Limiti e continuità Test di autovalutazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Limiti e continuità Test di autovalutazione"

Transcript

1 Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x per x 0 + tende a zero (b) tende ad 1 (c) tende a non ammette limite 3. Sono date le funzioni f(x) = sin x 2 e g(x) = x. Allora: (b) domf g = R dom g f = R (c) im f g = [0, 1] im g f = 4. È data la funzione f(x) = ln(x 2 x 2 + 1). Allora: domf = R + (b) (c) dom f = (2, + ) f non è mai definita im f = R 5. Sia f : R R una funzione continua tale che f(7) = 3. Allora, necessariamente f(x) 0 per ogni x R (b) esiste x > 7 tale che f(x) < 0 (c) non esiste x < 7 tale che f(x) < 0 f(x) = 3 per ogni x R

2 6. La funzione x x + 1 per x + tende a 1 (b) tende a 0 (c) non ammette limite tende a + 7. La successione a n = 1 + ( 1)n n : (b) (c) non ammette limite ha lo stesso limite della successione b n = 1 + ( 1)n n è convergente è limitata tra 0 e 1 8. La funzione e 1/x3 per x 0 tende a (b) tende a + (c) ha lo stesso comportamento anche per x 0 + tende a 1 9. Si supponga che la funzione f(x) sia continua su R e soddisfi le condizioni f(x) = 176 e f(0) = 5. Allora: lim x f è monotona crescente in (, 0] (b) (c) k [ 36, 23], a R : f = k ǫ > 0, B > 0 : x < B = 176 < f(x) < ǫ f è limitata inferiormente 10. Sia f : R R tale che lim f(x) = 8. Allora necessariamente: x 3 δ > 0, ǫ > 0 : (b) ǫ > 0, δ > 0 : (c) se x + 3 < δ f(x) > 0, x > 3 x + 3 < δ = f(x) 8 < ǫ 0 < x + 3 < δ = f(x) 8 < ǫ allora f(x) 8 < ǫ

3 11. Sia A = {x R : x = π + 1, k Z \ {0}}. Allora, necessariamente k sup A = π (b) A non ammette massimo (c) min A = π 1 A è illimitato 12. L immagine della funzione f(x) = x3 + x 1 x (0, + ) (b) R (c) (, 0) ( 1, 1) è:

4 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A RISPOSTA ESATTA: (c). La risposta (c) è vera per la proprietà dell estremo superiore: se 2 = sup A, allora qualunque sia ǫ > 0 esiste x A tale che 2 ǫ < x < 2. In particolare, preso ǫ = 1, si può trovare x A tale che 1 < x < 2. Le risposte e sono false: si pensi come controesempio all insieme A = (0, 2). L insieme A = {0, 2} costituisce un controesempio che dimostra la falsità della risposta (b).

5 2. Il prodotto delle funzioni x e ln x per x 0 + tende a zero (b) tende ad 1 (c) tende a non ammette limite RISPOSTA ESATTA:. Calcoliamo il limite ln x lim x ln x = lim x 0 + x = 0 x in quanto per x 0 +, la funzione ln x è un infinito di ordine inferiore alla funzione 1/x a, qualunque sia a > 0.

6 3. Sono date le funzioni f(x) = sin x 2 e g(x) = x. Allora: domf g = R (b) dom g f = R (c) im f g = [0, 1] im g f = RISPOSTA ESATTA:. Si ha mentre (f g)(x) = f( x) = sin x 2 (g f)(x) = g(sin x 2) = sin x 2. Di conseguenza dom f g = [0, + ) e im f g = [ 3, 1]; dom g f = (in quanto sin x 1), e dunque anche im g f =. Pertanto la risposta è esatta e tutte le altre sono errate.

7 4. È data la funzione f(x) = ln(x 2 x 2 + 1). Allora: domf = R + (b) dom f = (2, + ) (c) f non è mai definita im f = R RISPOSTA ESATTA: (c). Si può facilmente verificare (risolvendo la disequazione irrazionale algebricamente oppure graficamente) che, qualunque sia x R, è sempre x 2 < x2 + 1; dunque domf =. Pertanto (c) è vera e le altre sono false.

8 5. Sia f : R R una funzione continua tale che f(7) = 3. Allora, necessariamente f(x) 0 per ogni x R (b) esiste x > 7 tale che f(x) < 0 (c) non esiste x < 7 tale che f(x) < 0 f(x) = 3 per ogni x R RISPOSTA ESATTA: (b). Poiché f è continua e f(7) < 0, per il Teorema di permanenza del segno esiste un intorno del punto x = 7 in cui f(x) < 0; pertanto si avrà f(x) < 0 sia in un intorno destro sia in un intorno sinistro di x = 7. Quindi (b) è vera e (c) è falsa. La funzione f(x) = x 10 costituisce un controesempio che dimostra la falsità delle risposte e.

9 6. La funzione x x + 1 per x + tende a 1 (b) tende a 0 (c) non ammette limite tende a + RISPOSTA ESATTA: (b). Infatti, calcoliamo il limite moltiplicando e dividendo per x + x + 1: lim ( x x + 1) = lim x + x + x (x + 1) x + x + 1 = lim x + 1 x + x + 1 = 0.

10 7. La successione a n = 1 + ( 1)n n : (b) (c) non ammette limite ha lo stesso limite della successione b n = 1 + ( 1)n n è convergente è limitata tra 0 e 1 RISPOSTA ESATTA: (c). ) ( 1) n Poiché lim = 0, si ha lim (1 + ( 1)n = 1, e dunque la risposta (c) n n n n è vera, mentre la è falsa. La (b) è falsa: infatti b n = 1 + ( 1)n n Pertanto lim n b n = 0. La è falsa, perché, se n è pari, a n > 1. 2 se n è pari, = n 0 se n è dispari.

11 8. La funzione e 1/x3 per x 0 tende a (b) tende a + (c) ha lo stesso comportamento anche per x 0 + tende a 1 RISPOSTA ESATTA: (b). Poiché lim x 0 1 =, si ha lim = e + = +. Dunque (b) è vera x3 x 0 e 1/x3 mentre e sono false. Anche (c) è falsa, perché lim lim = e = 0. x 0 + e 1/x3 x = +, e dunque x3

12 9. Si supponga che la funzione f(x) sia continua su R e soddisfi le condizioni f(x) = 176 e f(0) = 5. Allora: lim x f è monotona crescente in (, 0] (b) (c) k [ 36, 23], a R : f = k ǫ > 0, B > 0 : x < B = 176 < f(x) < ǫ f è limitata inferiormente RISPOSTA ESATTA: (b) Poiché f è continua, dai dati del quesito si deduce che f assume tutti i valori compresi tra -176 (escluso) e 5, in particolare quelli compresi tra 36 e 23. Dunque k [ 36, 23], a R : f = k, e (b) è esatta. La funzione f(x) = (181 x 2 )e x 176 fornisce un controesempio che mostra la falsità delle altre risposte. Infatti: - f è continua su R, lim f(x) = 176 e f(0) = 5. x Inoltre: - f non è limitata inferiormente, in quanto lim f(x) =, e dunque è x + falsa - f non è monotona crescente in (, 0], in quanto, se x (, 1 182), si ha f (x) = (181 2x x 2 ) e x < 0, e dunque è falsa - se x (, 181), si ha f(x) < 176, e dunque (c) è falsa.

13 10. Sia f : R R tale che lim f(x) = 8. Allora necessariamente: x 3 δ > 0, ǫ > 0 : (b) ǫ > 0, δ > 0 : (c) se x + 3 < δ f(x) > 0, x > 3 x + 3 < δ = f(x) 8 < ǫ 0 < x + 3 < δ = f(x) 8 < ǫ allora f(x) 8 < ǫ RISPOSTA ESATTA: (b) Le risposte e (c) sono false: non è affatto detto che f(x) sia limitata in un qualunque intorno di x = 3. La risposta (b) è vera: è la definizione del limite lim f(x) = 8. x 3 La risposta è falsa: si pensi come controesempio alla funzione y = 8x 16.

14 11. Sia A = {x R : x = π + 1, k Z \ {0}}. Allora, necessariamente k sup A = π (b) A non ammette massimo (c) min A = π 1 A è illimitato RISPOSTA ESATTA: (c) Per k = ±1, si ha π ± 1 A. Inoltre, si osservi che π 1 a π + 1, a A. Dunque min A = π 1, e maxa = sup A = π + 1. Pertanto le risposte e (b) e sono false, mentre la risposta (c) è vera.

15 12. L immagine della funzione f(x) = x3 + x 1 x (0, + ) (b) R (c) (, 0) ( 1, 1) è: RISPOSTA ESATTA: (b) Si osservi che f(x) è definita e continua su R e che lim f(x) =, lim x f(x) = +. x + Dunque qualunque sia k R, esiste x R tale che f(x) = k, e quindi im f = R.

Limiti e continuità Test di autovalutazione

Limiti e continuità Test di autovalutazione Test di autovalutazione 1. Si indichi con M(t) la mantissa di t. Il limite lim x 0 M(1 x ) non esiste (b) vale 1 (c) vale 0 è uguale a M(lim x 0 (1 x )). Sia a n una successione infinitesima e consideriamo

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

Matematica 1 mod. A per Matematica Esempi di quiz

Matematica 1 mod. A per Matematica Esempi di quiz Matematica 1 mod. A per Matematica Esempi di quiz 1. Sia x un numero reale. Allora x 3: è uguale a 3x 2. può essere diverso da 3x 2. è sempre un numero irrazionale. 2. Sia S l insieme delle soluzioni della

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

Limiti di funzioni reali e Funzioni continue. x b di ciascuna delle seguenti affermazioni se è vera o falsa.

Limiti di funzioni reali e Funzioni continue. x b di ciascuna delle seguenti affermazioni se è vera o falsa. Limiti di funzioni reali e Funzioni continue 1. Sia f(x) definita in un intervallo I tale che f(x) + per x x 0 I. A. [f(x)] + per x x 0, dove [f(x)] è la parte intera di f(x). B. f(x) > 0 per ogni 0

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. Sia f una funzione continua su IR, e F una primitiva di f tale che F () = 5. Allora: (a) esiste k IR tale che F (x) f(x) =k, x IR (b) F (x) = x f(t) dt (c) F non è derivabile

Dettagli

FUNZIONI - CONTINUITA - DERIVABILITA Test di autovalutazione

FUNZIONI - CONTINUITA - DERIVABILITA Test di autovalutazione FUNZIONI - CONTINUITA - DERIVABILITA Test di autovalutazione 1. Sia f una funzione derivabile e con derivata prima strettamente positiva in tutti i punti interni al suo dominio. Allora: (a) f non ha punti

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioni degli esercizi di Analisi Matematica I (Prof. Pierpaolo Natalini) Roberta Bianchini 30 ottobre 07 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) = arccos x x + π/3.. Verificare

Dettagli

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09 UNIVERSITA DEL SALENTO Prova scritta di ANALISI MATEMATICA I 19/01/09 1 Determinare sup/inf max/min) e insieme dei punti di accumulazione del seguente insieme: E = {x R e x 5e x + 6) arctan x 1 x) < 1}

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Domande Vero/Falso (prima parte) 1. (a) Un numero complesso diverso da zero è invertibile. (b) Una successione illimitata superiormente

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante)

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Corso di laurea in Fisica, a.a. 2015/16 Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Prima prova in itinere 13 novembre 2015 I Regolamento. Annerire in modo evidente un opzione a scelta fra

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

14. Studio grafico completo di funzioni

14. Studio grafico completo di funzioni 14. Studio grafico completo di funzioni Davide Catania [email protected] Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 4 GIUGNO 206 FILA A Durata della prova: 2 ore e mezza. NOTA: Spiegare con molta cura le risposte. NOTAZIONE: log = ln = log e. Esercizio 5 punti) Sia

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

Studio qualitativo. Emanuele Paolini 2 luglio 2002

Studio qualitativo. Emanuele Paolini 2 luglio 2002 Studio qualitativo Emanuele Paolini 2 luglio 2002 Non sempre è possibile determinare esplicitamente le soluzione di una equazione differenziale. Ci proponiamo quindi di trovare dei metodi per determinare

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x Esercizio 1. Sia data la funzione f(x) = log( x + 2) x (a )Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali punti angolosi o di cuspide, eventuali massimi e

Dettagli

La topologia della retta (esercizi svolti)

La topologia della retta (esercizi svolti) La topologia della retta (esercizi svolti) Massimo Pasquetto ITS Cangrande della Scala Verona 6 novembre 2017 Esercizi tratti dal capitolo 12 del libro di testo [1] e svolti nelle classi 4A e 4C dell ITS

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

LIMITI. 1. Definizione di limite.

LIMITI. 1. Definizione di limite. LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi

Dettagli

1 Numeri reali. Esercizi.

1 Numeri reali. Esercizi. Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Settembre 2012 1 Numeri reali. Esercizi. Esercizio 1.1 (Un numero moltiplicato per zero

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

LIMITI - CONFRONTO LOCALE Test di autovalutazione

LIMITI - CONFRONTO LOCALE Test di autovalutazione LIMITI - CONFRONTO LOCALE Test di autovalutazione 1. Per 0 le funzioni 1 cos e sin (a) sono infinitesime dello stesso ordine (b) 1 cos è infinitesima di ordine inferiore (c) 1 cos è infinitesima di ordine

Dettagli