Forme indeterminate e limiti notevoli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Forme indeterminate e limiti notevoli"

Transcript

1 Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate Politecnico di Torino 1

2 Forme indeterminate e iti notevoli Forme indeterminate e iti notevoli Espressione funzioni tendono a Forme indeterminate quando entrambe le con segno discorde; una tale forma indeterminata viene indicata con il simbolo f(x)+g(x) Politecnico di Torino 2

3 Forme indeterminate e iti notevoli Espressione tende a Forme indeterminate f(x) g(x) quando una funzione e l altra tende a 0; una tale forma indeterminata viene indicata con il simbolo 0 5 Espressione f(x) g(x) Forme indeterminate quando entrambe le funzioni tendono a oppure a 0; tali forme indeterminate vengono indicate rispettivamente con i simboli oppure Politecnico di Torino 3

4 Forme indeterminate e iti notevoli Forme indeterminate Ogni comportamento è possibile: ite infinito, ite finito diverso da 0 oppure uguale a 0, non esistenza del ite 7 Esempio 1 Consideriamo le funzioni g(x) =x e f 1 (x) =x + x 2, f 2 (x) =x +1, f 3 (x) =x + 1 x, f 4(x) =x +sinx Politecnico di Torino 4

5 Forme indeterminate e iti notevoli Esempio 1 Tutte le funzioni tendono a Si ha [f 1(x) g(x)] = x + + per x + x + x2 =+ [f 2(x) g(x)] = x + [f 3(x) g(x)] = x + 1=1 x + x + 1 x =0 9 Esempio 1 Inoltre [f 4(x) g(x)] = x + sin x x + non esiste, in quanto la funzione periodica sin x è Politecnico di Torino 5

6 Forme indeterminate e iti notevoli Esempio 2 Consideriamo le funzioni g(x) =x 2 e f 1 (x) =x 3, f 2 (x) =x 2, f 3 (x) =x, f 4 (x) =x 2 sin 1 x 11 Esempio 2 Tutte le funzioni tendono a Si ha 0 per f 1 (x) g(x) = x =0 x 0 f 2 (x) g(x) = 1=1 f 3 (x) g(x) = 1 x = Politecnico di Torino 6

7 Forme indeterminate e iti notevoli Esempio 2 Inoltre f 4 (x) g(x) = sin 1 x non esiste 13 Esempio 3 Consideriamo il generico polinomio P (x) =a n x n + + a 1 x + a 0 (a n 6=0) Per x ± indeterminata del tipo si può avere una forma Politecnico di Torino 7

8 Forme indeterminate e iti notevoli Esempio 3 Tale forma di indeterminazione si risolve raccogliendo il monomio di grado massimo x n : P (x) =x n ³ a n + a n 1 x + + a 1 x n 1 + a 0 x n 15 Esempio 3 L espressione in parentesi tende ad per x ±, pertanto a n P (x) = x ± a nx n = x ± e il segno del ite si determina facilmente Politecnico di Torino 8

9 Forme indeterminate e iti notevoli Esempio 3 Calcoliamo il Si ha x ( 5x3 +2x 2 +7) x ( 5x3 +2x 2 +7)= x ( 5x3 ) =+ 17 Esempio 4 Consideriamo la generica funzione razionale già ridotta ai minimi termini R(x) = P (x) Q(x) = a nx n + + a 1 x + a 0 b m x m + + b 1 x + b 0 (a n,b m 6=0,m>0) Per x ±, indeterminata del tipo si può avere una forma Politecnico di Torino 9

10 Forme indeterminate e iti notevoli Esempio 4 Trattando numeratore e denominatore come nell esempio precedente, si ottiene x ± P (x) Q(x) = x ± a n x n b m x m se n>m = a n b m x ± xn m = a n b m se n = m 0 se n<m 19 Esempio 4 Ad esempio, x + 2x 4 2x 2 +1 x 2 x 3 = x + 2x 4 x 3 = x 2x 6 +2x 2 7 8x 6 x 4 +3x = x 2x 6 8x 6 = 1 4 x 2x 3 x +3 x 4 +7 = x 2x 3 x 4 = Politecnico di Torino 10

11 Forme indeterminate e iti notevoli Calcoliamo il ite Risulta 1 cos x x 2 1 cos x x 2 Esempio 5 = (1 cos x)(1 + cos x) x 2 (1 + cos x) = 1 cos 2 x x cos x 21 Esempio 5 = sin 2 x x cosx Politecnico di Torino 11

12 Forme indeterminate e iti notevoli Esempio 5 = µ 2 sin x x 1 1+cosx 23 Esempio 5 =1 1 2 = Politecnico di Torino 12

13 Forme indeterminate e iti notevoli Tabella x + xα =+, x + xα =0, + x α =0 α > 0 x α =+ α < 0 + x ± a n x n + + a 1 x + a 0 b m x m + + b 1 x + b 0 = a n b m x ± xn m 25 Tabella x + ax =+, x ax =0 α > 1 x + ax =0, x ax =+ a<1 x + log a x =+, + log a x = log a x =, log a x =+ x + + a>1 a< Politecnico di Torino 13

14 Forme indeterminate e iti notevoli sin x, x ± non esistono cos x, x ± tan x x ± Tabella tan x =, x ( π 2 +kπ ) ± k Z 27 Tabella x ±1 arcsin x = ±π 2 =arcsin(±1) arccos x =0=arccos1 x +1 arccos x = π =arccos( 1) x 1 x ± arctan x = ±π Politecnico di Torino 14

15 Forme indeterminate e iti notevoli Forme indeterminate e iti notevoli Teorema di sostituzione Supponiamo che esista (finito o infinito) f(x) =` x c Politecnico di Torino 15

16 Forme indeterminate e iti notevoli Teorema di sostituzione g ` Se ` R, g è continua in ` ` R, I(c) c f(x) 6= ` y ` ` =+ ` =, y ` Sia una funzione definita in un intorno di (escluso al più il punto ) e tale che Se esiste un intorno di in cui per ogni x 6= c ed esiste (finito o infinito) Se oppure esiste (finito o infinito) ` 31 Teorema di sostituzione g(f(x)) = g(y) x c y ` Politecnico di Torino 16

17 Forme indeterminate e iti notevoli Osservazione Nel primo caso si ha g(y) =g(`) y ` dunque la tesi può essere scritta come g(f(x)) = g( f(x)) x c x c 33 f x 0 y 0 = f(x 0 ) Sia continua in e sia Corollario Sia g una funzione definita in un intorno di y 0 e continua in y 0 la funzione composta g f è continua in x Politecnico di Torino 17

18 Forme indeterminate e iti notevoli Dimostrazione Abbiamo (g f)(x) =g( f(x)) x x 0 x x 0 = g(f(x 0 )) =(g f)(x 0 ) 35 Esempio 1 La funzione h(x) =cosx 3 è continua su tutto R Infatti, è la composizione delle due funzioni continue f(x) =x 3 e g(y) =cosy Politecnico di Torino 18

19 Forme indeterminate e iti notevoli Esempio 2 Calcoliamo 1 cos x 2 x 4 Poniamo f(x) =x 2 e g(y) = 1 cos y y se se y 6= 0 y =0 37 Esempio 2 Calcoliamo 1 cos x 2 x 4 Si ha f(x) =0, è continua nell origine. Pertanto, mentre la funzione g 1 cos x 2 x 4 = y 0 1 cos y y 2 = Politecnico di Torino 19

20 Forme indeterminate e iti notevoli Calcoliamo Poniamo Abbiamo Dunque arctan x 2 ± µ 1 arctan x 2 ± x 2 f(x) = 1 x 2 f(x) =± ± x 2 e e Esempio 3 g(y) =arctany y ± g(y) =± π 2 µ 1 = x 2 g(y) = ±π y ± 2 39 Esempio 4 Si voglia calcolare x + log sin 1 x Ponendo f(x) =sin 1 x, si ha ` = f(x) =0 x + si osservi che f(x) > 0, per ogni x> 1 π Politecnico di Torino 20

21 Forme indeterminate e iti notevoli Esempio 4 Si voglia calcolare x + log sin 1 x Posto g(y) =logy si ha y 0 + g(y) = 41 Esempio 4 Si voglia calcolare x + log sin 1 x Si ha x + sin 1 x =0 e dunque otteniamo e log y = y 0 + x + log sin 1 x = y 0 + g(y) = Politecnico di Torino 21

22 Forme indeterminate e iti notevoli Osservazione Il Teorema di sostituzione può essere facilmente esteso al caso in cui la funzione f sia sostituita da una qualunque successione a : n 7 a n che ammetta il ite a n = ` n Sotto le stesse ipotesi sulla funzione fatte nell enunciato del Teorema, si ha allora g g(a n)=g(y) n y ` 43 Criterio di non esistenza del ite Se esistono due successioni tali che b : n 7 b n a n = b n = ` n n g(a n) 6= g(b n) n n a : n 7 a n e e g non può avere ite quando l argomento tende a `: non esiste g(y) y ` Politecnico di Torino 22

23 Forme indeterminate e iti notevoli Esempio La funzione x + y =sinx non ha ite per Infatti, se consideriamo le successioni a n =2nπ b n = π e 2 +2nπ, n N abbiamo sin a n = 0=0 n n n sin b n = n 1=1 e 45 Forme indeterminate e iti notevoli 2006 Politecnico di Torino 23

24 Forme indeterminate e iti notevoli Limiti notevoli Ricordiamo il ite fondamentale n µ 1+ 1 n n =e 47 Limiti notevoli In luogo della successione consideriamo ora la funzione di variabile reale x h(x) = µ 1+ 1 x che è definita quando 1+ 1 x > 0, cioè dom h =(, 1) (0, + ) Politecnico di Torino 24

25 Forme indeterminate e iti notevoli Proprietà Vale il seguente risultato x ± µ 1+ 1 x x =e 49 Esempio 1 Verifichiamo che ³ 1+ a = e x ± x x a, a R Per a =0 il risultato è immediato Politecnico di Torino 25

26 Forme indeterminate e iti notevoli Esempio 1 a 6= 0. y = x a ³ 1+ a = x ± x x y ± Sia Poniamo e otteniamo ay = y ± µ 1+ 1 y µ 1+ 1 y a y =e a 51 Esempio 2 Verifichiamo che (1 + x)1/x =e Poniamo y = 1 x e otteniamo (1 + x)1/x = y ± µ 1+ 1 y y =e Politecnico di Torino 26

27 Forme indeterminate e iti notevoli Esempio 3 Verifichiamo che log a (1 + x) x = 1 log a, a >0 Si ha log a (1 + x) x = log a (1 + x) 1/x =log a (1 + x) 1/x =log a e = 1 log a 53 Esempio 3 log a (1 + x) x = 1 log a, a >0 In particolare, per a =e otteniamo log(1 + x) x = Politecnico di Torino 27

28 Forme indeterminate e iti notevoli Esempio 4 Verifichiamo che a x 1 x =loga, a >0 Osserviamo che y = a x 1 a x =1+y x =log a (1 + y) Inoltre y 0 se x 0 55 Esempio 4 Si ha a x 1 x = y 0 = y 0 y log a (1 + y) 1 log a (1 + y) =loga y Politecnico di Torino 28

29 Forme indeterminate e iti notevoli Esempio 5 a x 1 x =loga, a >0 In particolare, per a =e otteniamo e x 1 x =1 57 Esempio 5 Verifichiamo che (1 + x) α 1 x Poniamo 1+x =e y y 0 per x 0 = α, α R e osserviamo che Politecnico di Torino 29

30 Forme indeterminate e iti notevoli Esempio 5 Si ha (1 + x) α 1 x = y 0 e αy 1 y (e α ) y 1 = y 0 y =loge α = α. = y 0 e αy 1 e y 1 y e y 1 y 0 y e y 1 59 sin x x =1 1 cos x x 2 = 1 2 ³ 1+ a =e x ± x x a (a R) (1 + x)1/x =e Tabella iti notevoli Politecnico di Torino 30

31 Forme indeterminate e iti notevoli Tabella iti notevoli in particolare a x 1 x in particolare log a (1 + x) x (1 + x) α 1 x = 1 log a log(1 + x) x =loga (a >0) e x 1 x = α =1 (a>0) =1 (α R) 61 Forme indeterminate e iti notevoli 2006 Politecnico di Torino 31

32 Forme indeterminate e iti notevoli Altre forme indeterminate Consideriamo l espressione f(x) g(x) f Supponiamo che e siamo definite in I(c) \{c} con f(x) > 0 e ammettano ite x c. per tendente a Si ha g x c f(x)g(x) =exp (g(x)logf(x)) x c ³ g(x)logf(x) =exp x c 63 Altre forme indeterminate: primo caso ³ g(x)logf(x) =exp x c x c f(x)g(x) g f 1, log f 0 Se tende e tende a (e dunque tende a ): g(x) = x c log f(x) =0 x c e f(x) =1 x c da cui si presenta una forma indeterminata del tipo Politecnico di Torino 32

33 Forme indeterminate e iti notevoli La funzione h(x) = µ 1+ 1 x x Esempio per tipo x ± 1 µ 1+ 1 x =e x ± x è una forma indeterminata del 65 Altre forme indeterminate: secondo caso ³ g(x)logf(x) =exp x c x c f(x)g(x) g 0 f 0 log f Se tende a ed tende a (e dunque tende a ): g(x) =0 x c e f(x) =0 x c da cui x c log f(x) = 0 0 si presenta una forma indeterminata del tipo Politecnico di Torino 33

34 Forme indeterminate e iti notevoli Esempio La funzione per x 0 + è una forma indeterminata di tipo 0 0 Dimostreremo che h(x) =x x =e x log x x log x =0 + + h(x) =1 e dunque 67 g Altre forme indeterminate: terzo caso ³ g(x)logf(x) =exp x c x c f(x)g(x) 0 f + log f + Se tende a ed tende a (e dunque tende a ): g(x) =0 x c e log f(x) =+ x c f(x) = x c da cui si presenta una forma indeterminata del tipo Politecnico di Torino 34

35 Forme indeterminate e iti notevoli La funzione per tipo h(x) =x 1/x =e log x x x + 0 Usando la sostituzione y = 1 x log 1 = log y, si ottiene y è una forma indeterminata del e l identità Esempio x + log x x = y 0 + y log y = Politecnico di Torino 35

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Calcolo differenziale

Calcolo differenziale Calcolo differenziale Algebra delle derivate Derivata di una funzione composta Derivata della funzione inversa Derivata di funzioni simmetriche 2 2006 Politecnico di Torino 1 f,g Siano funzioni derivabili

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

Analisi matematica I. Confronto locale di funzioni. Simboli di Landau. Infinitesimi ed infiniti Politecnico di Torino 1

Analisi matematica I. Confronto locale di funzioni. Simboli di Landau. Infinitesimi ed infiniti Politecnico di Torino 1 Analisi matematica I Confronto locale di funzioni Infinitesimi ed infiniti 2 2006 Politecnico di Torino 1 Confronto locale di funzioni Definizioni dei simboli di Landau Proprietà dei simboli di Landau

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione

Dettagli

Studio qualitativo del grafico di una funzione

Studio qualitativo del grafico di una funzione Studio qualitativo del grafico di una funzione Obiettivo: ottenere informazioni per descrivere qualitativamente l andamento del grafico di una funzione f campo di esistenza (cioè, l insieme di definizione)

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09 UNIVERSITA DEL SALENTO Prova scritta di ANALISI MATEMATICA I 19/01/09 1 Determinare sup/inf max/min) e insieme dei punti di accumulazione del seguente insieme: E = {x R e x 5e x + 6) arctan x 1 x) < 1}

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematice Modulo A ST) II foglio di esercizi Ricordo alcuni iti notevoli: Inoltre, se a > 0 e b > 0 allora = 1, e x 1 1 + x) = 1, = 1 b x x b 1) x + x a = 0, ) x + e ax = 0 ESERCIZIO 1

Dettagli

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Limiti di funzioni Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi Matematica 1 1 / 38 Cenni di topologia La nozione di intorno

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente.

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente. La derivata Sia f : domf R R; sia x 0 domf, f sia definita in I r (x 0 ) e sia x I r (x 0 ). ments Definiamo x := x x 0 l incremento (positivo o negativo) della f(x 0 ) + x + x) variabile indipendente

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso.

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso. Esercitazione 8 Novembre 018 1. Stabilire quali delle seguenti affermazioni sono vere e quali false. 1.1. Se una funzione f(x) è definita in un intervallo aperto (a, b), ha senso chiedersi se esistono

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione A. Cesaroni, P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione A. Cesaroni, P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche TEMA f(x = arccos( x (a ˆ Determiniamo il dominio Poichè arccos : [, ] [, π], poniamo x ovvero x Di conseguenza il dominio risulta D = [ 4, 4] ˆ Eventuali simmetrie: la funzione è pari ˆ Periodicità: la

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che 109 Lezioni 9-40 La formula di Taylor con resto di Peano OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che f(x) =f(a)+o(1) per x a; se f è derivabile

Dettagli

15 LIMITI DI FUNZIONI

15 LIMITI DI FUNZIONI 5 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione (caratterizzazione per successioni) Si ha f(x) = L (x 0, L R) se e solo se per ogni successione a n x

Dettagli

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5.

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5. Analisi Matematica Foglio Lunedì 3 ottobre Esercizio. Trovare il dominio naturale della funzione f data da ( ) f(x) = log x 2 6x + 5. Esercizio 2. Dire quali tra le seguenti funzioni sono iniettive :.

Dettagli

Infiniti e infinitesimi col simbolo di Laudau

Infiniti e infinitesimi col simbolo di Laudau E Infiniti e infinitesimi col simbolo di Laudau Nel capitolo dedicato ai iti abbiamo osservato che, quando esiste, il ite del rapporto di due successioni entrambe divergenti o entrambe infinitesime può

Dettagli

Sviluppi di Taylor e applicazioni

Sviluppi di Taylor e applicazioni Sviluppi di Taylor e applicazioni Somma di sviluppi Prodotto di sviluppi Quoziente di sviluppi Sviluppo di una funzione composta Calcolo di ordini di infinitesimo e di parti principali Comportamento locale

Dettagli

Confronto locale di funzioni

Confronto locale di funzioni Confronto locale di funzioni Equivalenza di funzioni in un punto Sia A R ed f, g due funzioni definite in A a valori in R. Sia x 0 R un punto di accumulazione per A. Definizione. Si dice che f è equivalente

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni per descrivere a livello qualitativo l andamento del grafico di una funzione f 1. campo di esistenza (cioè, l insieme di definizione)

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Limiti di funzioni. Parte 2 calcolo. prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, 10/2016

Limiti di funzioni. Parte 2 calcolo. prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, 10/2016 Limiti di funzioni Parte calcolo prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, /6 L insieme R Il calcolo dei iti delle funzioni reali di variabile reale avviene nell insieme esteso dei numeri

Dettagli

Limiti di funzioni e continuità

Limiti di funzioni e continuità Limiti di funzioni e continuità Paolo Montanari Appunti di Matematica Limiti di funzioni e continuità 1 Funzioni limitate La funzione f(x) è limitata superiormente se esiste un numero reale M tale che

Dettagli

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016 Lecce, 12IX2016 1 Tracciare il grafico della funzione definita dalla seguente e- { 1 + x } f(x) = x exp 1 x sin(1/x)[e x + 2x 2 log cos x] x z 2 i z = z 2 e rappresentare le soluzioni sul piano complesso

Dettagli

PROVA SCRITTA ANALISI II

PROVA SCRITTA ANALISI II PROA SCRITTA ANALISI II Esercizio. Discutere la convergenza puntuale e la convergenza uniforme in (, + ) e in (, + ) della successione di funzioni (2 punti). f n (x) = e x arctan x n Soluzione. Per avere

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

17 LIMITI E COMPOSIZIONE

17 LIMITI E COMPOSIZIONE 17 LIMITI E COMPOSIZIONE L operazione di ite si comporta bene per composizione con funzioni continue. Teorema. Sia gx) = y 0 e sia f continua in y 0. Allora esiste fgx)) = fy 0 ). Questo teorema ci dice

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di DERIVATE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Secanti e tangenti Sia f : D R, sia I = [a, b] oppure I = (a, b),

Dettagli

Esercizi. Risolvere le seguenti disequazioni: 1. x(x 2 2x + 2)(x 2 6x + 10) 0 (Soluzione: X s = ], 0]);

Esercizi. Risolvere le seguenti disequazioni: 1. x(x 2 2x + 2)(x 2 6x + 10) 0 (Soluzione: X s = ], 0]); Esercizi Risolvere le seguenti disequazioni:. + ) 6 + 0) 0 Soluzione: X s = ], 0]). 3 ) 3 + ) ) > 0 Soluzione: X s = ] 3, 3[ ], [ ]4, + [) 3. 3 + < 0 4. Soluzione: X s =], [) > 5 Soluzione: X s = ], 5

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Tipologia A 1.1 Si enunci il teorema dei carabinieri e se ne dia un esempio di applicazione. 1.2 Sia f : R R una funzione derivabile con derivata continua, la cui derivata si annulla solo in un punto x

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006 Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/2/2006 COGNOME NOME MATRICOLA.) Determinare 2. + 2 Possibile svolgimento. Il ite proposto si presenta nella forma indeterminata [

Dettagli

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Derivate Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Definizione: rapporto incrementale Sia f : domf R R. Dati x 1, x 2 domf con x 1 x

Dettagli

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo.

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo. FUNZIONI CONTINUE. PUNTI DI DISCONTINUITA. OPERAZIONI SUI LIMITI. CALCOLO DI LIMITI CHE SI PRESENTANO IN FORMA INDETERMINATA LIMITI NOTEVOLI E APPLICAZIONI Angela Donatiello DEF. di Funzione Continua in

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Limiti di funzioni di una variabile

Limiti di funzioni di una variabile Capitolo 6 Limiti di funzioni di una variabile 6.1 Limiti all infinito La definizione di ite data per le successioni si può immediatamente trasportare al caso di una funzione definita in un qualunque insieme

Dettagli

Metodi Matematici per l Economia anno 2017/2018 Gruppo B

Metodi Matematici per l Economia anno 2017/2018 Gruppo B Metodi Matematici per l Economia anno 2017/2018 Gruppo B Docente: Giacomo Dimarco Dipartimento di Matematica e Informatica Università di Ferrara https://sites.google.com/a/unife.it/giacomo-dimarco-home-page/

Dettagli

SOLUZIONI ESERCIZI ASSEGNATI. Contents. Il seguente Teorema generalizza al caso delle funzioni il corrispondente Teorema di confronto per successioni

SOLUZIONI ESERCIZI ASSEGNATI. Contents. Il seguente Teorema generalizza al caso delle funzioni il corrispondente Teorema di confronto per successioni SOLUZIONI ESERCIZI ASSEGNATI Contents. SOLUZIONI ESERCIZI DEL 8. [B] Dispense a cura del docente.. SOLUZIONI ESERCIZI DEL 8. Il seguente Teorema generalizza al caso delle funzioni il corrispondente Teorema

Dettagli

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim AMA Ing.Edile - Prof. Colombo Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it Limiti - Soluzioni. Esercizio 5.2. ii) Dire che x 5 x + x = +, vuol dire che preso M > 0 sufficientemente

Dettagli

Richiami sulle funzioni parte I

Richiami sulle funzioni parte I Limiti e continuità Richiami sulle funzioni - parte I Richiami sulle funzioni - parte II Limiti e successioni Limiti di funzioni Teoremi sui limiti Forme indeterminate e limiti notevoli Proprietà globali

Dettagli

Nozioni di base - Quiz - 2

Nozioni di base - Quiz - 2 Nozioni di base - Quiz - Rispondere ai seguenti quesiti (una sola risposta è corretta).. L insieme delle soluzioni della disequazione (a) (0, ) (, + ) (x ) log(x) x + 0 è: (b) [, ] (c) (d) (e) (, + ) (0,

Dettagli

Dispense di Matematica Analisi Matematica. Riccarda Rossi

Dispense di Matematica Analisi Matematica. Riccarda Rossi Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/200 2 Capitolo Nozioni preinari 4 Riccarda Rossi Analisi

Dettagli

Teorema degli zeri. Essendo f continua in a e in b, per il teorema della

Teorema degli zeri. Essendo f continua in a e in b, per il teorema della Teorema degli zeri Una funzione reale f continua nell intervallo chiuso e itato [a; b] che assuma valori di segno opposto negli estremi di tale intervallo, si annulla in almeno un punto ad esso interno

Dettagli

Matematica Lezione 14

Matematica Lezione 14 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 14 Sonia Cannas 22/11/2018 Calcolo dei iti: forme di indeterminazione Per il teorema sulle operazioni con i iti abbiamo visto che se

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Limiti di derivate. Punti angolosi e di cuspide. Ottobre 2012 Indice 1 Limiti della derivata e punti di non

Dettagli

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri

Dettagli

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia Calcolo Integrale 5 Soluzioni. Calcolare l integrale indefinito x + x dx. R. Procediamo effettuando il cambio di variabile t = x ossia x = t e dx = t dt. Quindi dx = x + x t dt = t + t dt = log + t + c

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA f = 2 arctan 2) log e 2 αx α sin x + 2x + x 6 + x + n n 2 log n xe x dx al variare di a R x a e x dx Tempo: due ore e mezza Viene corretto solo ciò che è scritto sul foglio intestato È vietato tenere

Dettagli

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI CONTINUE Sia f : domf R una funzione e sia x 0 domf (esista cioè f(x 0 ) R) Possono verificarsi due casi: il

Dettagli

Teoremi sulle funzioni derivabili. 18 febbraio 2013

Teoremi sulle funzioni derivabili. 18 febbraio 2013 Teoremi sulle funzioni derivabili 18 febbraio 2013 1 Indice 1 Teoremi sulle funzioni derivabili 3 1.1 Teorema di Fermat......................... 3 1.2 Teorema di Rolle.......................... 3 1.3 Teorema

Dettagli

Teoremi sui limiti. Teorema di unicità del limite. Supponiamo che f ammetta limite l R per x x 0. Allora f non ha altri limiti per x x 0.

Teoremi sui limiti. Teorema di unicità del limite. Supponiamo che f ammetta limite l R per x x 0. Allora f non ha altri limiti per x x 0. Teoremi sui iti Teorema di unicità del ite. Supponiamo che f ammetta ite l R per 0. Allora f non ha altri iti per 0. (Dimostrazione: appunti della lezione o libro pag. 9) Teorema di permanenza del segno.

Dettagli

Esercizi sulle Funzioni

Esercizi sulle Funzioni AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La

Dettagli

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da Esercitazione n 5 1 Limiti e continuità di funzioni in più variabili Esercizio 1: Si verifici ce la funzione f definita per ogni (, y) R 2 da { 4 y 4 se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0)

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni, per descrivere a livello qualitativo l andamento di una funzione y = f() : 1. campo di esistenza ( insieme di definizione ) 2. segno:

Dettagli

Simboli di Landau. Equivalenza. Esempi (limiti notevoli).

Simboli di Landau. Equivalenza. Esempi (limiti notevoli). Simboli di Landau Conducono ad un algebra snella e significativa per il calcolo di iti Procurano un linguaggio tecnico per confrontare il comportamento di due funzioni nell intorno bucato di c (comportamento

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Novembre 2013 Retta secante un grafico e rapporto incrementale Sia f una funzione e x 0 un punto

Dettagli

Analisi matematica I. Calcolo integrale. Primitive e integrali indefiniti

Analisi matematica I. Calcolo integrale. Primitive e integrali indefiniti Analisi matematica I Calcolo integrale Regole di integrazione Integrali definiti condo Riemann Teorema fondamentale del calcolo integrale Integrali impropri 2 2006 Politecnico di Torino 1 Calcolo integrale

Dettagli

Limiti di funzioni 1 / 39

Limiti di funzioni 1 / 39 Limiti di funzioni 1 / 39 Comportamento agli estremi: operazione di ite 2 / 39 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

8. Il teorema dei due carabinieri

8. Il teorema dei due carabinieri 8. Il teorema dei due carabinieri Teorema del confronto (o dei due carabinieri) Consideriamo due funzioni f( ), g( ) per le quali risulti, in un punto di accumulazione per i loro domini : f ( ) g( ) Se

Dettagli

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx.

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx. Calcolo Integrale 8 Soluzioni. Calcolare l integrale indefinito + d. R. Procediamo effettuando il cambio di variabile t = ossia = t e d = t dt. d = + t dt = t + t dt = log + t + c + t Se torniamo alla

Dettagli

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x)

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x) Algebra dei limiti Teorema. Se lim f () = l R e lim g() = m R, allora, 0 0 quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha lim (f () + g()) = lim f () + lim g()

Dettagli

ANALISI MATEMATICA. Ottavio Caligaris - Pietro Oliva

ANALISI MATEMATICA. Ottavio Caligaris - Pietro Oliva ANALISI MATEMATICA Ottavio Caligaris - Pietro Oliva CAPITOLO 9 LA DERIVABILITÀ. Consideriamo una funzione f continua in un punto x 0, avremo che, quando x si discosta di poco da x 0, f(x) è poco distante

Dettagli

Limiti e continuità. Limiti di funzioni

Limiti e continuità. Limiti di funzioni Limiti e continuità Limite all ininito di una unzione Limite al inito di una unzione Continuità di una unzione Limite ininito al inito di una unzione Limiti laterali di una unzione Punti di discontinuità

Dettagli

f(x) lim x c g(x) = lim x c f(x) lim x c g(x)

f(x) lim x c g(x) = lim x c f(x) lim x c g(x) Matematica I, 10.10.2012 Limiti di funzioni (II) 1. Limiti e Operazioni Algebriche L operazione di ite di successioni si comporta bene rispetto alle operazioni algebriche di somma (e sottrazione), prodotto

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Soluzioni terzo compitino analisi matematica

Soluzioni terzo compitino analisi matematica Soluzioni terzo compitino analisi matematica 23 marzo 208 Esercizio. Calcolare, se esiste, Dimostrazione. Sia cos x F x = x+sin x x sin x x+sin x x sin x cos t ln + tdt. cos t ln + tdt, notiamo subito

Dettagli

2 + 2(seny) 2 per (x, y) (0, 0),

2 + 2(seny) 2 per (x, y) (0, 0), Analisi II, a.a. 017-018 Soluzioni 1) Sia f la funzione di due variabili definita da xy α (senx) + (seny) per (x, y) (0, 0), 0 in (0, 0) dove α 0 è un parametro reale fissato. Determinare l insieme di

Dettagli

I appello - 11 Gennaio 2016

I appello - 11 Gennaio 2016 Analisi Matematica - A.A. 5-6 Prove scritte di Analisi Matematica - A.A. 5/6 Corso di Laurea in Ingegneria Civile Corso di Laura in Ingegneria Informatica ed Elettronica I appello - Gennaio 6 Svolgere

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

APPELLO A DI AM1C - SESSIONE ESTIVA - 4 LUGLIO f(x) = 1 x e x 1

APPELLO A DI AM1C - SESSIONE ESTIVA - 4 LUGLIO f(x) = 1 x e x 1 Cognome e nome APPELLO A DI AMC - SESSIONE ESTIVA - 4 LUGLIO 2008 Esercizio. (a) Data la funzione f(x) = x e x x determinare: insieme di esistenza e di derivabilità, iti ed eventuali asintoti, derivata

Dettagli

VII ESERCITAZIONE DI AM1B

VII ESERCITAZIONE DI AM1B VII ESERCITAZIONE DI AM1B In questa lezione vi saranno esercizi su continuità ed uniforme continuità di funzioni e si darnno numerosi esempi di funzioni uniformemente continue. 1. Continuità di funzioni

Dettagli

Continuità di funzioni

Continuità di funzioni Continuità di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 2 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva

Dettagli

DERIVATE pag Calcolo della derivata prima [ ] [ ] [ ] ( ) ( 1. ( x x 1) f () x = x. xcos

DERIVATE pag Calcolo della derivata prima [ ] [ ] [ ] ( ) ( 1. ( x x 1) f () x = x. xcos Calcolo della derivata prima.0. f = 5 + 5 7.0. f sin +.0. f = log.0. f = log DERIVATE pag. = 5 ] 6 = f ' = cos + 7 [ ] f ' = f ' = f ' = cos sin = cos [ ].0.5 f = sin cos.0.6 ( f = )( + ) = 0 + 6 ].0.7

Dettagli

Limite Destro Finito

Limite Destro Finito Limite Destro Finito Quando la variabile assume valori via via più vicini ad a (ma sempre maggiori di a), i corrispondenti valori di f() si avvicinano sempre più al valore L. y scelta di ε y = f () y scelta

Dettagli

INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata

INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata In queste pagine utilizzeremo il simbolo R = [, + ]. Se x 0 R, con la scrittura x x 0 intenderemo che x x 0

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Funzioni continue Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Funzioni continue Analisi Matematica 1 1 / 44 Funzioni continue Definizione Siano f : A

Dettagli

1 ANALISI MATEMATICA A - Esercizi della settimana 3

1 ANALISI MATEMATICA A - Esercizi della settimana 3 1 ANALISI MATEMATICA A - Esercizi della settimana 3 1.1 Esercizio Una funzione f : R R si dice pari se f (x) = f ( x) per ogni x R; una funzione g : R R si dice dispari se g(x) = g( x) per ogni x R. 1.

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Tipologia A 1.1 Si enunci il teorema di derivazione della funzione inversa e lo si applichi al calcolo della derivata della funzione log x. 1.2 Il ite vale 0; x + sin x 1 + xe x non esiste; vale + ; vale

Dettagli

ESAME DI MATEMATICA GENERALE I (semestrale) SOLUZIONI DEL TEMA DEL 29 Gennaio 2001

ESAME DI MATEMATICA GENERALE I (semestrale) SOLUZIONI DEL TEMA DEL 29 Gennaio 2001 Esercizio Si enunci il teorema fondamentale del calcolo integrale. ESAME DI MATEMATICA GENERALE I (semestrale SOLUZIONI DEL TEMA DEL 9 Gennaio 00 SECONDA PROVA PARZIALE Teorema (fondamentale del calcolo:

Dettagli

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile ALCUNI COMPLEMENTI TEORICI Tra le classi di funzioni integrabili secondo Riemann, oltre alle funzioni continue (Paragrafo 66 del libro di testo), ci sono le funzioni monotone (limitate): Teorema Ogni funzione

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

LA FORMULA DI TAYLOR

LA FORMULA DI TAYLOR LA FORMULA DI TAYLOR LORENZO BRASCO Indice. Definizioni e risultati. Sviluppi notevoli 3.. Esponenziale 4.. Seno 4.3. Coseno 4.4. Una funzione razionale 5.5. Logaritmo 6 3. Esercizi 6. Definizioni e risultati

Dettagli

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2 Calcolo di forme indeterminate del tipo 0/0 Quando si deve calcolare il limite di rapporto di funzioni infintesime per x 0, si raccoglie la potenza di x al minimo esponente. Es. lim x 0 x 3 2x 2 + 6x x

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli