Programmazione Lineare
|
|
|
- Carlotta Franchi
- 8 anni fa
- Visualizzazioni
Transcript
1 Programmazione Lineare Andrea Scozzari a.a March 14, 2013 Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
2 Metodo del Simplesso Dato un problema di PL in forma standard ed una base B vale l equivalenza max c x Ax = b x 0 max c B x B + c N x N x B + B 1 Nx N = B 1 b (x B, x N ) 0 (1) NOTA: sono equivalenti i sistemi che rappresentano l insieme delle soluzioni ammissibili dei due problemi. Un problema di PL in forma standard può essere scritto nella forma equivalente (1) in tanti modi diversi quante sono le matrici di base di A. Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
3 Metodo del Simplesso Osserviamo la funzione obiettivo. Sia Z = c T x, si ha Z c T x = 0 Z c T B x B c T N x N = 0 Data una base B, sostituendo x B + B 1 Nx N = B 1 b si ha Z (c N c B B 1 N)x N = c B B 1 b Si può esprimere il valore della funzione obiettivo solo in funzione delle variabili non basiche. I coefficienti (c N c B B 1 N) sono denominati costi o benefici ridotti. Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
4 Metodo del Simplesso Criterio di Ottimalità Una SBA è ottima se i costi ridotti sono tutti minori o uguali a zero. Infatti, data una SBA x = (x B, x N = 0), il valore della Funzione Obiettivo Z è Z (c N c B B 1 N)x N = c B B 1 b Per ogni altra soluzione ammissibile con x N 0 per cui c N c B B 1 N 0 si avrà γ = (c N c B B 1 N)x N 0 e Z γ = Z + δ = c B B 1 b Z c B B 1 b con δ = γ 0. Dato che stiamo massimizzando Z, la condizione c N c B B 1 N 0 impedisce di migliorare la funzione obiettivo. Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
5 Il metodo del simplesso arriva a determinare la soluzione di un problema di PL attraverso l individuazione di una sequenza di Soluzioni Basiche Ammissibili (SBA). max Z = 130x x 2 1.5x 1 + x 2 27 x 1 + x x x 2 9 x 1 15 x 2 16 (2) x 1, x 2 0 Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
6 Definizione Data una funzione f (x) = f (x 1, x 2,..., x n ), si definisce gradiente di f nel punto x = ( x 1,..., x n ) il vettore colonna f x 1 ( x) f x 2 ( x) f ( x) =. f x n ( x) Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
7 Nel caso di una funzione lineare f (x) = c 1 x 1 + c 2 x c n x n il gradiente diventa c 1 c 2 f ( x) = c =. c n Al crescere di Z (i.e., problema (2)), la retta c 1 x 1 + c 2 x c n x n = Z si sposta parallelamente a se stessa nella direzione del gradiente c (nel senso delle Z crescenti). Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
8 Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
9 L ultimo punto in cui la retta della F.O. tocca la regione ammissibile rappresenta il valore ottimo del Problema. Si noti che l ultimo punto sempre un vertice della regione ammissibile. Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
10 Il metodo del simplesso genera una sequenza finita di vertici tali che il k-esimo è adiacente al (k + 1)-esimo e tali che il valore della funzione obiettivo cresce (per problemi di massimo) passando da un vertice a quello successivo. Quando si arriva in un vertice in cui il valore della funzione obiettivo è maggiore o uguale a quello dei vertici adiacenti, l algoritmo si ferma e l ultimo vertice fornisce le coordinate della soluzione ottima del problema di PL Teorema Se la funzione obiettivo ha ottimo finito nella regione ammissibile, allora tra le soluzioni ottime esiste almeno un vertice. Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
11 Dato un problema di PL in forma generale Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
12 L insieme dei punti che verificano una disequazione lineare è detto semispazio e l insieme dei punti si dice iperpiano S = {x R n : a 1 x 1 + a 2 x a n x n b} H = {x R n : a 1 x 1 + a 2 x a n x n = b} Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
13 Definizione Un Poliedro P è una intersezione di un numero finito di semispazi e si rappresenta P = {x R n : a i1 x 1 + a i2 x a in x n b, i = 1,..., m} = {x R n : Ax b} L insieme vuoto é un poliedro L insieme delle soluzioni ammissibili o regione ammissibile di un arbitrario problema di PL é un poliedro. Un poliedro chiuso e limitato si dice Politopo Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
14 Definizione Un insieme C R n è convesso se per ogni coppia di punti appartenenti all insieme, appartiene all insieme anche tutto il segmento che li congiunge. PROPRIETÀ: Ogni intersezione di insiemi convessi è convessa Proposizione Un poliedro P è sempre convesso Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
15 Definizione Sia C R n e sia x C. Si dice che x è un punto intermedio se esistono due punti y, z C, y z, tali che preso un α [0, 1] si ha x = αy + (1 α)z Definizione Sia C R n. Un punto x C si dice punto estremo o vertice se non è un punto intermedio di C. Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
