Fondamenti di ALGEBRA LINEARE E GEOMETRIA
|
|
|
- Bernadetta Corradini
- 8 anni fa
- Visualizzazioni
Transcript
1 Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 19
2 Capitolo 8-1. Rango di una matrice Il rango di A M(m n, K) è la dimensione del sottospazio di K m = M(m 1, K) generato dalle colonne di A. Notazione rk(a) = dim A 1, A 2,..., A n, con A j la j-esima colonna di A. Osservazione Sia F A : K n K m l applicazione associata ad A. Allora rk(a) = dim(imf A ). rka min{m, n}. Proposizione (1.3) Per ogni A M(m n, K), rka è uguale alla dimensione del sottospazio di M(1 n, K) generato dalle righe di A.
3 Capitolo 8-1. Rango di una matrice Teorema (1.4) (i) A M(m n, K) e B M(n p, K): rk(ab) rk(a), e rk(ab) rkb, (ii) A M(m n, K), B M(m m, K) e C M(n n, K): rk(ba) = rk(a) = rk(ac). (iii) L Hom(V, W ): rka B L B = dim(iml). (iv) Una matrice A M(n n, K) è invertibile rka = n.
4 Capitolo 8-2. Sistemi lineari: teoria Un sistema lineare (SL) di m equizioni in n incognite a coefficienti nel campo K ha la seguente forma: a 11 x 1 + a 12 x a 1n x n = b 1, a 21 x 1 + a 22 x a 2n x n = b 2,. a m1 x 1 + a m2 x a mn x n = b m, dove a ij, b i K, per i = 1, 2,..., m e j = 1, 2,..., n. A = (a ij ) M(m n, K): matrice incompleta del SL. X = B = x 1. x n b 1. b n : colonna delle incognite. : colonna dei termini noti. C = (A B) M(m (n + 1), K): matrice completa del SL.
5 Capitolo 8-2. Sistemi lineari: teoria Modi equivalenti per esprimere un SL: Equazione vettoriale: x 1 A 1 + x 2 A x n A n = B Equazione matriciale AX = B Se B = 0 m 1, il SL viene detto SL omogeneo. Se esiste almeno una soluzione: SL compatibile, i.e. X 0 K n : AX 0 = B. Dato un SL AX = B, il SL AX = 0 m 1, si chiama SL omogeneo associato ad AX = B.
6 Capitolo 8-2. Sistemi lineari: teoria Sia W l insieme delle soluzioni del SL AX = 0. Considera F A Hom(K n, K m ) : X AX. W = kerf A, in particolare W è un sottospazio di K n. W : spazio delle soluzioni del sistema omogeneo associato al sistema AX = B. Sia V uno spazio vettoriale. Per u V e W sottospazio di V, la varietà lineare è l insieme di vettori: u + W = {u + w : w W }. Teorema (2.4) Soluzioni del SL AX = B è la varietà v 0 + W, dove Av 0 = B e W è lo spazio delle soluzioni del sistema omogeneo associato.
7 Capitolo 8-3. Il teorema di Rouché-Capelli Considera SL AX = B, con soluzioni la varietà v 0 + W. Abbiamo: dimw = n rka. Teorema (Rouché-Capelli) Un SL AX = B è compatibile rka = rk(a B). Equivalente: Un SL AX = B è compatibile, se e solo se il rango della sua matrice incompleta (A) è uguale al rango della sua matrice completa (A B).
8 Capitolo 8-4. Operazioni elementari sulle righe di una matrice Sia A M(m n, K), con righe: A 1, A 2,..., A m e colonne A 1, A 2,..., A n. y 1 y 2 Sia X = (x 1 x 2... x m ) e Y =. Allora abbiamo. y n AY = A 1 y 1 + A 2 y A n y n CL delle colonne di A XA = x 1 A 1 + x 2 A x 3 A 3 CL delle righe di A Esercizio Se B M(m n, K), allora il prodotto AB è una matrice dove le colonne di AB sono CL delle colonne A. le righe di AB sono CL delle righe di B;
9 Capitolo 8-4. Operazioni elementari sulle righe di una matrice Sia A M(m n, K). Le operazioni elementari sulle righe: (i) Moltiplicare una riga per uno scalare r 0. (ii) Sommare ad una riga un altra riga moltiplicata per uno scalare r qualsiasi. (iii) Scambiare due righe.
10 Capitolo 8-4. Operazioni elementari sulle righe di una matrice Proposizione Le operazioni elementari sulle righe di A non cambiano (a) il sottospazio generato dalle righe di A (b) il rango di A (c) le soluzioni del SL (nel caso che A = (A B ) sia la matrice completa di un SL). Due SL con lo stesso insieme di soluzioni SL equivalenti. Un operazione lineare sulla matrice completa, un SL si trasforma in un sistema equivalente.
11 Capitolo 8-4. Operazioni elementari sulle righe di una matrice Sia A M(m n, K). Le operazioni elementari sulle righe: (i) Moltiplicare una riga per uno scalare r 0: A H ii (r)a (ii) Sommare ad una riga un altra riga moltiplicata per uno scalare r qualsiasi: A H ij ra (iii) Scambiare due righe: A H ij A (i j). con (sia I = (e kl ) la matrice identica di ordine m) H ii (r)= (h kl ), con h ii = r, e h kl = e kl per (k, l) (i, i). H ij (r)= (h kl ), con h ij = r, e h kl = e kl per (k, l) (i, j). H ij : ottenuta da I m scambiandone i-esima e j-esima riga.
12 Capitolo 8-4. Operazioni elementari sulle righe di una matrice Sia A M(m n, K). Il pivot di una riga A i : primo elemento 0 di A i. Una matrice a scala: una matrice dove il pivot della riga A j+1 sta più a destra del pivot di A i. Esempio Una matrice a scala: M = con pivot 1, 5, 6 Proposizione Con operazioni elementari sulle righe di tipe (ii) or (iii) è possibile trasformare ogni matrice in una matrice a scala.
13 Capitolo 8-4. Operazioni elementari sulle righe di una matrice Esempio Trasformare in matrice a scala la matrice A = Proposizione In una matrice a scala, le righe non nulle sono LI. per trovare il rango di una matrice, conviene trasformarla in una matrice a scala.
14 Capitolo 8-5. Applicazioni Cosa si può fare con la trasformazione in matrice a scala? 1. Trovare una base di per un sottospazio v 1, v 2,..., v n di K n. Esempio Base di W = (0, 1, 0, 1), (2, 0, 0, 3), (1, 0, 1, 0), (1, 0, 1, 3)
15 Capitolo 8-5. Applicazioni Cosa si può fare con la trasformazione in matrice a scala? 1. Trovare una base di per un sottospazio v 1, v 2,..., v n di K n. 2. Decidere se i vettori v 1,..., v r sono LI. Esempio Decidere se la famiglia F = (0, 1, 0, 1), (2, 0, 0, 3), (1, 0, 1, 0), (1, 0, 1, 3) è LI.
16 Capitolo 8-5. Applicazioni Cosa si può fare con la trasformazione in matrice a scala? 1. Trovare una base di per un sottospazio v 1, v 2,..., v n di K n. 2. Decidere se i vettori v 1,..., v r sono LI. 3. Risolvere un sistema lineare Esempio Trovare le soluzioni del SL: x + y z = 0 2x y + z = 3 x 2y + 2z = 3
17 Capitolo 8-5. Applicazioni Cosa si può fare con la trasformazione in matrice a scala? 1. Trovare una base di per un sottospazio v 1, v 2,..., v n di K n. 2. Decidere se i vettori v 1,..., v r sono LI. 3. Risolvere un sistema lineare. 4. Decidere se un vettore u v 1, v 2,..., v n Esempio Decidere se u = (0, 0, 5, 4) (1, 0, 1, 2), (0, 1, 3, 1), (1, 2, 0, 0).
18 Capitolo 8-5. Applicazioni Esercizi 1. Trasformare in matrice a scala la matrice A = Risolvere il sistema lineare x + 2y z = 3 2x + 4y + z + t = 0 3x + 6y + t = 3 5x + 10y 2z + t = 9
Fondamenti di ALGEBRA LINEARE E GEOMETRIA
Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 15 Capitolo
LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g
LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere
LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m
LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta
LEZIONE 4. { x + y + z = 1 x y + 2z = 3
LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare
LEZIONE 3. Typeset by AMS-TEX
LEZIONE 3 3 Risoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per la Proposizione 236 sappiamo di poter trasformare, con operazioni
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Lezione 7: Il Teorema di Rouché-Capelli
Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da
LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.
LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa
MATRICI E SISTEMI LINEARI
1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito
Sistemi di equazioni lineari
Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti
Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI
Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore
2 Sistemi lineari. Metodo di riduzione a scala.
Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1
Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009
Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :
Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale
Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari
Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno.
Sistemi lineari Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. La discussione di un sistema si imposta in questo modo: 1 studiare il rango della matrice
1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali?
Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali ℕ, gli interi ℤ, i numeri
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.
SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga
Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari
Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari
Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.
Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.
SISTEMI DI EQUAZIONI LINEARI
Capitolo 3 SISTEMI DI EQUAZIONI LINEARI 1 Generalità e algoritmo di Gauss Nel capitolo precedente abbiamo visto come per risolvere problemi legati allo studio degli spazi vettoriali lo strumento tecnico
Risoluzione di sistemi lineari
Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini
Inversa di una matrice
Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:
MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari
MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2
Il teorema di Rouché-Capelli
Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un
Esercitazioni di Algebra e Geometria
Esercitazioni di Algebra e Geometria Anno Accademico 2010 2011 Dott.ssa Elisa Pelizzari e-mail [email protected] Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.30
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
RANGO DI UNA MATRICE ρ(a)
RANGO DI UNA MATRICE (A) a,... a A M M am,... a, n mn, K É il massimo ordine di un minore estratto con determinante non nullo. Equivalentemente è il massimo numero di righe (colonne) linearmente indipendenti.
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
La riduzione a gradini e i sistemi lineari (senza il concetto di rango)
CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere
Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1
Esercizio 1 Trovare, se esistono, le soluzioni del lineare y + 3z = 3 x y + z = 0 x + y = 1 0 1 3 3 1 1 1 0 1 1 1 0 = 0 1 3 3 = 1 1 0 1 1 1 0 1 = 1 1 1 0 0 1 3 3 0 1 1 = Il di partenza è quindi equivalente
LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),
LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con
Applicazioni eliminazione di Gauss
Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare
Argomento 13 Sistemi lineari
Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto
LeLing12: Ancora sui determinanti.
LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling
Richiami di algebra delle matrici a valori reali
Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o
Intersezione e somma di sottospazi vettoriali
Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria
Testi consigliati e contatti
Testi consigliati e contatti P.Bonacini, M. G. Cinquegrani, L. Marino, Algebra lineare: esercizi svolti, Cavallotto Edizioni, Catania P. Bonacini, M. G. Cinquegrani, L. Marino, Geometria analitica: esercizi
x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.
Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini
LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W
LEZIONE 16 16.1. Applicazioni lineari iniettive e suriettive. Ricordo le seguenti due definizioni valide per applicazioni di qualsiasi tipo ϕ: X Y fra due insiemi. L applicazione ϕ si dice iniettiva se
Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico
Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga
2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione
Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza
1 Definizione di sistema lineare non-omogeneo.
Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale
Omomorfismi e matrici
Capitolo 12 Omomorfismi e matrici 121 Introduzione Nel corso di Geometria è stato visto come associare una matrice ad un omomorfismo tra spazi vettoriali Rimandiamo al testo del corso per esempi e esercizi
CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI
CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n
ESERCIZI SULLE MATRICI
ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a
Esercitazioni di Algebra e Geometria
Esercitazioni di Algebra e Geometria Anno Accademico 2011 2012 Dott.ssa Elisa Pelizzari e-mail [email protected] Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.00
Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008
versione ottobre 2008 Lezioni di Algebra Lineare II. Aritmetica delle matrici e eliminazione di Gauss Contenuto. 1. Somma di matrici e prodotto di una matrice per uno scalare 2. Prodotto di matrici righe
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema
1 Riduzione per righe e matrici equivalenti per righe.
Geometria Lingotto. LeLing2: Sistemi lineari omogenei. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi gia risolti. Il metodo di Gauss-Jordan e la forma echelon.
Esercizi svolti. delle matrici
Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
appuntiofficinastudenti.com 1. Strutture algebriche e polinomi
1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,
PROGRAMMA del corso di. GEOMETRIA 1 - Algebra Lineare. Laurea Triennale in Matematica. Anno Accademico 2007/08. docente : Bruno Zimmermann
PROGRAMMA del corso di GEOMETRIA 1 - Algebra Lineare Laurea Triennale in Matematica Anno Accademico 2007/08 docente : Bruno Zimmermann (Il presente programma è stato redatto sulla base degli appunti del
1 Definizione di sistema lineare omogeneo.
Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari
2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =
Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):
ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro
ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la
Metodo di Gauss-Jordan 1
Metodo di Gauss-Jordan 1 Nota Bene: Questo materiale non debe essere considerato come sostituto delle lezioni. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo
Parte 3. Rango e teorema di Rouché-Capelli
Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici
Sistemi di equazioni lineari
Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.
CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1
Geometria BIAR Esercizi 2
Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si
