SISTEMI LINEARI, METODO DI GAUSS

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SISTEMI LINEARI, METODO DI GAUSS"

Transcript

1 SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti del sistema, x è il vettore colonna delle incognite, b è il vettore colonna dei termini noti. Abbiamo anche visto che, nel caso m = n (sistema quadrato ), la condizione det(a) garantisce l esistenza di una e una sola soluzione (cioè una e una sola n-upla di valori delle incognite che sostituiti nelle n equazioni le soddisfano contemporaneamente) e che tale soluzione ha la forma x = A b (metodo di Cramer) il calcolo della quale è peraltro molto pesante non appena n > 3; se invece det(a) = possono esserci infinite o nessuna soluzione; se poi m n non si può nemmeno parlare di determinante. In tutti questi casi il metodo di eliminazione di Gauss risolve ogni incertezza e permette di calcolare le eventuali soluzioni con un numero di operazioni minore di quello necessario per il metodo di Cramer. Consideriamo tre esempi: x + 2y z = y + 2z = z = x + y + 2z + 3v + 3w = y + 2z + 3v + 4w = w = x + y + 2z + 3v + 3w = y + 2z + 3v + 4w = w = Il primo sistema si risolve facilmente dal basso: sostituendo nella seconda equazione il valore di z dato dalla terza si ha y = 2; sostituendo i valori di z e y nella prima si ricava x = 4. Abbiamo quindi una e una sola soluzione {x = 4, y = 2, z = } ottenibile con pochissimi conti. Anche il secondo sistema si risolve facilmente dal basso, ricavando da ogni equazione la variabile che compare più a sinistra con coefficiente diverso da zero: dalla terza equazione si ha w = ; sostituendo nella seconda si ottiene y = 2z 3v; sostituendo ancora i valori trovati per w e y nella prima si ricava x =. Osserviamo che le soluzioni {x =, y = 2z 3v, z qualsiasi, v qualsiasi, w = } sono una doppia infinità perché sono espresse in funzione di due parametri z e v che possono assumere valori arbitrari. Il terzo sistema è invece impossibile per la presenza della terza equazione, che non ammette soluzioni. Consideriamo ore le matrici dei coefficienti dei tre sistemi, a ognuna delle quali è accostata, a destra, la colonna dei termini noti per ottenere la cosidetta matrice orlata : In tutti e tre i casi il numero di zeri con cui inizia una riga è strettamente maggiore di quello della riga precedente. Matrici che godono di questa proprietà si dicono a scalini. Osserviamo che per i primi due sistemi, il numero r = 3 di righe con almeno un elemento diverso da zero (che, per una matrice a scalini, dicesi caratteristica o rango), non aumenta passando dalla matrice dei coefficienti alla sua orlata. È questo fatto che assicura l esistenza di soluzioni. Inoltre nel primo caso, dove il rango r = 3 è uguale al numero n di incognite, esiste una e una sola soluzione. Invece nel secondo, dove n = 5 mentre r = 3, esistono n r = 2 soluzioni. Nel terzo caso invece la matrice dei coefficienti ha rango 2, mentre quella orlata ha rango 3, e questa diversità del rango delle due matrici determina la mancanza di soluzioni del sistema corrispondente. Per esempio, per il primo sistema la matrice dei coefficienti e la matrice orlata sono rispettivamente:

2 Il metodo di eliminazione di Gauss per la risoluzione di un sistema lineare, consiste nel cercare di trasformare il sistema in uno equivalente (cioè con le stesse soluzioni), ma che sia del tipo di uno dei tre sistemi visti, cioè con la matrice dei coefficienti (orlata) nella forma a scalini. Precisiamo meglio i concetti esposti. Il metodo di Gauss è basato sul fatto che se si applicano a un sistema lineare una o più delle tre operazioni elementari seguenti, si ottiene un sistema equivalente al precedente, (cioè che ammette tutte e sole le soluzioni di quello di partenza). Le operazioni elementari sono: ) Scambiare fra loro due equazioni. 2) Moltiplicare ambo i membri di una equazione per uno stesso numero diverso da zero. 3) Sostituire a una equazione la sua somma con una qualsiasi combinazione lineare di alcune altre. (Nel caso più semplice: sommare a una equazione un altra equazione moltiplicata per un numero) Naturalmente è sufficiente fare queste operazioni sulle righe della matrice A b (matrice orlata), che si ottiene accostando, a destra della matrice dei coefficienti, la colonna dei termini noti. Lo scopo è quello di ottenere una matrice A b che chiameremo equivalente alla precedente, che sia nella cosidetta forma a scalini: ogni riga deve cominciare con un numero di elementi nulli più grande di quello della riga precedente. Per esempio, la prima delle tre matrici seguenti è a scalini, le altre due no È sempre possibile, con una opportuna serie di operazioni elementari, arrivare a una forma equivalente a scalini. Il risultato può variare a seconda delle operazioni effettuate, ma il sistema lineare corrispondente alla matrice a scalini trovata ha comunque le stesse soluzioni di quello di partenza. Si può inoltre dimostrare che il numero di righe con almeno un elemento non nullo di una matrice a scalini A equivalente ad A dipende solo da A e non dalle operazioni scelte per arrivare ad A. Tale numero dicesi caratteristica 2 o rango di A. Analogamente si definisce la caratteristica della matrice orlata A b. Vale anche il: Teorema (di Rouchè Capelli): Un sistema di m equazioni lineari in n incognite ammette soluzioni se e solo se la caratteristica r della matrice dei coefficienti A è uguale a quella della matrice orlata A b. In questo caso il sistema ammette n r soluzioni (una e una sola se n = r). Quando la condizione di esistenza delle soluzioni è soddisfatta, il loro calcolo si esegue sul sistema a scalini, caratterizzato dalla matrice A b, equivalente a quello di partenza, come abbiamo visto negli esempi. Come si arriva alla forma a scalini. La strategia da seguire è la seguente: a) portare al primo posto una riga che cominci con il minor numero di zeri. b) con la terza operazione elementare far diventare zero tutti gli elementi della colonna sottostante il primo elemento diverso da zero della prima riga c) ripetere il procedimento dalla seconda riga in giù, poi dalla terza in giù, etc.... Esempio y + 2z + 3v + 4w = 2x + 2y + 4z + 6v + 7w = 2 x + y + 2z + 3v + 3w = 2x y 2z 3v 2w = 2 2 Si può dimostrare che la definizione di caratteristica appena vista è equivalente (da un punto di vista teorico, ma più utile per semplificare i calcoli) a quella classica, secondo la quale la caratteristica di una matrice è l ordine della più grande sottomatrice quadrata a determinanate diverso da zero contenuta nella matrice data. 2

3 Passiamo alla matrice dei coefficienti, orlata con la colonna dei termini noti: a) scambiando la prima riga con la terza, in modo che la nuova prima riga cominci con un elemento diverso da zero, otteniamo: b) sommando alla seconda riga la prima moltiplicata per 2 e sommando alla quarta riga la prima moltiplicata per 2 otteniamo: adesso sotto al primo elemento della prima riga ci sono solo zeri, quindi: c) ripetiamo il procedimento a partire dalla seconda riga in giù: a) scambiando la seconda e la terza riga otteniamo: b) sommando alla quarta la seconda riga moltiplicata per otteniamo: che è una matrice a scalini, corrispondente a un sistema lineare equivalente a quello di partenza. Si vede facilmente che questo nuovo sistema coincide con il secondo dei tre sistemi considerati all inizio del paragrafo, dove è già stato risolto; infatti l equazione corrispondente all ultima riga, avendo coefficienti e termine noto tutti nulli, può essere soppressa senza alterare le soluzioni. Diamo la ricetta generale per discutere un sistema a scalini: Come si risolve un sistema a scalini. Per prima cosa si constata se la matrice dei coefficienti e la sua orlata hanno la stessa caratteristica, altrimenti il sistema è impossibile. Se questa condizione è soddisfatta, si cancellano le (eventuali) ultime m r equazioni che hanno i coefficienti e il termine noto tutti nulli. Rimangono r equazioni: per ciasuna di esse si sceglie la variabile che appare al primo posto da sinistra in quanto è la prima con coefficiente diverso da zero. Le altre n r variabili si portano a destra dei segni di uguale e si considerano come parametri che possono variare liberamente. Si ottiene così un sistema quadrato di r equazioni in r incognite con termini noti dipendenti da n r parametri, la cui matrice dei coefficienti ha tutti gli elementi sotto alla diagonale uguali a zero. Dall ultima equazione si ricava il valore dell unica incognita che vi compare, lo si sostituisce nella penultima, che diventa così in una sola incognita; si ricava quest ultima e così via a ritroso fino alla prima equazione e alla prima incognita. Le soluzioni resteranno espresse in funzione delle n r incognite portate a destra come parametri arbitrari: si dice allora che si hanno n r soluzioni. 3

4 ) Discutere il sistema lineare omogeneo: Passiamo alle matrici asociate: ESERCIZI x 2 + x 4 = x + x 3 + x 5 = 2x + x 2 + 2x 3 + x 4 + 2x 5 = x + x 2 + x 3 + x 4 + x 5 = Scambiamo le prime due righe, poi sommiamo la (nuova) prima riga moltiplicata per 2 alla terza, e, moltiplicata per, alla quarta. Nella matrice cosí ottenuta (che ha le ultime tre righe uguali) annulliamo le ultime due, sottraendo loro la seconda. Perveniamo a una matrice a scalini di caratteristica 2 che soddisfa il teorema di Rouché-Capelli (della quale scriviamo solo le prime due righe perché le ultime due sono tutte nulle): ( ) che corrisponde al sistema: { x + x 3 + x 5 = x 2 + x 4 = Teniamo a sinistra le variabili x e x 2, e portiamo a destra le altre tre, ottenendo: { x = x 3 x 5 Si hanno quindi 3 soluzioni x 2 = x 4 {x = x 3 x 5, x 2 = x 4, x 3 = x 3, x 4 = x 4, x 5 = x 5 } Possiamo anche scrivere le soluzioni come combinazione lineare di tre di esse, indipendenti fra loro (quella che chiameremo una base ). Queste tre soluzioni le otteniamo dando alle variabili parametro x 3, x 4, x 5 : prima la terna di valori (,, ) ottenendo s = {,,,, }, poi la terna (,, ) ottenendo s 2 = {,,,, }, e infine la terna (,, ) ottenendo s 3 = {,,,, }. Si ha infatti: x x 2 x 3 = x 3 x 4 x 5 + x 4 + x 5 In questo caso abbiamo potuto scrivere le soluzioni come combinazione lineare di tre di esse perché il sistema era omogeneo, cioè con tutti i termini noti uguali a zero. Se il sistema non è omogeneo (vedi esercizio 2), si può dimostrare che le sue soluzioni si possono scrivere come somma di una qualsiasi di esse con la generica soluzione del sistema omogeneo associato (che si ottiene annullando tutti i termini noti). A sua volta la generica soluzione del sistema omogeneo associato si può scrivere, come nell esempio appena visto, come combinazione lineare di un numero (finito e uguale a n r) di soluzioni del sistema omogeneo, scelte come le s, s 2,... appena viste, e quindi linearmente indipendenti. Questa struttura dell insieme delle soluzioni è comune a tutti i problemi lineari: la ritroveremo per e- sempio quando descriveremo l insieme delle soluzioni di una equazione differenziale lineare di ordine n (o, equivalentemente di un sistema di n equazioni differenziali lineari del primo ordine). 4

5 2) Stabilire per quali valori dei parametri reali α e β il seguente sistema lineare ammette 2 soluzioni e calcolarle. 2x + y z + w = 5 x + y z + 2w = 2 Passiamo alle matrici asociate: x αw = 3 3x + 2y βz + 3w = α β 3 7 Scambiamo la prima riga con la terza, in modo da evitare espressioni frazionarie quando useremo la prima riga per annullare la colonna sotto al suo primo elemento: 3 α β 3 7 Agendo con la prima riga sulle sottostanti tre otteniamo: Agendo con la seconda riga sulla terza e sulla quarta: α α + 2α 2 β 3 + 3α 2 α α α 2 β α Dovremmo ora scambiare le ultime due righe per ottenere una matrice a gradini, ma si vede già che ponendo α = e β = 2 si annullano le ultime due righe e si ottengono le matrici: ( 3 ) 3 che caratterizzano un sistema di caratteristica 2 che soddisfa il teorema di Rouché-Capelli e che quindi avrà 4 2 = 2 soluzioni: {x = 3 + w, y = + z 3w, z = z, w = w} che si possono scrivere come segue, secondo quanto osservato alla fine dell esercizio precedente a proposito dei sistemi non omogenei: x 3 y 3 = + z + w z w È facile verificare che (3,,, ) è una soluzione del sistema non omogeneo di partenza (nel quale si sia posto α =, β = 2), mentre la restante parte della combinazione lineare qui sopra dà la soluzione generale del sistema omogeneo associato (sempre per α =, β = 2). 3 In realtà quando si opera con numeri decimali approssimati anziché con interi, è meglio portare al primo posto la riga che inizia col coefficiente più grande in valore assoluto (in questo caso l ultima); in tal modo si minimizzano gli errori di approssimazione. Queste considerazioni sono oggetto dei corsi di Calcolo Numerico 5

6 3) Stabilire per quali valori del parametro reale α il seguente sistema lineare ammette soluzioni, e calcolarle per α = : x + 2x 2 x 3 + x 4 = 4 2x + x 2 + x 3 x 4 = 3 x x 4 = 2 x 2 + αx 3 x 4 = Risposta: Ammette soluzioni per α 2. Per α = ha l unica soluzione (, 2, 2, 3). 4) Discutere il seguente sistema lineare: x 2 x 3 + x 4 = x + x 2 + x 3 2x 4 = x x 4 = 2x x 2 x 3 = Risposta: Ha soluzioni {x =, x 2 = 2 x 3, x 3 = x 3, x 4 = }, equivalentemente: x x 2 2 = + x x 3 3 x 4 5) Discutere il sistema omogeneo Ax = dove: A = Risposta: Ha 2 soluzioni {x = x 3, x 2 = x 4, x 3 = x 3, x 4 = x 4, x 5 = }, ossia: x x 2 x 3 = x 3 + x 4 x 4 x 5 6) Discutere il sistema omogeneo Ax = dove: A = Risposta: Ha 2 soluzioni {x = 2x 4, x 2 = x3 2, x 3 = x 3, x 4 = x 4 }, ossia: x 2 x 2 = x x x 3 4 x 4 7) Stabilire per quali valori di α reale il seguente sistema lineare è impossibile: x + y + z = α 3x 2y z = 2x + y + αz = α 3 Risposta: per α = 6 5 6

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.

Dettagli

Note sull algoritmo di Gauss

Note sull algoritmo di Gauss Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n

Dettagli

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +.. Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine

Dettagli

Sistemi Lineari. Elisabetta Colombo. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico

Sistemi Lineari. Elisabetta Colombo. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 200-20 2 a di o.0 4 Capelli Rango o Caratterisca : definizioni a di o.0 Un equazione nelle n incognite x,..., x n della forma dove

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +.. Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma:

Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma: SISTEMI LINEARI Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010 Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 21 Sistemi lineari. Un sistema lineare di n 1 equazioni in m incognite

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

Istituzioni di Matematiche sesta parte

Istituzioni di Matematiche sesta parte Istituzioni di Matematiche sesta parte anno acc. 2013/2014 Univ. Studi di Milano D.Bambusi, C.Turrini (Univ. Studi di Milano Istituzioni di Matematiche 1 / 27 index Matrici e operazioni tra matrici 1 Matrici

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Federica Gregorio e Cristian Tacelli

Federica Gregorio e Cristian Tacelli 1 Sistemi lineari Federica Gregorio e Cristian Tacelli Un sistema lineare m n (m equazioni in n incognite) è un insieme di equazioni lineari che devono essere soddisfatte contemporaneamente a 11 x 1 +

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

Argomenti trattati nella settimana novembre Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare

Argomenti trattati nella settimana novembre Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare Argomenti trattati nella settimana 23-27 novembre 2009 Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare 1 Sistemi lineari; 2 applicazioni lineari; Sistemi lineari;

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Lezione del 24 novembre. Sistemi lineari

Lezione del 24 novembre. Sistemi lineari Lezione del 24 novembre Sistemi lineari 1 Nelle lezioni scorse abbiamo considerato sistemi di equazioni lineari dei seguenti tipi: un equazione in un incognita; una, due o tre equazioni in due incognite;

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema

Dettagli

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta Versione del 21/12/07 Metodi per il calcolo del rango di una matrice Sia A M m,n (K). Denotiamo con A (i) la riga i-ma di A, i {1,..., m}.

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari 1. Sistemi di equazioni lineari 1.1 Considerazioni preliminari I sistemi lineari sono sistemi di equazioni di primo grado in più incognite. Molti problemi di matematica e fisica portano alla soluzione

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Sistemi Lineari. Andrea Galasso

Sistemi Lineari. Andrea Galasso Sistemi Lineari Andrea Galasso Esercizi svolti Teorema. (Rouché-Capelli. Un sistema lineare Ax = b ammette soluzioni se e solo se il rango della matrice dei coefficienti A è uguale al rango della matrice

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

ALGEBRA LINEARE PARTE III

ALGEBRA LINEARE PARTE III DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}. APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine

Dettagli

Geometria BAER PRIMO CANALE Foglio esercizi 1

Geometria BAER PRIMO CANALE Foglio esercizi 1 Geometria BAER PRIMO CANALE Foglio esercizi 1 Esercizio 1. Risolvere le seguenti equazioni lineari nelle variabili indicate trovando una parametrizzazione dell insieme delle soluzioni. a) x + 5y = nelle

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano Istituzioni di Matematiche 1 / 33 index Generalità sugli insiemi 1 Generalità

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Corso introduttivo pluridisciplinare Matrici e sistemi lineari

Corso introduttivo pluridisciplinare Matrici e sistemi lineari Corso introduttivo pluridisciplinare Matrici e sistemi lineari anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano Corso introduttivo pluridisciplinare 1 / 30

Dettagli

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe.

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe. Matrici triangolari [Abate, 32] Definizione Una matrice A = a ij ) R m,n si dice triangolare superiore se a ij = 0 per ogni i > j; triangolare inferiore se a ij = 0 per ogni i < j Lezioni 05 e 06 Una matrice

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2014/2015 Univ. Studi di Milano E.Frigerio, C.Turrini (Univ. Studi di Milano Istituzioni di Matematiche 1 / 30 index Generalità sugli insiemi 1 Generalità

Dettagli

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni.

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni. Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF3 / PS-MF3 II Lezione EQUAZIONI E SISTEMI Dr. E. Modica erasmo@galois.it www.galois.it IDENTITÀ ED EQUAZIONI Si consideri un uguaglianza

Dettagli

Mauro Saita, Esercizio 1.1 Determinare tutti i sottospazi vettoriali degli spazi vettoriali R, IR 2, IR 3 motivando

Mauro Saita,   Esercizio 1.1 Determinare tutti i sottospazi vettoriali degli spazi vettoriali R, IR 2, IR 3 motivando CORSO DI ALGEBRA LINEARE: Esercitazione n.1 del 20/12/2004. Mauro Saita, e-mail: maurosaita@tiscalinet.it 1 Spazi vettoriali. Sottospazi. Esercizio 1.1 Determinare tutti i sottospazi vettoriali degli spazi

Dettagli

Geometria per Fisica e Astrofisica

Geometria per Fisica e Astrofisica Geometria per Fisica e Astrofisica Soluzione esercizi - Foglio 3 Esercizio. Risolvere i seguenti sistemi lineari al variare dei parametri reali α β e k < < (a) x + y z = αx + αy + βz = x + y z = β. (b)

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

GEOMETRIA 1 prima parte

GEOMETRIA 1 prima parte GEOMETRIA 1 prima parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 44 index Relazioni in un insieme 1 Relazioni in un insieme 2 Gruppi,

Dettagli

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij Determinanti Sia data la matrice quadrata a... a n a a n =...... a... a n nn Chiamiamo determinante di il numero det o che ad essa viene associato. det = a a... a... a... a n n n... a nn Un generico elemento

Dettagli

a.a MATEMATICA GENERALE: SISTEMI LINEARI E MATRICI

a.a MATEMATICA GENERALE: SISTEMI LINEARI E MATRICI aa 2012-2013 MATEMATICA GENERALE: SISTEMI LINEARI E MATRICI 1 Sistemi di equazioni lineari Definizione 11 i Un equazione lineare nelle indeterminate (o incognite X 1,, X 1 m a coefficienti interi (o razionali,

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA

CORSI DI LAUREA IN MATEMATICA E FISICA CORSI DI LAUREA IN MATEMATICA E FISICA FOGLIO DI ESERCIZI # 6 GEOMETRIA 1 Esercizio 6.1 (Esercizio 5.1). Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Per esempio il vettore

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST V II foglio di esercizi ESERCIZIO. Nei seguenti sistemi lineari, discutere l insieme delle soluzioni al variare del parametro t, o dei parametri t e τ, in R. 5 x

Dettagli

I sistemi lineari di n equazioni in n incognite

I sistemi lineari di n equazioni in n incognite I sistemi lineari I sistemi lineari di n equazioni in n incognite I sistemi lineari di n equazioni in n incognite, sono formati da equazioni di primo grado, in cui le incognite hanno tutte esponente uguale

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite:

CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite: CORS D LAUREA N MATEMATCA E FSCA FOGLO D ESERCZ # 1 GEOMETRA 1 Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite: 2x + y = 4 x 2y = 6 x + 3y =

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Ax = b ; b = b 1 b 2. a 11 a 12 a 1n a 21 a 22 a 2n. b m. a m1 a m2 a mn

Ax = b ; b = b 1 b 2. a 11 a 12 a 1n a 21 a 22 a 2n. b m. a m1 a m2 a mn SISTEMI LINERI Consideriamo il seguente sistema di m equazioni lineare nelle n incognite,,, n : a + a + + a n n = b >< a + a + + a n n = b = >: a m + a m + + a mn n = b m tale sistema può essere scritto

Dettagli

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = =

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = = ESERCIZI PROPOSTI Risolvere i seguenti sistemi lineari )-0), utilizzando, dove possibile, sia il metodo di Cramer sia quello della matrice inversa, dopo aver analizzato gli esempi a)-d): 2x + + 4z 5 a)

Dettagli

1. [15 punti] Calcolare il rango della seguente matrice a coefficienti reali: ( 1/2) 1 (1/2)

1. [15 punti] Calcolare il rango della seguente matrice a coefficienti reali: ( 1/2) 1 (1/2) Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE del 17 febbraio 011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

0.1 Soluzioni esercitazione IV, del 28/10/2008

0.1 Soluzioni esercitazione IV, del 28/10/2008 1 0.1 Soluzioni esercitazione IV, del 28/10/2008 Esercizio 0.1.1. Risolvere, usando il teorema di Cramer, i seguenti sistemi lineari 2x + y + z = 0 x + 3z = 1 x y z = 1 kx + y z = 1 x y + 2z = 1 2x + 2y

Dettagli

Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011)

Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011) Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011) ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola

Dettagli

Matematica II,

Matematica II, Matematica II 181111 1 Matrici a scala Data una riga R = [a 1 a 2 a n ] di numeri reali non tutti nulli il primo elemento non nullo di R si dice pivot di R Cosi il pivot di R compare come j mo elemento

Dettagli

1 se k = r i. 0 altrimenti. = E ij (c)

1 se k = r i. 0 altrimenti. = E ij (c) Facoltà di Scienze Statistiche, Algebra Lineare A, G.Parmeggiani LEZIONE 5 Matrici elementari e loro inverse Si fissi m un numero naturale. Per ogni i, j m con i j siano E ij (c) (ove c è uno scalare )

Dettagli

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno.

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. Sistemi lineari Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. La discussione di un sistema si imposta in questo modo: 1 studiare il rango della matrice

Dettagli

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0 a.a. 5-6 Esercizi. Sistemi lineari. Soluzioni.. Determinare quali delle quaterne, 3,, sono soluzioni del sistema di tre equazioni in 4 incognite { x x + x 3 = x 8x 3 = x x 4 =. Sol. Sostituendo ad x, x,

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 3 Sistemi di equazioni lineari Siano m, n N \ {}, sia K un campo Definizione a) Un sistema

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

1. Consideriamo un sistema lineare. E piuttosto naturale aspettarsi che

1. Consideriamo un sistema lineare. E piuttosto naturale aspettarsi che Algebra Lineare (Matematica CI) 151113 1 Consideriamo un sistema lineare E piuttosto naturale aspettarsi che (a) se il numero delle equazioni e minore del numero delle incognite allora il sistema e indeterminato;

Dettagli

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di

Dettagli

Esempio Date a = (1, 2, 3) e b = (4, 5, 6), calcolare. 2(a + b) 3(2a b).

Esempio Date a = (1, 2, 3) e b = (4, 5, 6), calcolare. 2(a + b) 3(2a b). Matematica II, 26.02.04 Passiamo ora a considerare l insieme R 3 = {(x, x 2, x 3 ); x, x 2, x 3 R}, costituito dalle terne ordinate di numeri reali. Ciascuna terna puo essere pensata come un unica entita,

Dettagli

0.1 Soluzioni Esercitazione III, del 21/10/2008

0.1 Soluzioni Esercitazione III, del 21/10/2008 1 0.1 Soluzioni Esercitazione III, del 21/10/2008 Esercizio 0.1.1. Risolvere il sistema lineare x + y + z = 1 2x + 3y + 2z = 0 x + 2y z = 0 Il determinante della matrice incompleta è 2 e quindi il sistema

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA DISEQUAZIONI E SISTEMI Dr. Erasmo Modica erasmo@galois.it SISTEMI DI EQUAZIONI DI PRIMO GRADO Definizione: Si definisce

Dettagli

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO Geometria 9 5 A.A. 5 Cognome Nome Matricola Codice Scrivere in

Dettagli