a + 2b + c 3d = 0, a + c d = 0 c d
|
|
|
- Tiziano Bertolini
- 9 anni fa
- Visualizzazioni
Transcript
1 SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z) R 3 /x y + z = 0} V 5 = {(x, y) R /(x y) = 0} V 6 = {(x, y, z) R 3 /x z = 0, y z = 0}. Determinare unase per i sottospazi tra i sottoinsiemi precedenti. Esercizio. Verificare che le matrici quadrate di ordine e rango 1 non formano un sottospazio. E quelle di rango? E quelle aventi determinante uguale a zero? Esercizio 3. Verificare che i polinomi di R[x] 3 verificanti p(1) = 0 formano un sottospazio. Ripetere l esercizio con la condizione p(1) = 1, ovvero con la condizione p(1) = p(0), ovvero con la condizione p(1) = p(0) + 1. Determinare unase e la dimensione di quelli tra i precedenti che sono un sottospazio. Esercizio 4. Dati i vettori v 1 = (, 1, 1), v = (4,, ), v 3 = (1, 1, 0), v 4 = (0, 3, 1), e gli scalari a 1 = 3, a = 1, a 3 =, a 4 = 1, calcolare la combinazione lineare dei vettori v 1,..., v 4 secondo gli scalari a 1,..., a 4, e da questa dedurre che i vettori dati sono linearmente dipendenti. Detto U = L(v 1,..., v 4 ), trovare unase di U, la sua dimensione, e completare poi lase trovata ase di R 3. Esercizio 5. Dati i vettori (1, 1), (1, 3), (, 1) R, stabilire se sono linearmente dipendenti, e se è possibile scrivere il secondo vettore come combinazione lineare degli altri due. Esercizio 6. Ripetere l esercizio ) con i vettori (4,, ), (5, 0, 1), (, 1, 1) R 3, con i vettori i j, i+j k, i+k R 3, e con i vettori (1, i, 1 i), (i, 1, 1 i), (0, 0, 1) C 3. Esercizio 7. Verificare che le matrici quadrate di ordine 3 triangolari superiori sono un sottospazio vettoriale di M(3, 3; R) di dimensione 6. Esercizio 8. Verificare che i polinomi aventi x = 1 come radice doppia sono un sottospazio di R[x] 3. Calcolarne anche unase e la dimensione. Esercizio 9. Calcolare unase e la dimensione del sottospazio U = {p(x) R[x] 3 xp p = 0}. Esercizio 10. Determinare al variare di k R la dimensione dei sottospazi U = L((1, 1, k), (k + 1,, ), ( k, 1, k)) e W = L((1, 1, k), (k, 1, k), (k + 1,, k + 1)) di R 3. Esercizio 11. Calcolare, al variare di k R, la dimensione del sottospazio (( ) ( ) ( )) 1 1 k 1 k + 1 U = L,,. k k k 0 k + 1 Esercizio 1. Calcolare, al variare di k R, la dimensione ed unase del sottospazio di R[x] U = L(kx x, 1 k + kx, k (k 1)x kx ). 1
2 SPAZI VETTORIALI Esercizio 13. Per ognuno dei seguenti insiemi di vettori si trovi unase dello spazio indicato a fianco contenente i vettori assegnati, se possibile: (i)(, 1, 0) R 3 ; (ii)(, 1, 0), (1, 0, 1) R 3 ; (iii)i j R ; (iv)i j R 3 ; (v)i + j, i k R 3 ; (vi)(3, 1) R ; (vii)(1, 0, 1), ( 1, 0, 1) R 3. Esercizio 14. Determinare, se esiste, un vettore x R 3 che soddisfi la seguente equazione: ((1, 1, 0) x) + 4(x + (0, 1, 1)) = (, 1, ). E se consideriamo l equazione ((1, 1, 0) x) + 3(x + (0, 1, 1)) x = (, 1, )? Esercizio 15. Scrivere i seguenti sottospazi come soluzioni di un sistema lineare omogeneo. (i)l((1, 1)); (ii)l((1, 1, 0), (1, 1, 0)); (iii)l((1, 1, 1), (1, 1, 0)); (iv)l((1, 1, 1)). Esercizio 16. Calcolare unase B del sottospazio U = {(x, y, z) R 3 /x + y z = 0}, verificare che u = (1, 1, ) U e determinare le componenti di u rispetto allase B trovata. Calcolare inoltre il vettore v V avente componenti [v] B = t (1, 1) rispetto allase B di U trovata. Esercizio 17. Calcolare l intersezione dei sottospazi U = {(x, y, z) R 3 /x + y + z = 0} e V = L((0, 3, 1), (1,, 0)). Esercizio 18. Calcolare la somma dei sottospazi U = L((1, 1, 1)) e V = {(x, y, z) R 3 /x + y = x z = 0}. È una somma diretta? Esercizio 19. Calcolare l intersezione dei sottospazi di M(, ; R) {( ) } U = a + b + c 3d = 0, a + c d = 0 c d (( ) ( ) ( )) V = L,, Esercizio 0. Dimostrare che R[x] 3 è somma diretta dei sottospazi U = {a 0 + a 1 x + a x + a 3 x 3 a 1 = a } e V = L(x x ). Esercizio 1. Calcolare somma ed intersezione dei sottospazi U = {(x, y, z) R 3 /x + y + z = 0} e V = L((1, 1, k)) al variare di k R. Per quali valori di k U + V è somma diretta di U e V? Esercizio. Sia U = {(x, y, z) R 3 /y = x }. U non è un sottospazio perché (1) 0 / U; () (0, 0, ) U, (0, 0, 3) U ma (0, 0, ) + (0, 0, 3) / U; (3) (0, 0, 1) U ma (0, 0, 1) / U; (4) (1, 1, 1) U ma (1, 1, 1) / U. Esercizio 3. Sia U = L((1, 1, 0), (k 1,, k), (k + 1, k, k)). Allora (1) se k = 0, dim U = ; () esistono dei valori di k R per cui dim U = 1; (3) se k = /3, dim U = 3; (4) dim U = 3, qualunque sia k R. Esercizio 4. Siano u = i + k, v = i + j, w = j + k, ed U = L(u, v). Allora (1) w U;
3 () {u, v, w} è unase di R 3 ; (3) dim U = 1; (4) U non è un sottospazio. SPAZI VETTORIALI 3 Esercizio 5. (i) Dati 4 vettori distinti di uno spazio vettoriale di dimensione 3, stabilire quali delle seguenti affermazioni sono vere e quali false: (1) sono sempre linearmente dipendenti; () 3 vettori dei 4 sono linearmente indipendenti; (3) almeno uno è linearmente indipendente; (4) almeno uno dipende linearmente dagli altri. (ii) Cosa cambia se consideriamo 4 vettori distinti di uno spazio vetoriale di dimensione 4?. Soluzioni di alcuni esercizi Soluzione dell Esercizio 1. V 1 è formato dai vettori di R 3 del tipo (a, a, a), dove a R e quindi è un sottospazio perché verifica le tre condizioni della definizione. Infatti, per a = 0 otteniamo il vettore nullo, sommando due vettori del tipo a(1, 1, 1) e b(1, 1, 1) otteniamo il vettore (a + b)(1, 1, 1) che ha ancora le tre entrate uguali tra loro, e moltiplicando un vettore del tipoa(1, 1, 1) per un numero reale b otteniamo il vettore ab(1, 1, 1), ancora con le tre entrate{ uguali. Osserviamo anche che V 1 è dato dalle soluzioni del sistema x z = 0 lineare omogeneo y z = 0 e che possiamo anche scriverlo come L((1, 1, 1)). V 1 ha dimensione 1 ed una suase è ((1, 1, 1)). V non è un sottospazio perché (0, 0, 0) non verifica la condizione che lo definisce. V 3 non è un sottospazio perché (1, 0, 1) V 3 ma (, 0, ) = (1, 0, 1) / V 3, e quindi la terza richiesta della definizione di sottospazio non è verificata. V 4 è dato dalle soluzioni di un sistema lineare omogeneo, e quindi è un sottospazio. Risolvendo il sistema otteniamo x = y z, e quindi i vettori di V 4 sono del tipo (y z, y, z) = y(1, 1, 0) + z(, 0, 1). Quindi dim V 4 = ed una sua base è ((1, 1, 0), (, 0, 1)). V 5 è un sottospazio perché la condizione che lo definisce può essere riscritta come x y = 0 ed è quindi dato dalle soluzioni di un sistema lineare omogeneo. Risolvendo il sistema si ottiene che i vettori di V 5 sono del tipo (x, x, z) = x(1, 1, 0) + z(0, 0, 1) e quindi dim V 5 =, ed una suase è ((1, 1, 0), (0, 0, 1)). V 6 coincide con V 1 e quindi è un sottospazio. Soluzione dell Esercizio. La matrice nulla ha rango zero, e quindi non appartiene all insieme delle matrici quadrate di ordine e rango 1, né a quelle di rango. Verificare se le altre due condizioni sono verificate, fornendo eventualmente dei controesempi. Le matrici con determinante uguale a zero non formano un sottospazio perché ( ) ( ) e hanno determinante nullo, ma la loro somme è la matrice identica che ha determinante uguale ad 1. Soluzione dell Esercizio 3. Sia V 1 formato dai polinomi che verificano p(1) = 0. Ovviamente, il polinomio nullo si trova in V 1. Se p, q V 1 allora (p + q)(1) = p(1) + q(1) = 0, e quindi anche p + q V 1. Se p V 1 e a R, allora (ap)(1) = ap(1) = a0 = 0, e quindi ap V 1. Quindi, V 1 è un sottospazio. I polnomi di V 1 sono allora del tipo (x 1)(a 0 + a 1 x + a x ) per il Teorema di Ruffini, e quindi V 1 ha dimensione 3, ed una suase è (x 1, x(x 1), x (x 1)). I polinomi verificanti p(1) = 1 non formano un
4 4 SPAZI VETTORIALI sottospazio perché il polinomio nullo non verifica la condizione. Sia V l insieme dei vettori che verificano p(1) = p(0). Il polinomio nullo verifica la condizione perché è nullo in ogni punto. Se p, q V allora (p + q)(1) = p(1) + q(1) = p(0) + q(0) = (p + q)(0) e quindi p + q V. Se a R, allora (ap)(1) = ap(1) = ap(0) = (ap)(0). Poiché sono verificate tutte le condizioni, V è un sottospazio. Sia p(x) = a 0 + a 1 x + a x 3 + a 3 x 3 un polinomio di R 3. La condizione che definisce V diventa allora a 0 + a 1 + a + a 3 = a 0, ossia a 1 + a + a 3 = 0, da cui a 3 = a 1 a. Quindi i polinomi di V sono tutti e soli quelli del tipo p(x) = a 0 + a 1 x + a x + ( a 1 a )x 3 e quindi dim V = 3 ed unase di V 3 è (1, x x 3, x x 3 ). I polinomi che verificano p(1) = p(0) + 1 non formano un sottospazio perché il polinomio nullo non la verifica. Soluzione dell Esercizio 4. a 1 v 1 + a 4 v 4 = 0, e quindi i vettori dati sono l.d. perché gli scalari non sono tutti nulli. Per trovare unase di U scriviamo i generatori come righe di una matrice e la riduciamo per righe (o li scriviamo per colonne e riduciamo per colonne). Le righe non nulle della matrice ridotta corrispondono ai vettori linearmente indipendenti tra quelli assegnati, e quindi formano unase r r r 1 r 4 r 4 r r 4 r 4 + r quindi la dimensione di U è ed unase è (v 1, v 3 ). Unase di R 3 che completa quella di U si ottiene aggiungendo una riga alla matrice precedente in modo che resti ridotta per righe. Quindi unase di R 3 potrebbe essere (v 1, v 3, (1, 0, 0)). Soluzione dell Esercizio 5. I vettori sono sicuramente linearmente dipendenti perché il massimo numero di vettori linearmente indipendenti di R è. Per stabilire se il secondo è c.l. degli altri due bisogna risolvere il sistema lineare che si ottiene dall uguaglianza x(1, 1) + y(, 1) = (1, 3), ossia { x + y = 1 x y = 3. Usando una tecnica risolutiva si ha che il sistema precedente ha un unica soluzione data da ( 7, ) e quindi il secondo vettore è c.l. degli altri due valendo l uguaglianza 3 3 (1, 3) = 7(1, 1) (, 1), ed inoltre il primo ed il terzo vettore sono l.i. perché la matrice 3 3 che li ha come colonne (matrice dei coefficienti del sistema) ha rango due. Soluzione dell Esercizio 6. Riportiamo solo i risultati, essendo lo svolgimento dell esercizio simile al precedente. I primi tre vettori sono l.d. perché (4,, ) + 0(5, 0, 1) (, 1, 1) = (0, 0, 0), ma non è possibile scrivere (5, 0, 1) come c.l. di (4,, ) e di (, 1, 1); i secondi tre vettori sono l.i., e quindi non è possibile scrivere il secondo come c.l. degli altri; per gli ultimi tre abbiamo (i, 1, 1 i) = i(1, i, 1 i) i(0, 0, 1). Soluzione dell Esercizio 7. Sia A = (a ij ) con 1 i, j 3 una matrice quadrata di ordine 3. Essa è triangolare superiore se a ij = 0 per i > j. Quindi le matrici triangolari superiori sono soluzioni di un sistema lineare omogeneo, e quindi sono un sottospazio di M(3, 3; R). una tale matrice può essere scritta come A = c 0 d e 0 0 f
5 SPAZI VETTORIALI 5 e quindi la dimensione del sottospazio è 6. Se ne calcoli unase. Soluzione dell Esercizio 8. I polinomi che hanno x = 1 come radice doppia sono tutte e sole le soluzioni del sistema lineare p(1) = 0, p (1) = 0, e quindi formano un sottospazio. Tali polinomi possono essere scritti come p(x) = (x 1) (a + bx) e quindi la dimensione di tale sottospazio è. Unase di tale sottospazio è ((x 1), x(x 1) ). Soluzione dell Esercizio 9. Un polinomio di R[x] 3 si scrive come p(x) = a 0 + a 1 x + a x + a 3 x 3 e quindi la condizione che definisce U è equivalente a a x+6a 3 x a 1 a x 3a 3 x = 0 ossia a 1 + 3a 3 x = 0. Tale uguaglianza è un uguaglianza tra due polinomi, e quindi otteniamo il sistema lineare { a1 = 0 3a 3 = 0 le cui soluzioni danno i polinomi p(x) = a 0 + a x U. Quindi dim U = ed unase di U è (1, x ). Soluzione dell Esercizio 10. Per calcolare la dimensione di U scriviamo i suoi generatori come righe di una matrice e la riduciamo per righe. Il rango di tale matrice dà la dimensione di U. Per la riduzione si usa la tecnica e gli accorgimenti già spiegati. Analogamente per W. I risultati sono dim U = 1 se k = 1 se k = 1 3 altrimenti dim W = { 1 se k = 1 3 altrimenti Soluzione dell Esercizio 11. Per usare la tecnica usata nell Esercizio 10, ( bisogna ) scrivere le matrici come vettori del giusto R n. Scriveremo quindi la matrice come il c d vettore (a, b, c, d) R 4. Ovviamente, non è l unico modo. Dobbiamo allora calcolare il rango della matrice 1 1 k k + 1 k 1 0 k k k + 1 al variare di k R. Si ottiene allora che dim U = 3 se k 1, mentre dim U = se k = 1. Soluzione dell Esercizio 1. Per usare la tecnica usata nell Esercizio 10, bisogna scrivere i polinomi di R[x] come vettori di R 3. Scriveremo quindi i polinomi p(x) = a 0 + a 1 x + a x come il vettore (a 0, a 1, a ) R 3. Ovviamente, non è l unico modo. Dobbiamo allora calcolare il rango della matrice 1 k 0 k 0 k 1 k 1 k k al variare di k R. Abbiamo allora il risultato seguente { 3 se k 1 dim U = se k = 1. Unase di U è data dai suoi tre generatori, se k 1, mentre è data dai primi due generatori, se k = 1. Soluzione dell Esercizio 13. Poiché la tecnica è stata già spiegata, riportiamo solo i risultati. (i)b = {(, 1, 0), (0, 1, 0), (0, 0, 1)}; (ii)b = {(, 1, 0), (1, 0, 1), (1, 0, 0)};
6 6 SPAZI VETTORIALI (iii)b = {i j, i}; (iv)b = {i j, i, k}; (v)b = {i + j, i k, i}; (vi)b = {(3, 1), (0, 1)}; (vii) i due vettori sono l.d. e quindi non fanno parte di una base. Soluzione dell Esercizio 14. Usando le proprietà delle operazioni tra vettori, si ottiene che il vettore che risolve la prima equazione è x = (0, 7, 3). La seconda equazione è impossibile. Soluzione dell Esercizio 15. Consideriamo il primo sottospazio. Esso ha ((1, 1)) come base, e quindi i suoi elementi sono tutti e soli i vettori di R che possono essere scritti come a(1, 1) = (a, a). Sia (x, y) il vettore generico di R, ossia un vettore di R avente entrate incognite ad indipendenti l una dall altra. Vogliamo cercare le relazioni tra x, y che obbligano il vettore generico ad appartenere al sottospazio L((1, 1)). Dobbiamo quindi discutere l uguaglianza (a, a) = (x, y), { dove a è l incognita ed x, y hanno il ruolo a = x che in forma matriciale può essere a = y di parametri. Otteniamo allora il sistema [ 1 scritto come 1 x y r r r 1 otteniamo [ 1 0 ]. Effettuando la riduzione per righe con l operazione elementare x y x e quindi il sistema è risolubile se, e solo se, y x = 0. Quindi L((1, 1)) = {(x, y) R y x = 0}. Gli altri sottospazi vanno trattati analogamente. Riportiamo solo i risultati. (ii)l((1, 1, 0), (1, 1, 0)) = {(x, y, z) z = 0}; (iii)l((1, 1, 1), (1, 1, 0)) = {(x, y, z) x + y z = 0}; (iv)l((1, 1, 1)) = {(x, y, z) x z = y z = 0}. Soluzione dell Esercizio 16. Per trovare unase di U basta risolvere il sistema che definisce il sottospazio. Quindi z = x + y ed i vettori di U si scrivono come (x, y, x + y) = x(1, 0, 1)+y(0, 1, 1). Unase di U è ((1, 0, 1), (0, 1, 1)). Il vettore u appartiene ad U perché le sue entrate risolvono il sistema. Per calcolarne le componenti rispetto a B bisogna risolvere il sistema equivalente all uguaglianza di vettori x(1, 0, 1) + y(0, 1, 1) = (1, 1, ) x = 1 ossia y = 1 che ha la sola soluzione t (1, 1). Quindi le componenti di u rispetto x + y = a B sono [u] B = t (1, 1). Il vettore v avente componenti t (1, 1) rispetto a B è il vettore v = 1(1, 0, 1) 1(0, 1, 1) = (1, 1, 0). Soluzione dell Esercizio 17. Un primo modo per caloclare l intersezione dei due sottospazi è quello di scrivere i vettori di V come soluzioni di un sistema lineare omogeneo (veri Esercizio 15), e poi risolvere il sistema che si ottiene considerando sia le equazioni che definiscono U sia quelle che definiscono U. Facendo i calcoli abbiamo che V = {(x, y, z) R 3 x + y + 3z = 0}. Quindi, U V è dato dalle soluzioni del sistema lineare omogeneo { x + y + z = 0 ] x + y + 3z = 0. Risolvendo tale sistema si ha che U V = L((1, 1, 1)). Un secondo modo per calcolare l inetrsezione è il seguente. I vettori di V sono tutti e soli quelli del tipo a(0, 3, 1) + b(1,, 0) = (b, 3a + b, a). Un tale vettore appartiene ad U se, e solo se, sostituito nel sistema che definisce U lo
7 SPAZI VETTORIALI 7 rende vero. Quindi otteniamo la seguente equazione b + (3a + b) + ( a) = 0, ossia a + b = 0. Ricavando a = b abbiamo che i vettori di U V sono tutti e soli quelli del tipo (b, b, b) = b(1, 1, 1), da cui si riottiene il risultato precedente. Soluzione dell Esercizio 18. Per calcolare la somma di due sottospazi, calcoliamo prima unase di ognuno di essi. Il sottospazio somma è il sottospazio generato dall unione delle due basi. Unase di U è ((1, 1, 1)) ed U ha dimensione 1. Unase di V si calcola risolvendo il sistema che lo definisce, e è ((1, 1, 1)). Anche V ha dimensione 1. U +V è allora generato da (1, 1, 1), (1, 1, 1). Tali vettori sono linearmente indipendenti e quindi formano unase di U + V, che risulta quindi di dimensione. U + V è somma diretta di U e V perché dim(u + V ) = dim U + dim V. Soluzione dell Esercizio 19. Per prima cosa, scriviamo V come soluzione di un sistema lineare omogeneo. ( A tale scopo ) usiamo la tecnica descritta nell Esercizio 15, dopo aver scritto la matrice come il vettore (a, b, c, d). Dobbiamo allora calcolare le relazioni tra a, b, c, d perché il sistema lineare seguente abbia soluzioni c d a 1 1 b c. 1 3 d Effettuando le seguenti operazioni elementari, otteniamo r r r 1 r 3 r 3 r 1... r 4 r 4 3r r 4 r 4 + r In conclusione, V = {( c d a b a c a 4a 3b + d ) } a c = 0, 4a 3b + d = 0. L intersezione di U e V si ottiene allora risolvendo il sistema lineare omogeneo a + b + c 3d = 0 a + c d = 0 a c = 0 4a 3b + d = 0 le cui soluzioni sono b = a, c = a, d = a, a R. Quindi, (( )) 1 U V = L. 1. Soluzione dell Esercizio 0. Il primo dei due sottospazi ha dimensione 3 mentre il secondo ha dimensione 1. La loro somma è diretta se dimostriamo che U + V = R[x] 3, perché in tal modo dim(u + V ) = dim R[x] 3 = 4 = dim U + dim V. Per dimostrare che U + V = R[x] 3, basta dimostrare che ogni polinomio di grado 3 può essere scritto come somma di un polinomio avente uguali i coefficienti di x e di x e di uno multiplo di x x. In tal modo si ha che R[x] 3 U + V ma l altra inclusione è ovvia perché U e V sono sottospazi di R[x] 3.
8 8 SPAZI VETTORIALI D altra parte si ha che il polinomio p(x) = a + bx + cx + dx 3 è uguale a p(x) = 1 (a + (b + c)x + (b + c)x + dx 3 ) + 1 (b c)(x x ) e questo completa l esercizio. Osserviamo comunque che se scriviamo il polinomio p(x) come la matrice ( ) c allora l esercizio consiste nel provare che M(, ; R) è somma diretta del sottospazio delle matrici simmetriche e di quello delle matrici antisimmetriche. Soluzione dell Esercizio 1. Cominciamo col calcolare la somma di U e V. Risolvendo il sistema lineare omogeneo che definisce U abbiamo che U = L((1, 0, 1), (0, 1, 1)). Quindi U +V = L((1, 0, 1), (0, 1, 1), (1, 1, k)). Scrivendo i generatori come righe di una matrice e riducendola, abbiamo che { R 3 se k U + V = U se k =. Di conseguenza abbiamo che U V = {0} se k, mentre U V = V se k =. Ovviamente, la somma di U e V è diretta se k. Soluzione dell Esercizio. L unica affermazione vera è la (4). Infatti, (0, 0, 0) U come si può verificare facilmente, e quindi la (1) è falsa. La () è falsa perché i vettori (0, 0, ) e (0, 0, 3) non sono in U e quindi la loro somma non dà informazioni sull insieme V. La (3) è falsa per lo stesso motivo. La (4) è vera perché è molto facile verificare che (1, 1, 1) verifica la condizione che definisce V mentre (,, ) non la verifica. Quindi viene violata la terza condizione che definisce un sottospazio. Soluzione dell Esercizio 3. Scritti i vettori come righe di una matrice A, possiamo calcolare il determinante di A, ed otteniamo det(a) = 3k k. Quindi i tre vettori sono linearmente indipendenti per k 0,, e quindi le affermazioni (3) e (4) sono false. Per 3 k = 0 oppure k =, si ricava facilmente che dim U =, e quindi è vera la (1) mentre la 3 () è falsa. Soluzione dell Esercizio 4. Scritti i tre vettori come terne e la matrice A che li ha come righe, abbiamo che det A = 0 e quindi i tre vettori sono linearmente indipendenti e quindi unase di R 3. Inoltre, essendo tutti e tre l.i., anche u, v sono l.i. e quindi dim U =. Infine, U è chiaramente un sottospazio, essendo formato dai vettori che si scrivono come combinazione lineare di u, v. In sintesi, l unica affermazione vera è la (). Soluzione dell Esercizio 5. (1) è vera perché la dimensione è il massimo numero di vettori linearmente indipendenti. () è falsa perché possiamo anche aver scelto v 0, v, 3v, 4v, e quindi mai tre sono l.i.. (3) è vera perché un vettore è l.i. se non nullo, ed essendo i vettori distinti, almeno uno di essi è non nullo. (4) è vera perché i vettori sono l.d. e l affermazione è equivalente ad essere l.d.. (ii) In questo caso i quattro vettori possono essere l.i. ((1) è falsa), ma possono anche essere scelti come al punto () di (i) e quindi anche () è falsa. (3) è vera per lo stesso motivo precedente, e (4) è falsa perché i vettori potrebbero anche essere l.i.. d
SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n
SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni
Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,
AUTOVALORI, AUTOVETTORI, AUTOSPAZI
AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
Esercizi svolti. delle matrici
Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio
Intersezione e somma di sottospazi vettoriali
Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria
Intersezione e somma di sottospazi vettoriali
Capitolo 7 Intersezione e somma di sottospazi vettoriali 7.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n
NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
VETTORI NELLO SPAZIO ORDINARIO ,
VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto
Risoluzione di sistemi lineari
Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini
Algebra lineare Geometria 1 11 luglio 2008
Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =
Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni
Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro
ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare
Dipendenza e indipendenza lineare (senza il concetto di rango)
CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori
ESERCIZI sui VETTORI
ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di
Parte 5. Sottospazi. A. Savo Appunti del Corso di Geometria
Parte 5. Sottospazi A. Savo Appunti del Corso di Geometria 03-4 Indice delle sezioni Sottospazi di R n, Equazioni di un sottospazio di R n, 3 3 Sottospazio intersezione, 6 4 Sottospazio somma, 8 5 Formula
CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3.
CORSO DI MATEMATICA II Prof Paolo Papi ESERCIZI ) Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali (a) V = R 3 () W = {(x,,x 3 ) x,x 3 R} (2) W 2 = {(x,,x 3 ) x,x 3 R} (3) W 3
Argomento 13 Sistemi lineari
Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA
Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere
MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE
DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici
Geometria e Topologia I (U1-4) 2006-mag-10 61
Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
2 Sistemi lineari. Metodo di riduzione a scala.
Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1
Sottospazi vettoriali
Capitolo 6 Sottospazi vettoriali 6.1 Introduzione Riprendiamo un argomento già studiato ampiamente nel corso di Geometria, i sottospazi vettoriali di uno spazio vettoriale. Ci limiteremo a darne la definizione,
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI
CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione
A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.
) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente
SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.
SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga
