Esercizi svolti. delle matrici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi svolti. delle matrici"

Transcript

1 Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa l equazione è (, ), quindi si tratta dello spazio vettoriale nullo.. Si dica se l insieme delle coppie complesse (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di C No. Basta osservare ad esempio che le coppie (i, ) e (, i) appartengono entrambe a I, la loro somma no.. Si considerino i seguenti insiemi di matrici quadrate di ordine n (reali o complesse):. Matrici antisimmetriche;. Matrici triangolari superiori;. Matrici a scala (con la matrice nulla) ; 4. Matrici invertibili; 5. Matrici con elemento (,) uguale a ; 6. Matrici con elemento (,) uguale a. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n. Tutti gli insiemi considerati sono sottoinsiemi di occorre verificare per ciascuno di essi le tre condizioni: Il vettore nullo (in questo caso la matrice nulla) appartiene all insieme; M n delle matrici M n. Per verificare se sono anche sottospazi, chiusura rispetto alla somma, cioè che la somma di due elementi comunque presi sia un elemento dell'insieme stesso; chiusura rispetto al prodotto, cioè che il prodotto di un elemento comunque preso per un numero reale qualsiasi sia un elemento dell'insieme stesso. Segue una traccia delle verifiche:. L insieme delle matrici antisimmetriche è uno spazio vettoriale. Infatti la matrice nulla è antisimmetrica. Se t A A e t t t t B B, allora ( A + B ) A+ B ( A + B ): quindi la 6 Politecnico di Torino

2 somma di due matrici antisimmetriche è una matrice antisimmetrica. Analogo per il prodotto per uno scalare.. L insieme delle matrici triangolari superiori è uno spazio vettoriale. Infatti la matrice nulla è triangolare. Se A e B sono triangolari superiori, [ A ] [ B] per i > j, quindi [ A ] i, j i, j + B i, j, da cui la somma di due matrici triangolari superiori è una matrice triangolare superiore. Analogo per il prodotto per uno scalare.. L insieme delle matrici a scala non è uno spazio vettoriale. Una possibile verifica è la seguente: Le due matrici e sono a scala, ma la loro somma non lo è, perchè la riga nulla non è l'ultima. 4. L insieme delle matrici invertibili non è uno spazio vettoriale: è sufficiente osservare che la matrice nulla non è invertibile. 5. L insieme delle matrici con l elemento (,) uguale a è uno spazio vettoriale. Infatti per la matrice nulla l elemento (,) vale, la somma di due matrici in cui l elemento (,) vale è una matrice in cui l elemento (,) vale, il prodotto di una matrice in cui l elemento (,) vale per un numero è una matrice in cui l elemento (,) vale. 6. L insieme delle matrici con l elemento (,) uguale non è uno spazio vettoriale: basta osservare che sommando due matrici del genere si ottiene una matrice in cui l elemento (,) vale. 6 Politecnico di Torino

3 . Sottospazi vettoriali di K n. Sono dati in R i vettori (,,), (,,).. Dire se sono uno combinazione lineare dell altro. Dire se il vettore (,,) è combinazione lineare di e. Dire se il vettore (5/,,7/) è combinazione lineare di e., non sono uno multiplo dell altro in modo evidente.. è combinazione lineare di e se esistono scalari c e c tali che c + c. Questa relazione vettoriale equivale al sistema nelle incognite c e c c+ c c+ c c+ c Tale sistema è impossibile, quindi non è combinazione lineare di e.. è combinazione lineare di e se esistono scalari c e c tali che c + c. Questa relazione vettoriale equivale al sistema nelle incognite c e c 5 c + c c+ c 7 c+ c Tale sistema ha soluzione c, c ½, quindi è combinazione lineare di e, precisamente + ½. ALTERNATIVA Per i casi e si può usare il criterio di dipendenza, cioè considerare una matrice con nelle colonne i vettori dati, e una seconda matrice con nell ultima colonna il vettore di cui si deve decidere se è combinazione dei precedenti. Se le due matrici hanno lo stesso rango la risposta è si, altrimenti è no. Segue l esame dei tre casi.. Per vedere se è combinazione lineare di e si formano le due matrici M (, ) M (,, ) e se ne calcola il rango. La prima ha rango, la seconda ha rango, quindi non è combinazione lineare di e.. Per vedere se è combinazione lineare di e si formano le due matrici 6 Politecnico di Torino

4 5 / M (, ) M (,, ) 7 / e se ne calcola il rango. La prima ha rango, la seconda ha rango, quindi è combinazione lineare di e.. Sono dati in R i vettori (,), (,), (, ). Dire se costituiscono un insieme di generatori di R Basta verificare se un generico vettore di R Quindi si confronta il rango delle matrici a M (,, ) M (,,, ) b Poiché tali matrici hanno rango per ogni a e b, la risposta è sì. (a,b) è combinazione lineare dei vettori dati.. ALTERNATIVA Si può usare il criterio secondo cui certi vettori generano R vettori come colonne è. La matrice M (,, ) ha rango. se il rango della matrice che ha tali 6 Politecnico di Torino 4