16 Definizione Sia P un poliedro qualsiasi e sia S un insieme con le seguenti proprietà 1. S è una retta, una semiretta o un segmento 2. S P 3. se y, z P, x S e x appartiene al segmento [y, z], allora y, z S S è chiamata faccia unidimensionale di P, im particolare: 1. se S è un segmento, la faccia è detta spigolo 2. se S è una semiretta, la faccia è detta raggio estremo 3. se S è una retta, la faccia è detta retta estrema Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
17 Una retta è un poliedro ma non ha vertici Teorema Sia P un poliedro non vuoto. P possiede almeno un vertice se e solo se P non contiene rette. Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
18 Teorema Fondamentale della Programmazione Lineare Si consideri il seguente problema di PL max c x Ax b Teorema Si supponga che il poliedro P = {x R n : Ax b} non contenga rette. Allora una e una sola delle seguenti tre affermazioni è vera: 1. Il problema è inammissibile, ovvero P = ; 2. Il problema è illimitato superiormente; 3. Il problema ammette soluzioni ottime e almeno una di queste soluzioni è un vertice del poliedro P. Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
19 Teorema Fondamentale della Programmazione Lineare Il teorema ci dice che in pratica si possono verificare solo le seguenti situazioni: 1. Il problema ammette soluzione ottima (che può essere o non essere unica) in un vertice del pliedro che delimita la regione ammissibile; 2. il problema non ammette soluzione ottima perché 2.1 la regione ammissibile è vuota 2.2 la regione ammissibile è illimitata e la funzione obiettivo è illimitata superiormente (se il problema è di massimizzazione) o illimitata inferiormente (se il problema è di minimizzazione). Il teorema e la proprietà 1. è ci dice che la ricerca delle soluzioni ottime di un problema di PL può restringersi all analisi dei soli vertici del poliedro P. Andrea Scozzari (a.a ) Programmazione Lineare March 14, / 18
1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.
. Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,
Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard
Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione
Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR
1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo
4.5 Metodo del simplesso
4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema
Soluzione grafica di problemi PM in 2 variabili
Capitolo 4 Soluzione grafica di problemi PM in 2 variabili In questo paragrafo si vuole fornire una interpretazione geometrica di un problema di Programmazione matematica. In particolare, quando un problema
Problemi di Flusso: Il modello del Trasporto
Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su
Circonferenze del piano
Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della
SUI SISTEMI DI DISEQUAZIONI IN DUE INCOGNITE
SUI SISTEMI DI DISEQUAZIONI IN DUE INCOGNITE.Sistema di disequazioni in due incognite di primo grado Una disequazione di primo grado in due incognite: a b c nel piano cartesiano, rappresenta uno dei due
Esercizi sulla Programmazione Lineare. min. cx Ax b x 0
Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )
Prerequisiti didattici
Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 1 aprile 2015 Appunti di didattica della matematica applicata
ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017. Esercizi di Programmazione Lineare in Aula
ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017 Esercizi di Programmazione Lineare in Aula Esercizio 1. Una industria vuole commercializzare un particolare
Prodotto scalare e ortogonalità
Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano
Esercizi di ottimizzazione vincolata
Esercizi di ottimizzazione vincolata A. Agnetis, P. Detti Esercizi svolti 1 Dato il seguente problema di ottimizzazione vincolata max x 1 + x 2 x 1 4x 2 3 x 1 + x 2 2 0 x 1 0 studiare l esistenza di punti
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I)
Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I) Luigi De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo
Esercizi su ottimizzazione vincolata
Esercizi su ottimizzazione vincolata 1. Rispondere alle seguenti domande (a) Quando un vincolo di disuguaglianza è detto attivo? (b) Cosa è l insieme delle soluzioni ammissibili? Gli algoritmi di ricerca
Complementi di Analisi Matematica Ia. Carlo Bardaro
Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo
Argomenti Capitolo 1 Richiami
Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme
RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;
RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z
CONCETTI e ENTI PRIMITIVI
CONCETTI e ENTI PRIMITIVI Sono Concetti e Enti primitivi ciò che non può essere definito in modo più elementare, il significato è noto a priori, cioè senza alcun'altra specificazione. es. es. movimento
Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.
Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è
5.5 Metodi generali per la soluzione di problemi
5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè
DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.
DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
IL METODO DEL SIMPLESSO
IL METODO DEL SIMPLESSO Il metodo del Simplesso 1 si applica nella risoluzione di un problema di Programmazione Lineare 2 (funzione e vincoli lineari) quando le variabili di azione o iniziali sono almeno
PROBLEMI DI SCELTA dipendenti da due variabili d azione
prof. Guida PROBLEMI DI SCELTA dipendenti da due variabili d azione in un problema di programmazione lineare, si ricorda che la funzione obiettivo z=f(x,y)=ax+by+c assume il suo valore massimo (o minimo)
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
Limiti e continuità Test di autovalutazione
Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x
2.6 Calcolo degli equilibri di Nash
92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito
Richiami sugli insiemi numerici
Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni
La circonferenza nel piano cartesiano
La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione
1 IL LINGUAGGIO MATEMATICO
1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti
1.1 Coordinate sulla retta e nel piano; rette nel piano
1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.
Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti
Le derivate parziali
Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire
Funzioni implicite - Esercizi svolti
Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita
APPROSSIMAZIONE di FUNZIONI
APPROSSIMAZIONE di FUNZIONI Francesca Pelosi Dipartimento di Sc. Matematiche ed Informatiche, Università di Siena CALCOLO NUMERICO a.a. 26 27 APPROSSIMAZIONE di FUNZIONI p.1/3 APPROSSIMAZIONE di FUNZIONI:
Soluzioni dei problemi della maturità scientifica A.S. 2012/2013
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +
4.1 I triedri Def triedro vertice spigoli facce triedro
1 FIGURE NELLO SPAZIO Rette, piani, semispazi, di cui abbiamo visto le prime proprietà, delimitano le figure solide che si sviluppano nello spazio. Introduciamo gradualmente le figure solide e le loro
Geometria BATR-BCVR Esercizi 9
Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio
Il metodo del simplesso. Il metodo del simplesso p. 1/12
Il metodo del simplesso Il metodo del simplesso p. 1/12 I problemi di PL in forma standard I problemi di PL in forma standard hanno la seguente formulazione: max cx a i x = b i x 0 i = 1,...,m o, equivalentemente,
Introduzione alla TEORIA DEI NUMERI
Renato Migliorato Introduzione alla teoria dei numeri Introduzione alla TEORIA DEI NUMERI Avvertenza: questo è l inizio di un testo pensato come supporto al corso di Matematiche Complementari I ed ancora
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n
SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,
LIMITI. 1. Definizione di limite.
LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi
Parte V: Rilassamento Lagrangiano
Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice
Il modello duale. Capitolo settimo. Introduzione
Capitolo settimo Il modello duale Introduzione Il modello duale e la teoria della dualità assumono una grande importanza nella teoria della programmazione matematica. In questo testo i modelli primale
LA CIRCONFERENZA E LA SUA EQUAZIONE
LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti
LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.
1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra
Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco».
Ripasso Scheda per il recupero Il metodo assiomatico-deduttivo OMNE he cos è un assioma? he cos è un concetto primitivo? he cos è un teorema? he cosa significa affrontare lo studio della geometria secondo
PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010
PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).
Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)
Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio
Parte 11. Geometria dello spazio II
Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di
MATRICI E SISTEMI LINEARI
- - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008
Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano
Disequazioni in una incognita. La rappresentazione delle soluzioni
Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla
Esercizi per il corso di ricerca operativa 1
Esercizi per il corso di ricerca operativa Ultimo aggiornamento: 8 gennaio 004 Indice I Esercizi 5 Programmazione lineare 7 Dualita 3 3 Analisi di sensitivita 7 4 Programmazione intera 5 Introduzione
Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b,
Matematica II 161110 1 Equazioni lineari in una incognita Per equazione lineare nell incognita x intendo un equazione del tipo ax = b dove a b sono due costanti reali a e il coefficiente e b e il termine
In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.
L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze
Anno 3 Rette e circonferenze
Anno 3 Rette e circonferenze 1 Introduzione In questa lezione esamineremo le reciproche posizioni che possono sussistere tra retta e circonferenza o tra due circonferenze. Al termine della lezione sarai
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
Geometria analitica di base (seconda parte)
SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo
Esercizi di riepilogo sui Capitoli 1 4
Esercizi di riepilogo sui Capitoli 1 4 1. Dare la definizione di funzione lineare. Una funzione lineare di n variabili è una funzione del tipo c 1 x 1 + c 2 x 2 + + c n x n, dove c 1,c 2,...,c n sono numeri
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)
2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:
Funzioni convesse su intervallo
Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli Appunti del corso di Matematica Generale Funzioni convesse su intervallo Anno Accademico
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
Quadro riassuntivo di geometria analitica
Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive
ANALISI B alcuni esercizi proposti
ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la
La retta nel piano cartesiano
La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle
Distanza tra punti e punto medio di un segmento. x1 + x 2
Distanza tra punti e punto medio di un segmento Siano P = (x 1, y 1 ) e Q = (x 2, y 2 ) due punti del piano cartesiano. La distanza di P da Q vale: P Q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 (si utilizza il Teorema
Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo
Algebra Lineare (Matematica C.I.), 12.11.13 Sistemi di equazioni lineari 1. Un equazione lineare in una incognita reale x e un equazione del tipo ax = b, dove a e b sono numeri reali dati; a e il coefficiente
SENO, COSENO E TANGENTE DI UN ANGOLO
Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un
Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0
Calcolo Algebrico Equazioni e disequazioni in una incognita e coefficienti reali: Primo grado ax + b = 0 (a 0) x = b a Secondo grado ax 2 + bx + c = 0 (a 0) Si hanno due soluzioni che possono essere reali
Il punteggio totale della prova è 100/100. La sufficienza si ottiene con il punteggio di 60/100.
ISI Civitali - Lucca CLASSE, Data Nome: Cognome: Nei test a scelta multipla la risposta esatta è unica Ad ogni test viene attribuito il seguente punteggio: 4 punti risposta corretta 1 punto risposta omessa
Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari
Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque
POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni.
POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. Il problema dell altezza. Clara Colombo Bozzolo, Carla Alberti,, Patrizia Dova Nucleo di Ricerca in Didattica della Matematica Direttore
SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:
SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)
Contenuto e scopo presentazione. Modelli Lineari Interi/Misti. Piani di taglio. Piani di taglio. Piani di taglio Versione 31/08/
Contenuto e scopo presentazione Contenuto: viene presentato un altro metodo di soluzione di problemi di ILP o di MILP. Modelli Lineari Interi/Misti Piani di taglio Versione /8/. Scopo: fornire le capacità
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione
Geometria analitica. coppia di numeri equazione di 2 grado. delle equazioni
1 Geometria analitica La geometria analitica stabilisce una corrispondenza tra il mondo della geometria e il mondo dell'algebra. Ciò significa che gli enti geometrici hanno degli enti corrispondenti nel
Esercizi svolti di Programmazione Lineare. a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania
Esercizi svolti di Programmazione Lineare a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania Formulazione matematica e risoluzione grafica Esercizio Una pasticceria
Appunti ed esercizi sulle coniche
1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O
Esercizi Riepilogativi Svolti. = 1 = Or(v, w)
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne
Metodi per la risoluzione di sistemi lineari
Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante
Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.
τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione
Soluzione Problema 1
Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed
