y 1 = 1 2x 1 + x 2 + 3x 3 + y 2 = 2 x 1, x 2, x 3, y 1, y 2 0 da cui il tableau: sottraendo alla riga 0 le altre: y y 2 forma canonica
6 Fase I Si osservi che il valore ottimo è banalmente non negativo (problema non illimitato) Inoltre, il problema è già in forma canonica rispetto alla base ammissibile associata alle variabili aritficiali (la soluzione x = 0, y = b è una sba) Quindi (dopo aver posto in forma canonica anche la funzione obiettivo) possiamo applicare il Metodo del Simplesso, ottenendo la soluzione ottima (x, y ) di valore w. Sono possibili 2 casi: w > 0 non esiste una soluzione del prob. artificiale con y i = 0, i = 1,..., m, quindi il sistema Ax = b, x 0 non ammette soluzione: il problema originale è inammissibile w = 0 quindi y = 0 e x è sol. ammissibile del problema originale.
7 w = 0: variabili artificiali in base o fuori base 2 sottocasi per il tableau ottimo: (a) tutte le variabili artificiali sono fuori base eliminando le colonne corrispondenti alle var. artificiali il tableau è in forma canonica risp. a una base sostituire la f.o. artificiale con quella originaria, portare la riga 0 in forma canonica applicare il Metodo del Simplesso (Fase II) (b) una o più variabili y h sono in base: è necessario eliminarle prima di procedere
8 Esempio (continua) scegliamo la var. entrante x 3 e t = arg min{1/4, 2/3} = 1 = var. uscente y y y 2 P IV OT (t = 1, 3) = -5/4 5/4 0 7/4 0-5/4 1/4 3/4 1 1/4 0 1/4 x 3 5/4-5/4 0-3/4 1 5/4 y 2 scegliamo la var. entrante x 1 e t = arg min{1, 1} = 2 = var. uscente y 2 P IV OT (t = 2, 1) = /5-1/4 0 x /5 4/5 1 x 1 soluzione ottima (1, 0, 0, 0, 0) di valore 0
9 Esempio (continua) le variabili y 1, y 2 sono fuori base, quindi eliminiamo le corrisp. colonne e ripristiniamo la f.o. originaria x x 1 mettiamo in forma canonica sommando alla riga 0 le righe 1 e 2 moltiplicate per 6 e 3 risp x x 1 eseguiamo quindi la FASE II: c 0 = (1, 0, 0) è soluzione ottima
10 Caso b: variabile y h in base essendo w = 0 deve essere yh = 0, quindi abbiamo un caso degenere. Se h = B(i), si ha: x 1 x j x n y 1 y h y n 0 0 w. ā i1 ā ij ā in 1 0 y h
11 Caso b: variabile y h in base se esiste un ā ij 0, eseguiamo P IV OT (i, j) in modo da far uscire y h dalla base. possiamo farlo anche se ā ij < 0 in quanto b i = 0, quindi rimane b 0 il valore w = w non cambia ripetendo il procedimento per tutte le var artificiali in base ci si riconduce al caso (2a). se invece tutti i valori ā i1,..., ā in sono nulli, eliminando le var. arificiali si ottiene una riga del tableau tutta nulla, cioè la corrispondente equazione era ottenibile come combinazione lineare delle altre e può essere eliminata ( A non ha rango m)
12 Esempio min 7x 1 3x 2 6x 3 s.t. 3x 1 4x 2 2x 3 = 3 x 1 + x 2 + x 3 = 1 x 1, x 2, x 3 0 min y 1 + y 2 s.t. 3x 1 4x 2 2x 3 + y 1 = 3 x 1 + x 2 + x 3 + y 2 = 1 x 1, x 2, x 3, y 1, y 2 0 da cui il tableau: sottraendo alla riga 0 le altre: y y 2 forma canonica
13 Esempio scegliamo la var. entrante x 1 e t = arg min{1, 1} = 2 = var. uscente y y y 2 P IV OT (t = 2, 1) = y x 1 OSS. la var artificiale y 1 rimane in base nel tableau ottimo del problema artificiale. Eseguiamo quindi un nuovo pivot: P IV OT (t = 1, 3) = /5 1-1/5 3/5 0 x 3 1-2/5 0 1/5-2/5 1 x 1 tutte le var. artificiali sono fuori base
14 Esempio eliminiamo le var. artificiali e ripristiniamo la funzione obiettivo originaria: / /5 0 1 in forma canonica = 0 41/ / /5 0 1 Inizia FASE II: STOP: (1, 0, 0) soluzione ottima
1 Il metodo dei tagli di Gomory
Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare
Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard
Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione
Il metodo del simplesso
Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza
Convergenza del Simplesso e regole anti-ciclaggio
Convergenza del Simplesso e regole anti-ciclaggio degenerazione e ciclaggio un esempio di ciclaggio regole anti-ciclaggio rif. Fi 3.2.6, BT 3.4 (Esempio 3.6), BT 3.7; Sulla convergenza del metodo del simplesso
Esercizi sulla Programmazione Lineare. min. cx Ax b x 0
Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )
4.5 Metodo del simplesso
4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una
Algoritmo del Simplesso
Algoritmo del Simplesso Renato Bruni [email protected] Univertà di Roma Sapienza Corso di Ricerca Operativa, Corso di Laurea Ingegneria dell Informazione Vertici e Punti Estremi di un Poliedro Un poliedro
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III)
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III) L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema
L ALGORITMO DEL SIMPLESSO REVISIONATO
L ALGORITMO DEL SIMPLESSO REVISIONATO L'algoritmo del simplesso revisionato costituisce una diversa implementazione dell algoritmo standard tesa a ridurre, sotto certe condizioni, il tempo di calcolo e
2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =
Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):
2. ALGORITMO DEL SIMPLESSO
. ALGORITMO DEL SIMPLESSO R. Tadei Una piccola introduzione R. Tadei SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione
Esercizi svolti di Programmazione Lineare. a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania
Esercizi svolti di Programmazione Lineare a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania Formulazione matematica e risoluzione grafica Esercizio Una pasticceria
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte II)
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte II) L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di
Esercizi sulla Programmazione Lineare Intera
Soluzioni 4.7-4.0 Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare Intera 4.7 Algoritmo del Simplesso Duale. Risolvere con l algoritmo del simplesso duale il seguente
Applicazioni eliminazione di Gauss
Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare
LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.
LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b
min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5
IL METODO DEL SIMPLESSO 65 Esercizio 7.4.4 Risolvere utilizzando il metodo del simplesso il seguente problema di PL: min 4 + + + + = 4 + + = + = 5 Innanzitutto scriviamo il problema in forma standard:
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
LEZIONE 4. { x + y + z = 1 x y + 2z = 3
LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.
PROGRAMMAZIONE LINEARE E DUALITA'
PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali
Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani
Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.
Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale
Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni
3.6 Metodi basati sui piani di taglio
3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una
IL METODO DEL SIMPLESSO
IL METODO DEL SIMPLESSO Il metodo del Simplesso 1 si applica nella risoluzione di un problema di Programmazione Lineare 2 (funzione e vincoli lineari) quando le variabili di azione o iniziali sono almeno
Equazioni di primo grado
Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il
Soluzione dei Problemi di Programmazione Lineare
Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle
Algoritmi generali per PLI
Programmazione Lineare Intera: II Algoritmo Cutting Planes Daniele Vigo D.E.I.S. Università di Bologna [email protected] rev.. ottobre Algoritmi generali per PLI Metodi esatti tradizionali (anni 6 oggi):
Possibile applicazione
p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile
Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR
1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo
Luigi Piroddi
Automazione industriale dispense del corso (a.a. 2008/2009) 10. Reti di Petri: analisi strutturale Luigi Piroddi [email protected] Analisi strutturale Un alternativa all analisi esaustiva basata sul
4. METODI DUALI DEL SIMPLESSO
4. MEODI DUALI DEL SIMPLESSO R. adei 1 Una piccola introduzione R. adei 2 MEODI DUALI DEL SIMPLESSO L obiettivo del capitolo è illustrare e giustificare i metodi duali del simplesso. Entrambi i metodi
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
5.3 Metodo dei piani di taglio
5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti
Sistemi di equazioni lineari
Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.
Ricerca Operativa 2. Introduzione al metodo del Simplesso
Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione
Introduzione alla programmazione lineare
Introduzione alla programmazione lineare struttura del problema di PL forme equivalenti rappresentazione e soluzione grafica rif. Fi 1.2; BT 1.1, 1.4 Problema di programmazione lineare Dati: un vettore
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Sistemi di equazioni lineari
Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti
Problemi di flusso a costo minimo
p. 1/7 Problemi di flusso a costo minimo È data una rete (grafo orientato e connesso) G = (V,A). (i,j) A c ij, costo di trasporto unitario lungo l arco (i, j). i V b i interi e tali che i V b i = 0. p.
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso Luigi De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8
Teoria della Programmazione Lineare Teoria della Programmazione Lineare p. 1/8 I problemi di PL in forma canonica In forma scalare: max n j=1 c jx j n j=1 a ijx j b i x j 0 i = 1,...,m j = 1,...,n Teoria
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
Anno 2. Risoluzione di sistemi di primo grado in due incognite
Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione
Il modello duale. Capitolo settimo. Introduzione
Capitolo settimo Il modello duale Introduzione Il modello duale e la teoria della dualità assumono una grande importanza nella teoria della programmazione matematica. In questo testo i modelli primale
MATRICI E SISTEMI LINEARI
1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito
RICERCA OPERATIVA GRUPPO A prova scritta del 22 marzo 2007
RICERCA OPERATIVA GRUPPO A prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se
Lezione 7: Il Teorema di Rouché-Capelli
Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da
La riduzione a gradini e i sistemi lineari (senza il concetto di rango)
CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere
Esercizi di Programmazione Lineare - Dualità
Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul
Matematica II,
Matematica II,.05.04 Diamo qui la nozione di determinante di una matrice quadrata, le sue prime proprieta, e ne deriviamo una caratterizzazione delle matrici non singolari e una formula per l inversa di
Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.
Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI
MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è
SISTEMI LINEARI, METODO DI GAUSS
SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti
ALGEBRA LINEARE PARTE II
DIEM sez. Matematica Finanziaria Marina Resta Università degli studi di Genova Dicembre 005 Indice PREMESSA INVERSA DI UNA MATRICE DETERMINANTE. DETERMINANTE DI MATRICI ELEMENTARI................. MATRICI
Indice. Algoritmo del simplesso rivisto 2. Algoritmo del simplesso con variabili artificiali...9. Costruzione problema duale.18
Indice Algoritmo del simplesso rivisto Algoritmo del simplesso con variabili artificiali...9 Costruzione problema duale.8 Esami passati svolti.. Algoritmo del Simplesso rivisto Esempio di applicazione
1 Definizione di sistema lineare omogeneo.
Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari
Fondamenti di ALGEBRA LINEARE E GEOMETRIA
Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 19 Capitolo
Geometria della programmazione lineare
Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non
Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015
1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)
Le equazioni e i sistemi di primo grado
Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle
RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione)
RICERCA OPERATIVA Tema d esame del 04/03/2008 (Simulazione) COGNOME: NOME: MATRICOLA:. Una nota azienda automobilistica produce due modelli di auto (un utilitaria e una berlina), che rivende con un guadagno
RISOLUZIONE DI SISTEMI LINEARI
RISOLUZIONE DI SISTEMI LINEARI Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione
Si consideri il seguente tableau ottimo di un problema di programmazione lineare
ESERCIZIO 1 Si consideri il seguente tableau ottimo di un problema di programmazione lineare -25/3 0 4/3 19/6 9/2 0 0 0 7/6 1 0 1-1/2-3/2 1 0 0 3/2 11/3 1-2/3-1/3 0 0 0 0 2/3 2/3 0 1/3 1/6-1/2 0 1 0 7/6
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da
= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con
Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione
Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni
Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare
Parte V: Rilassamento Lagrangiano
Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice
Il metodo del simplesso. Il metodo del simplesso p. 1/12
Il metodo del simplesso Il metodo del simplesso p. 1/12 I problemi di PL in forma standard I problemi di PL in forma standard hanno la seguente formulazione: max cx a i x = b i x 0 i = 1,...,m o, equivalentemente,
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I)
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I) Luigi De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo
Il teorema di Rouché-Capelli
Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un
Richiami di algebra delle matrici a valori reali
Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o