5 . Insiemi liberi, basi, dimensione. Sono dati in R i vettori (,,), (,,), (,, ). Dire se formano un insieme libero,, non formano un insieme libero se esistono scalari non tutti nulli c, c,c tali che c + c + c. Questa relazione vettoriale equivale alle relazioni scalari c+ c + c c+ c + c c+ c + c Tale sistema di tre equazioni nelle incognite c, c, c ammette solo la soluzione c c c. Quindi i vettori considerati formano un insieme libero ALTERNATIVA Per verificare se,,, si calcola il rango della matrice M(,, ). Per il Criterio di Indipendenza, l insieme è libero se solo se tale rango è uguale al numero dei vettori, cioè a. Poichè M (,, ) si conclude come in precedenza.. Dai 4 vettori (,,), (,,), (4,4,5), 4 (,,) estrarre, se possibile, una base di R. Se se ne trovano linearmente indipendenti, essi costituiscono la base richiesta. Ad esempio i primi lo sono (verificare).. Dai 4 vettori (,,), (,,), (4,4,4), 4 (,, ) estrarre una base del sottospazio L generato da tali vettori. La matrice 6 Politecnico di Torino 5

6 4 M(,,, 4) 4 4 ha rango (verificare), quindi L ha dimensione. I primi generatori sono linearmente indipendenti (non sono multipli uno dell altro) e quindi sono una base di L..4 Dai vettori (,,), (,,), (,,) estrarre un insieme libero. Basta scartare il secondo (verificare che l insieme rimasto è effettivamente libero)..5 Sono dati in R i vettori (,,), (,,), (,,) Trovare una base per lo spazio L(,, ) e calcolarne la dimensione. Cosa si può dire di tale spazio? Poiché si trova che,, formano un insieme libero, essi una base. Pertanto la dimensione è. L(,, ) è un sottospazio di R con dimensione, quindi coincide con R..6 Sono dati in R i vettori (,,), (,,), (5/,,7/) Trovare una base per lo spazio L(,, ) e calcolarne la dimensione Poiché si trova che,, non formano un insieme libero, per trovare la base richiesta occorre scartarne uno che sia combinazione lineare degli altri. Fatto ciò, se si ottiene un insieme libero, esso è la base, altrimenti si deve continuare a scartare fino ad avere un insieme libero. Nel caso specifico, si verifica, ad esempio, che è combinazione lineare di,, e che questi sono indipendenti. Dunque, forniscono una delle basi richieste, e la dimensione è. In questo caso L(,, ) è un sottospazio proprio di R ALTERNATIVA Si forma la matrice 5/ M (,, ) 7 / e la si trasforma in matrice a scala, ottenendo 5/ M ' 4 6 Politecnico di Torino 6

7 Anzitutto si vede che il rango di M (e quindi di M) è, quindi la dimensione del sottospazio considerato è. Inoltre i pivots sono e 4, contenuti nelle colonne e della matrice M'. Ne segue automaticamente che una base per L(,, ) è fornita dalle colonne e di M, quindi dai vettori, 6 Politecnico di Torino 7

8 .7 Con riferimento all esercizio precedente, dire se L(,, ) è un sottospazio proprio o no di R. Nel secondo caso estendere la base già trovata fino ad avere una base di R. L(,, ) non è un sottospazio proprio di R, perché si è visto che la sua dimensione è e non. La base trovata per L(,, ) è formata,. Per estenderla ad una base di R è sufficiente aggiungere un vettore che non sia combinazione lineare di,. Ad esempio si può scegliere (,,) (verificarlo) ALTERNATIVA Si forma la matrice M (,,, e, e, e) 5/ 7 che contiene nelle colonne i vettori dati più i vettori canonici. La si trasforma in forma diagonale ottenendo M ' 4 5/ Nella matrice ottenuta i pivots occupano le colonne,, 4, quindi si conclude che le colonne,, 4 della matrice M forniscono una base per R..8 Si trovi una base di R che non contenga nessun vettore canonico. Basta prendere due vettori non canonici e linearmente indipendenti, ad esempio (,) e (, ).9 Si trovino le coordinate del vettore (4,) rispetto alla base di R trovata nell esercizio precedente. Dette x e y le coordinate, deve valere (4,) x (,) + y (, ); quindi si tratta di risolvere il sistema x+ y 4 x y e si trova x 7/ y ½ ALTERNATIVA Si usa la formula di cambiamento delle coordinate. Il vettore (4,) ha coordinate 4 e rispetto alla base canonica, e la matrice di cambiamento base è M(, ) -. Si ha dunque 6 Politecnico di Torino 8

9 6 Politecnico di Torino 9 ), ( M e quindi ), ( M Quindi ), ( M y x

10 4. Sottospazi associati a matrici e forma implicita 4. Si consideri il sottospazio L di R generato da (,,) e (,,). Se ne trovi una forma implicita, cioè un sistema di equazioni omogenee in x, y, z tale che lo spazio della sua soluzione coincida con L. Posto ( x, y, z ), si tratta di imporre che le matrici M M(, ) e M' M(,, ) abbiano lo stesso rango. Si ha x M M ' y z Con il consueto procedimento si trasforma M' in matrice a scala, ottenendo la matrice x y x x y + z da cui si vede immediatamente che il rango di M vale, e il rango di M' ha lo stesso valore se e solo se x y + z che è il richiesto sistema di equazioni. 4. Si consideri il sottospazio L di R formato dai vettori ( x, y, z ) che soddisfano all equazione x y + z Si determinino una forma esplicita e una base di L. Il primo passo consiste nel trovare le soluzioni dell equazione proposta. Si ha: x y z con le variabili y e z indipendenti. In forma vettoriale si ha la soluzione: x y z y y y + z z z Quindi una base è formata dai vettori (,, ) e (,,) 4. Si consideri il sottospazio L di R 4 generato da (,,,4), (,,,) e (,,4,5). 6 Politecnico di Torino

11 . Se ne trovi una forma implicita, cioè un sistema omogeneo il cui spazio delle soluzioni coincida con L.. Si determini la dimensione di L e se ne trovi una base.. Si esegua il procedimento inverso, partendo dal sistema trovato e costruendo una rappresentazione esplicita di L. Posto (x, y, z, t), si riduce la matrice M (,,, ) 4 ottenendo 4 5 x y z t x y. x y + z x y + t Quindi:. Il sistema è x y+ z x y + t. La dimensione di L è, e una base è la coppia (, ). Risolvendo il sistema trovato nel punto., si ha x z x+ y y cioè + t x + y z t z t Quindi abbiamo un altra base di L : Y,,,), Y (,,, ). ( 4.4 Sono dati i seguenti vettori di R : (,, ), (-,, ), (,, k), 4 (-, k, 5), 5 (-,, ). Trovare una base di L(,, 5 ), al variare di k. Per k 4,,, sono linearmente indipendenti in quanto D ( M (,, )) : quindi L R e i tre vettori si possono scegliere come base. Per k4 una base è (, ): infatti 6 Politecnico di Torino

12 r ( M (,, 4, 5)) e, sono linearmente indipendenti in quanto uno non è multiplo dell altro. 6 Politecnico di Torino

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali?

1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali? Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali ℕ, gli interi ℤ, i numeri

Dettagli

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1 Manlio Bordoni APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO Sia dato un insieme di generatori v v =,, v k = v n di W : questo vuol dire che ogni vettore w W si scrive come combinazione

Dettagli

0.1 Complemento diretto

0.1 Complemento diretto 1 0.1 Complemento diretto Dato U V, un complemento diretto di U é un sottospazio W V tale che U W = {0} U + W = V cioé la somma di U con il suo complemento diretto é diretta, e dá tutto lo spazio vettoriale

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1

Esercizi Di Geometria 1 (BAER) Canale 1 Esercizi Di Geometria 1 (BAER) Canale 1 SETTIMANA 9 (23 29 Novembre 2015) da consegnare Mercoledi 2 Dicembre. Esercizio 1. Sia E = (V,, ) uno spazio metrico finito dimensionale. sottospazio vettoriale

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3.

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3. CORSO DI MATEMATICA II Prof Paolo Papi ESERCIZI ) Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali (a) V = R 3 () W = {(x,,x 3 ) x,x 3 R} (2) W 2 = {(x,,x 3 ) x,x 3 R} (3) W 3

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 7 Intersezione e somma di sottospazi vettoriali 7.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A }

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A } Algebra e Geometria per Informatica Primo Appello 3 giugno 6 Tema A Sia M (R lo spazio vettoriale delle matrici a coefficienti reali Sia W = { A M (R A T = A } il sottospazio vettoriale delle matrici simmetriche

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

VETTORI NELLO SPAZIO ORDINARIO ,

VETTORI NELLO SPAZIO ORDINARIO , VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto

Dettagli

Soluzioni esercizi complementari

Soluzioni esercizi complementari Soluzioni esercizi complementari Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y Z xry x y X, Y sottoinsiemi di un insieme

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2015-2016 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare di insiemi contenute nel Teorema

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli