Metodi per la risoluzione di sistemi lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi per la risoluzione di sistemi lineari"

Transcript

1 Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice. L ordine di una matrice quadrata è il numero delle sue righe o, equivalentemente, delle sue colonne. Definizione.. Data una matrice A, si chiama minore della matrice A una sotto-matrice quadrata, cioè una matrice che si ottiene da A cancellando alcune righe (anche nessuna) ed alcune colonne (anche nessuna) in modo che il numero di righe rimanenti sia uguale al numero di colonne rimanenti. Diremo che un minore M di A è non nullo se det(m) 0. Chiameremo rango di A l ordine massimo dei suoi minori non nulli, ovvero rg(a) = k se esiste un minore non nullo di ordine k e se tutti i minori di ordine k + (se esistono) sono nulli. Osservazione.2. Se A è una matrice m n, cioè ha m righe e n colonne, il suo rango è al più min(m, n), in questo caso si dice che la matrice ha rango massimo. Una matrice n n ha rango massimo se e solo se il suo determinante è non nullo. Una matrice ha rango zero se e solo se tutti i numeri che la compongono sono nulli. Esempio.3. Consideriamo la matrice ( ) 3, (.) 5 e osserviamo che il suo determinante vale 6, quindi il suo rango è massimo, cioè vale 2. Consideriamo la matrice 2 4 2, (.2) 0 2 9

2 Sistemi lineari 2 e osserviamo che il suo determinante vale 0, quindi il suo rango non è massimo, cioè è minore di 3. D altra parte, cancellando ad esempio l ultima riga e l ultima colonna, si ottiene il minore ( ), (.3) 4 2 che ha determinante 2, quindi il rango è 2. La definizione di rango di una matrice suggerisce un metodo per calcolarlo dal basso : cominciamo col cercare i minori di ordine di A non nulli (facile!): se non ne troviamo la matrice A ha rango 0, altrimenti rg(a). In questo caso cerchiamo quelli di ordine 2 non nulli (ancora facile): se non ne troviamo la matrice ha rango, altrimenti rg(a) 2. Andiamo avanti in questo modo finché non troviamo un numero k per cui c è un minore di ordine k non nullo ma tutti i minori di ordine k +, se esistono, sono nulli. k sarà il rango della matrice. Consideriamo allora la matrice A = (.4) Mentre è facile trovare minori di ordine e 2 non nulli, per sapere se il rango è 3 potremmo dover calcolare i determinanti di tutti i minore di ordine 3, cioè di 4 matrici 3 3. Il risultato che segue dimostra che possiamo fare qualche calcolo in meno. Definizione.4. Se M è un minore di ordine k della matrice A, e N è un minore di ordine k + della matrice A, diremo che N orla M (N è una matrice orlata di M) se M si ottiene da N cancellandone una riga ed una colonna. Proposizione.5 (delle matrici orlate). Se M è un minore non nullo di A di ordine k, la matrice A ha rango k se e solo se tutte le matrici orlate di M hanno determinante nullo. In pratica il risultato precedente ci dice che, nella ricerca del rango dal basso, possiamo fermarci al valore k se abbiamo trovato un minore non nullo di ordine k, e, invece di controllare tutti i minori di ordine k + (se esistono) ci limitiamo a controllare solo quelli che si ottengono orlando il minore M. Nel caso della matrice A di eq. (.4) ad esempio, scelto il minore non nullo ( ) 0 5, (.5) ci sono solo due minori che lo orlano, e cioè M = 0 e N = 2. (.6)

3 Sistemi lineari 3 E facile vedere che entrambi hanno determinante nullo, e questo implica che il rango di A è 2. Cioè la Proposizione.5 ci assicura che se si annullano entrambi i minori M ed N che orlano il minore 2 2 non nullo che abbiamo scelto si annullano tutti i minori di ordine 3 (verificate!). Esempio.6. Studiamo ora la matrice 4 4 B = (.7) Partendo ( ) dai minori di ordine basso, possiamo scegliere il minore non nullo. I minori che lo orlano sono 4: M = M 2 = 0 2 2, M 3 = M 4 = Mentre i primi tre minori M, M 2 e M 3 hanno determinante nullo, det(m 4 ) = 4, quindi il rango della matrice B è almeno 3. Calcoliamo infine il determinante della matrice B sviluppandolo a partire dalla 3 a riga, in modo da ritrovare alcuni dei determinanti già calcolati: det(b) = 2 det det = 2( ) 3( ) = 0, det(m ) 8 det(m 2 ) quindi il rango di B non è 4. Mettendo insieme i due risultati si ha rg(b) = 3..2 Il teorema di Rouché-Capelli Ricordiamo che un generico sistema di equazioni lineari si può scrivere nella forma AX = B, ove A è la matrice dei coefficienti, X è il vettore delle incognite e B è il vettore dei termini noti, mentre con AX si intende il prodotto tra matrici (vedi [] sez.0.4 e 0.7). Come è noto tre situazioni sono possibili per il sistema AX = B: esistenza e unicità del vettore delle soluzioni, esistenza di infinite soluzioni dipendenti da alcuni parametri, nessuna soluzione esistente. Il seguente Teorema caratterizza completamente le diverse alternative tramite i valori del rango delle matrici A e A B, ove con A B si intende la matrice ottenuta aggiungendo alla matrice A la colonna data dal vettore B. Teorema.7 (di Rouché-Capelli). Il sistema AX = B è compatibile, cioè ha soluzioni, se e solo se rg(a) = rg(a B). In questo caso, se n è il numero delle incognite e k = rg(a) = rg(a B), lo spazio delle soluzioni dipende da n k parametri. In particolare il vettore delle soluzioni esiste ed è unico se e solo se n = k, mentre se rg(a) rg(a B) non ci sono soluzioni.

4 Sistemi lineari 4 Osservazione.8. Se A è una matrice n n, la soluzione esiste ed è unica se e solo se det(a) 0, cioè rg(a) = n (Teorema di Cramer). Da un alto infatti, se det(a) 0, la matrice A B è n (n+), perciò, avendo un minore di ordine n non nullo (cioè la matrice A) ed essendo n il rango massimo, rg(a) = rg(a B) = n, cioè il sistema è compatibile. Inoltre il numero delle incognite è uguale al rango, cioè la soluzione è unica. Viceversa, l esistenza vuol dire rg(a) = rg(a B), e l unicità vuol dire n = rg(a). Il Teorema di Rouché-Capelli fornisce anche il seguente metodo per determinare le soluzioni, quando esistono: se rg(a) = rg(a B) = k, si può scegliere un minore M di ordine k non nullo. Scegliere un tale minore corrisponde a scegliere k righe e k colonne, cioè k equazioni e k incognite. Allora il sistema originale è equivalente ad un sistema che contiene solo le k equazioni prescelte, con le k incognite prescelte, mentre le restanti n k incognite vanno interpretate come parametri. Esempio.9. Si consideri il sistema di equazioni lineari ty + 3z = (t + )x 2y 2z = 4. x + 5y + z = (a) Dire se esistono, ed in caso da quanti parametri dipendono, le soluzioni del sistema, al variare del parametro t. (b) Determinare le soluzioni, quando esistono, per ogni valore di t. Risposta (a). Il determinante della matrice A dei coefficienti vale 0 t 3 det t = 2t + 5(t + ) 63 t(t + ) = t 2 + 6t 48, 5 che si annulla per t = 4 o t = 2. Dunque rg(a) = 3 se e solo se t 4 e t 2. Calcoliamo ora il rango della matrice 0 t 3 A B = t ( ) 0 3 Se scegliamo il minore C = di ordine 2 non nullo, le matrici che lo orlano sono la matrice A e la matrice M = t , 5 il cui determinante vale det(m) = 2t 8. Nel complesso

5 REFERENCES 5. Se t 4 e t 2, rg(a) = rg(a B) = 3, ovvero esiste un unica soluzione per per ogni t diverso da 4 e da Se t = 4, rg(a) = rg(a B) = 2, ovvero lo spazio delle soluzioni dipende da un parametro. 3. Se t = 2, rg(a) = 2 ma rg(a B) = 3, ovvero non esistono soluzioni. Risposta (b).. Se t 4 e t 2, si ha, usando il metodo di Cramer, t det det t x = t 2, y = + 6t 48 t 2, z = + 6t 48 ovvero (x, y, z) = ( 2 t 2, 2 t 2 (t 4) ),. t 2 det 2. Se t = 4 e scegliamo il minore non nullo C descritto sopra, selezioniamo la prima e l ultima equazione e le incognite x e z. Di conseguenza, ponendo y = a, il sistema originale è equivalente a { 3z = 4a x + z = 5a, da cui si ricava facilmente x = ( 2 + a)/3, y = a e z = ( 4a)/3. 3. Se t = 2 non esistono soluzioni. Esercizio.0. Si considerino i sistemi di equazioni lineari ty + 3z = 9 ty + 3z = 6 (t + )x 25y 2z = 9, (t + )x 0y 2z = 2. x + 5y + z = 8 x + 5y + z = Per ciascuno dei sistemi qui sopra, (a) dire se esistono, ed in caso da quanti parametri dipendono, le soluzioni del sistema, al variare del parametro t. (b) determinare le soluzioni, quando esistono, per ogni valore di t. References [] Marco Abate. Matematica e statistica. Le basi delle scienze della vita. Mc- Graw Hill t t t 2 + 6t 48,

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009 Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

ALGEBRA LINEARE PARTE III

ALGEBRA LINEARE PARTE III DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1 Manlio Bordoni APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO Sia dato un insieme di generatori v v =,, v k = v n di W : questo vuol dire che ogni vettore w W si scrive come combinazione

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

una matrice quadrata si dice singolare se il suo determinante è nullo, altrimenti la matrice è non singolare;

una matrice quadrata si dice singolare se il suo determinante è nullo, altrimenti la matrice è non singolare; Capitolo 5 Rango di una matrice Ricordiamo che: una matrice quadrata si dice singolare se il suo determinante è nullo, altrimenti la matrice è non singolare; un minore di ordine p di 2 Mat m,n (K) è una

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Sui determinanti e l indipendenza lineare di vettori

Sui determinanti e l indipendenza lineare di vettori Sui determinanti e l indipendenza lineare di vettori 1 Si dice che m vettori v 1, v 2,,v m di R n sono linearmente indipendenti, se una loro combinazione lineare può dare il vettore nullo solo se i coefficienti

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli