Proprietà globali delle funzioni continue
|
|
|
- Assunta Ippolito
- 8 anni fa
- Visualizzazioni
Transcript
1 Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa Politecnico di Torino 1
2 Data una funzione reale ogni punto annulla, cioè x 0 dom f f(x 0 )=0 Definizione f, chiamiamo zero di f in cui la funzione si Politecnico di Torino 2
3 Esempio Consideriamo la funzione f(x) =cosx Gli zeri della funzione sono tutti gli elementi dell insieme π 2 + kπ : k Zª 5 Teorema di esistenza degli zeri Sia Se f : [a, b] R f(a)f(b) < 0 continua x 0 (a, b) :f(x 0 )=0 Se inoltre f è strettamente monotona in [a, b] lo zero è unico nell intervallo Politecnico di Torino 3
4 Teorema di esistenza degli zeri 7 Osservazione Senza l ipotesi di continuità della funzione nell intervallo chiuso non sarebbe possibile [a, b] dedurre l esistenza di uno zero dalla sola condizione f(a)f(b) < Politecnico di Torino 4
5 Esempio La funzione f : [0, 1] R definita come f(x) = 1 0 x 1 se 2, +1 se 1 2 <x 1 assume valori di segno discorde agli estremi dell intervallo ma non si annulla mai; essa presenta una discontinuità di salto nel punto x = Osservazione L ipotesi f(a)f(b) < 0 è sufficiente ma non necessaria, per l esistenza di uno zero Politecnico di Torino 5
6 Esempio 1 La funzione continua f(x) =(2x 1) 2 si annulla in x = 1 2 interno all intervallo [0, 1] pur essendo strettamente positiva negli estremi dell intervallo f(0) = f(1) = 1 11 Consideriamo la funzione nell intervallo [0, 2] Essendo un polinomio, la funzione è continua Inoltre si ha Pertanto, esiste almeno uno zero di Esempio 2 f(x) =x 5 + x 2 5 f(0) = 5 e f(2) = 31 f in [0, 2] Politecnico di Torino 6
7 Esempio 2 Tale zero è unico in quanto è strettamente crescente nell intervallo perché somma delle y = x 5 funzioni strettamente crescenti e y = x 2 e della funzione costante y = 5. f 13 Corollario Sia f continua in un intervallo Supponiamo che esistano i limiti per tendente a ciascuno degli estremi dell intervallo Tali limiti (finiti o infiniti) siano diversi da di segno opposto f ha uno zero in I lo zero è unico se f I f x è strettamente monotona in 0 e I Politecnico di Torino 7
8 Dimostrazione Il risultato segue dal Teorema di permanenza del segno e dal Teorema di esistenza degli zeri. 15 Esempio Consideriamo la funzione f(x) =x +logx, x I =(0, + ) Essa è strettamente crescente in somma delle due funzioni crescenti I in quanto y = x e y =logx Politecnico di Torino 8
9 Esempio Poiché lim f(x) = x 0 + e lim f(x) =+ x + la funzione ha esattamente uno zero nel suo dominio. 17 Corollario Siano Se tale che f,g : [a, b] R f(a) <g(a) e esiste almeno un punto continue f(b) >g(b) f(x 0 )=g(x 0 ) x 0 (a, b) Politecnico di Torino 9
10 Corollario 19 Dimostrazione Sia h(x) =f(x) g(x) [a, b] h(x) è continua in h(a) =f(a) g(a) < 0 h(b) =f(b) g(b) > 0 e Pertanto h esistenza degli zeri soddisfa le ipotesi del Teorema di Politecnico di Torino 10
11 Dimostrazione x 0 (a, b) f(x 0 )=g(x 0 ) tale che h(x 0 )=0 cioè 21 Esempio Vogliamo trovare tutte le soluzioni dell equazione Poiché non vi sono soluzioni per Inoltre e o per quindi non vi sono soluzioni nell intervallo Le eventuali soluzioni vanno cercate nell intervallo cos x = x 1 cos x 1 x R x< 1 cos x>0 [0, 1] x>1 x<0 x [ 1, 0) [ 1, 0) Politecnico di Torino 11
12 Esempio f(x) =x g(x) =cosx continue in [0, 1] inoltre, f(0) = 0 < 1=g(0) e f(1) = 1 > cos 1 = g(1) Le funzioni e sono Per il corollario precedente deduciamo che l equazione ha una soluzione nell intervallo (0, 1) 23 Esempio f Essa è unica, in quanto è strettamente crescente e g è strettamente decrescente in [0, 1] Politecnico di Torino 12
13 Teorema dei valori intermedi Sia f :[a, b] R continua f f(a) assume tutti i valori compresi tra e f(b) Politecnico di Torino 13
14 Teorema dei valori intermedi 27 Dimostrazione Se f(a) =f(b) il risultato è banale Supponiamo dapprima che z f(a) f(b) g(x) =z Sia un valore compreso tra e e definiamo la funzione costante Dalle disuguaglianze otteniamo immediatamente f(a) <g(a) f(a) <z<f(b), e f(a) <f(b) f(b) >g(b) Politecnico di Torino 14
15 Per il Corollario precedente applicato in troviamo un punto x 0 (a, b) f(x 0 )=g(x 0 )=z Dimostrazione tale che [a, b] Se f(a) >f(b), f e g funzioni si scambiano i ruoli delle 29 Corollario Sia f Allora una funzione continua su un intervallo f(i) è ancora un intervallo di estremi I inf x I f(x) e sup x I f(x) Politecnico di Torino 15
16 Esempio 1 f(x) =cosx f :(0, π) ( 1, 1) cioè f(0, π) =( 1, 1) f :( π, π) ( 1, 1] cioè f( π, π) =( 1, 1] 31 Esempio Politecnico di Torino 16
17 Esempio 2 f(x) =tanx f :( π 2, π 2 ) (, ) f(x) = arctan x f :(, ) ( π 2, π 2 ) 33 Esempio Politecnico di Torino 17
18 Teorema di Weierstrass Sia f :[a, b] R continua f è limitata su [a, b] e ivi assume valori massimo e minimo m =min x [a,b] f(x) e M =max x [a,b] f(x) Politecnico di Torino 18
19 Teorema di Weierstrass Dunque f([a, b]) = [m, M] Politecnico di Torino 19
20 Teorema I Sia f Allora f una funzione continua su un intervallo f è iniettiva su è strettamente monotona su I I I 39 Teorema II Sia f una funzione continua e invertibile su un intervallo I la funzione inversa sull intervallo J = f(i) f 1 è continua Politecnico di Torino 20
21 Esempi Sono continue le funzioni: y =arcsinx y =arccosx y =arctanx y =log a x Politecnico di Torino 21
Continuità di funzioni
Continuità di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 2 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva
DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?
DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)
Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti
Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)
IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero
IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
Forme indeterminate e limiti notevoli
Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino
Infiniti e Infinitesimi
Infiniti e Infinitesimi Infiniti e Infinitesimi Def. Una funzione f() si dice infinitesima per (o per ), punto di accumulazione per il dominio di f(), se: f ( ) ( oppure f ( ) ) Infiniti e Infinitesimi
FUNZIONI ELEMENTARI Test di autovalutazione
FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione
Teorema di sostituzione o del limite di funzioni composte
Teorema di sostituzione o del limite di funzioni composte Questo teorema serve per calcolare il limite di funzioni composte sfruttando limiti fondamentali o altri limiti già noti. TEOREMA. Se esiste lim
a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.
1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre
DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.
DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital
Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Copyright c 2007 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Teoremi
1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26
ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia
2.3. Esercizio. Disegnare il grafico delle seguenti funzioni f(x) = x x, g(x) = max(0, cos(x)), h(x) = min(0, sin(x))
ANALISI Soluzione esercizi 4 ottobre 0.. Esercizio. Disegnare il grafico delle funzioni f(x) = x 4, g(x) = x 3, r(x) = min(0, x 3 ), s(x) = 3 x Esistono software che disegnano i grafici di moltissime funzioni
Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz
Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x
SIMULAZIONE TEST ESAME - 1
SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R
ANALISI 1 - Teoremi e dimostrazioni vari
ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite
Criterio di Monotonia
Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:
Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1
Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.
Alcuni Teoremi sulle funzioni continue e uniforme continuità
Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne
Esercizi relativi al capitolo 2
Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin
Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008
Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri
Esercizi sulle Funzioni
AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La
Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni
Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx
Corso di Analisi Matematica. Funzioni continue
a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.
3 LA RETTA REALE ESTESA
3 LA RETTA REALE ESTESA Abbiamo visto che i concetti di sup e inf sono utili per descrivere proprietà di insiemi superiormente/inferiormente limitati. Per coprire con questi concetti tutti gli insiemi
COMPLETEZZA DELL INSIEME DEI NUMERI REALI R.
COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. FABIO CIPRIANI 1. Completezza dell insieme dei numeri reali R. Nell insieme dei numeri reali R la condizione di Cauchy e necessaria e sufficiente per la convergenza
12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.
Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese
Limiti e continuità. Limiti di funzioni
Limiti e continuità Limite all ininito di una unzione Limite al inito di una unzione Continuità di una unzione Limite ininito al inito di una unzione Limiti laterali di una unzione Punti di discontinuità
Funzioni Monotone. una funzione f : A B. si dice
Funzioni Monotone una funzione f : A B si dice strettamente crescente: 1, 2 A, 1 < 2 f( 1 ) < f( 2 ). crescente: 1, 2 A, 1 < 2 f( 1 ) f( 2 ). strettamente decrescente: 1, 2 A, 1 < 2 f( 1 ) > f( 2 ). decrescente:
Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.
Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire
Funzioni reali di variabile reale
Funzioni reali di variabile reale Equazioni e disequazioni. In questa parte ricordiamo per completezza le prime nozioni e i primi principi sulle equazioni e disequazioni: sono le stesse nozioni e principi
ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca
ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base
Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.
Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:
Sviluppi di Taylor e applicazioni
Sviluppi di Taylor e applicazioni Somma di sviluppi Prodotto di sviluppi Quoziente di sviluppi Sviluppo di una funzione composta Calcolo di ordini di infinitesimo e di parti principali Comportamento locale
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della
Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.
1 Numeri reali Definizione 1.1 Un campo ordinato è un campo K munito di una relazione d ordine totale, compatibile con le operazioni di somma e prodotto nel senso seguente: 1. a, b, c K, a b = a + c b
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione
Massimo limite e minimo limite di una funzione
Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.
A.A. 2016/17 - Analisi Matematica 1
A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.
Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x
Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare
1 Limiti e continuità per funzioni di una variabile
1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è R\ {0}. Problema: non è possibile calcolare il valore di f per
CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013
CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua
Corso di Analisi Matematica Limiti di funzioni
Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei
Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1
Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria [email protected] Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1
Proprietà globali delle funzioni continue
Proprietà globali delle funzioni ontinue Tramite i limiti, abbiamo studiato il omportamento di una funzione nell intorno di un punto (proprietà loali). Ora i oupiamo di funzioni ontinue su tutto un intervallo,
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce
Esercizi di Analisi Matematica
Università degli Studi di Udine Anno Accademico 006/07 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 3 ottobre 006 Dimostrare
Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010
Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove
I TEOREMI DEL CALCOLO DIFFERENZIALE
I TEOREMI DEL CALCOLO DIFFERENZIALE 1. DEFINIZIONI. TEOREMI DEL CALCOLO DIFFERENZIALE.1 TEOREMA DELL ESTREMANTE LOCALE. TEOREMI DI ROLLE, CAUCHY, LAGRANGE.3 TEOREMI CONSEGUENTI AL T. DI LAGRANGE 3. DETERMINAZIONE
Argomento 6 Derivate
Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =
A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame
COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni
a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;
ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti
ESERCITAZIONE: ESPONENZIALI E LOGARITMI
ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione
ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte
ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni
Funzioni (parte II).
Funzioni (parte II). Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 21 ottobre 214 Paola Mannucci e Alvise Sommariva Introduzione. 1/ 55 Funzioni trigonometriche.
Equazioni algebriche di terzo grado: ricerca delle soluzioni
Equazioni algebriche di terzo grado: ricerca delle soluzioni 1 Caso particolare: x 3 + px + q = 0....................... Caso generale: x 3 + bx + cx + d = 0..................... 4 3 Esercizi.....................................
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se
Esame di MATEMATICA CORSO BASE del
Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e
Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni
Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i
Diario del Corso Analisi Matematica I
Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio
b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R
9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c
Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica
DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti. Risolvere la disequazione x x +. è soddisfatta x IR ]. Disegnare i grafici di (a) y = x + x + 3 ; (b) y = x x
Limiti e continuità Test di autovalutazione
Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x
PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.
PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri
Teorema delle Funzioni Implicite
Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)
Le funzioni reali di una variabile reale
Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B
