FUNZIONI ELEMENTARI Test di autovalutazione
|
|
|
- Alina Lanza
- 9 anni fa
- Visualizzazioni
Transcript
1 FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione f(x) = x 1 + 2x: (a) è iniettiva (b) è definita su IR (c) è suriettiva (d) non è invertibile 3 E data la funzione f(x) = 1 log x Allora: (a) f 1 ([ 1, 1]) = [0, 1] (b) non esiste f 1 ([ 1, 1]) (c) f 1 ([ 1, 1]) = f 1 ([0, 1]) (d) f 1 ([ 1, 1]) = {x IR : 1 1 log x 1} 4 E data la funzione f(x) = log(x x) Allora: (a) dom(f) = IR + (b) f non è iniettiva (c) im (f) = IR (d) f è pari 5 L inversa della funzione f(x) = x 2 x + 2: (a) non esiste (b) è la funzione g(x) = 1 + 4x 7 2 (c) è la funzione x = y 2 y + 2 (d) è la funzione h(x) = 1 ± 4x 7 2
2 Sono date le funzioni f(x) = sin x 2 e g(x) = x Allora: (a) dom (f g) = IR (b) dom (g f) = IR (c) im (f g) = [0, 1] (d) im (g f) = 7 Sono date le funzioni f(x) = x 2, g(x) = x, h(x) = x Allora: (a) h = f g (b) h = g f (c) h/ IR+ = f g (d) g f = f g 8 E data la funzione f(x) = log(x 2 x 2 + 1) Allora: (a) dom (f) = IR + (b) dom(f) = (2, + ) (c) f non è mai definita (d) im (f) = IR 9 E data la funzione f(x) = arcsin 2x 2 x 2 Allora: (a) dom (f) = [ 1, [ 1] (b) dom (f) = π 2, π ] ([ 2 (c) f 1 0, π ]) [ ] 2 = 3, 1 ([ (d) f 1 0, π ]) = {x IR : 0 2x 2 x 2 π } 10 Il più grande intervallo in cui la funzione f(x) = x + 1 2x 1 è invertibile : (a) è [ 1 2, 2] (b) è IR (c) f non è invertibile su nessun intervallo (d) è contenuto nell intervallo [ 1, 1] 11 La funzione h(x) = 2 sin 2 x + sin x 1: (a) è composta con la funzione g(t) = 2t 2 + t 1 (b) ha periodo π (c) è iniettiva [ (d) h 1 ([ 1, 0]) = 0, π ]
3 RISPOSTE 1 RISPOSTA ESATTA: (b) La funzione sin(2x 5) è composta della funzione g(x) = 2x 5, che ha come dominio e immagine IR, con la funzione h(t) = sin t, che ha per dominio IR e per immagine [ 1, 1] Si avrà dunque dom(f) = IR e im (f) = [ 1, 1] Pertanto (a) è falsa e (b) è vera Poiché sin(2x 5) = sin(2x) cos 5 cos(2x) sin 5, un semplice calcolo mostra la funzione f(x) ha lo stesso periodo della funzione sin(2x), cioè T= π Dunque (c) e (d) sono false 2 RISPOSTA ESATTA: { (a) x + 1 se 1 x < 1 Si ha : f(x) = 3x 1 se x 1 Dunque il grafico di f è l unione dei due archi di parabola ad asse orizzontale di equazioni {y = x + 1, 1 x < 1} e {y = 3x 1, x 1} Poiché sono due grafici di funzioni strettamente crescenti e f è continua, f risulta monotona crescente, dunque iniettiva e pertanto invertibile Quindi (a) è vera mentre (d) è falsa Come visto sopra, dom(f) = [ 1, + ) ; inoltre f assume solo valori positivi Dunque (b) e (c) sono false 3 RISPOSTA ESATTA: (c) Per definizione di controimmagine, e tenendo conto che la funzione radice assume solo valori positivi, si ha: f 1 ([ 1, 1]) = {x domf : 1 1 log x 1} = = {x domf : 0 1 log x 1} = {x domf : 0 1 log x 1} = f 1 ([0, 1]) Dunque (d) è errata e (c) è esatta (a) è errata perché, se x [0, 1] si ha 1 log x 1 (b) è errata, perché f 1 ([ 1, 1]) : infatti, ad esempio, f(1) = 1 e dunque 1 f 1 ([ 1, 1]) 4 RISPOSTA ESATTA: (c) Si ha: dom (f) = {x IR : x 0 x x > 0} = (1, + ) Dunque f non può essere pari Pertanto le risposte (a) e (d) sono errate Invece la risposta (c) è esatta, in quanto f è continua e inoltre lim f(x) = + x + lim f(x) = e x 1 + La risposta (b) è errata, perché f è iniettiva; infatti: log(a a) = log(b b) a a = b b a b = a b ( a b)( a + b) = a b a b = 0 a + b = 1 Poiché a e b sono entrambi maggiori di 1, la seconda possibilità non sussiste; la prima possibilità implica che necessariamente sia a = b Dunque f è iniettiva
4 5 RISPOSTA ESATTA: (a) La funzione f(x) = x 2 x + 2 non è invertibile, perché non è iniettiva: dunque la risposta (a) è esatta ; la risposta (b) è errata: sarebbe esatta se si considerasse l inversa non di f, ma della restrizione invertibile di f all intervallo [ 1 2, + ) L equazione x = y 2 y + 2 definisce la relazione il cui grafico è il simmetrico di f rispetto alla bisettrice y = x, e non è la funzione inversa di f Dunque la risposta (c) è errata La risposta (d) è errata, in quanto h(x) non è neppure una funzione (non è ad un sol valore) RISPOSTA ESATTA: (d) Si ha : (g f)(x) = sin x 2, (f g)(x) = sin x 2 Dunque dom(g f) =im(g f) =, mentre dom(f g) = [0, + ), im(f g) = [ 3, 1] 7 RISPOSTA ESATTA: (c) Infatti, si ha : (g f)(x) = x 2 = x, con dom (g f) = IR ; (f g)(x) = ( x) 2 = x, con dom(f g) = [0, + ) 8 RISPOSTA ESATTA: (c) Si ha infatti: dom(f) = {x IR : x 2 x > 0} E facile verificare (ad esempio graficamente) che, x IR, x 2 x Dunque (c) è vera mentre (a), (b) e (d) sono false 9 RISPOSTA ESATTA: (c) { } Si ha : dom(f) = x IR : 1 2x 2 x 2 1 = [ 0, 3] 4 Dunque (a) e (b) sono false Per definizione : f ([ ]) 1 0, π = {x IR : 0 arcsin 2x 2 x 2 Dunque (c) è vera mentre (d) è falsa π 2x 2 } = {x IR : 0 x } = [ 2 3, 1]
5 10 RISPOSTA ESATTA: (a) Si consideri preventivamente la funzione : x 2 se x 1 g(x) = x + 1 2x 1 = 3x se 1 < x < x se x 1 2 Dunque dom (f) = {x IR : g(x) 0 = [0, 2] Poiché g(x) è strettamente crescente nell intervallo I 1 = [ 0, 2] 1 e strettamente decrescente nell intervallo I 2 = [ 1 2, 2], e la funzione radice (dove esiste) conserva la monotonia del radicando, la funzione f sarà invertibile negli stessi intervalli I 1 e I 2 Pertanto la risposta (a) è esatta mentre le risposte (b), (c) e (d) sono errate 11 RISPOSTA ESATTA: (a) La funzione h(x) risulta la composta della funzione f(x) = sin(x) con la funzione g(t) = 2t 2 + t 1 Essa ha periodo 2π, e non è dunque iniettiva Pertanto (a) è vera mentre (b) e (c) sono false Data la periodicità di h, l insieme delle controimmagini dell intervallo [ 1, 0] comprende infiniti intervallo Tra questi uno è proprio l intervallo [ 0, π ], ma non è l unico Dunque anche (d) è falsa
FUNZIONI ELEMENTARI Esercizi risolti
FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme
Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz
Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x
Esercizi relativi al capitolo 2
Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti. Risolvere la disequazione x x +. è soddisfatta x IR ]. Disegnare i grafici di (a) y = x + x + 3 ; (b) y = x x
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione
Limiti e continuità Test di autovalutazione
Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x
DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?
DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
Funzioni (parte II).
Funzioni (parte II). Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 21 ottobre 214 Paola Mannucci e Alvise Sommariva Introduzione. 1/ 55 Funzioni trigonometriche.
Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.
Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire
Proprietà globali delle funzioni continue
Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione
Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).
Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.
INTEGRALI Test di autovalutazione
INTEGRALI Test di autovalutazione. Sia f una funzione continua su IR, e F una primitiva di f tale che F () = 5. Allora: (a) esiste k IR tale che F (x) f(x) =k, x IR (b) F (x) = x f(t) dt (c) F non è derivabile
Funzioni e grafici. prof. Andres Manzini
Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio
a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.
1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre
FUNZIONI E INSIEMI DI DEFINIZIONE
FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge
Continuità di funzioni
Continuità di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 2 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva
Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.
Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della
1 Funzioni reali di una variabile reale
1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
2.3. Esercizio. Disegnare il grafico delle seguenti funzioni f(x) = x x, g(x) = max(0, cos(x)), h(x) = min(0, sin(x))
ANALISI Soluzione esercizi 4 ottobre 0.. Esercizio. Disegnare il grafico delle funzioni f(x) = x 4, g(x) = x 3, r(x) = min(0, x 3 ), s(x) = 3 x Esistono software che disegnano i grafici di moltissime funzioni
Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni
ESERCITAZIONE: ESPONENZIALI E LOGARITMI
ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione
Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni
Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i
Corso di Analisi Matematica Funzioni di una variabile
Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce
Coordinate cartesiane nel piano
Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi
Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1
Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1
Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.
INTEGRALI Test di autovalutazione
INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva
Criterio di Monotonia
Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:
b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R
9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c
Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)
Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },
{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.
0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2.
1 Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. Esercizio 2. Sia f(x) = sin(log x ). Questa funzione è Esercizio 3.
Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni
Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x
1. Funzioni e grafici elementari
1. Funzioni e grafici elementari Davide Catania [email protected] Esercitazioni di Analisi Matematica 1 A.A. 2016/17 Funzioni e grafici Grafici deducibili Funzioni periodiche Funzioni simmetriche
FUNZIONI ELEMENTARI Funzione retta
1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra
Funzione Esponenziale
Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+
ESERCIZI INTRODUTTIVI
ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo
Calcolo differenziale Test di autovalutazione
Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
1. FUNZIONI IN UNA VARIABILE
1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di
A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame
COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni
CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A
Prova parziale di ANALISI MATEMATICA I - 5//207 Prova A da Si studino l insieme di definizione ed il segno della funzione definita fx) = log 2 ) 2 sinx3 cos x+5) + arctan 3 x 3 x + π 4 ) 2 Si risolva la
Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni
Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo
ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE
ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3
Matematica I, Funzione inversa. Funzioni elementari (II).
Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
Le funzioni reali di una variabile reale
Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B
Corso di Analisi Matematica. Funzioni reali di variabile reale
a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità
Ottavio Serra Esercizi di calcolo 2 Funzioni invertibili
Ottavio Serra Esercizi di calcolo Funzioni invertibili Una funzione f: A B iniettiva e suriettiva è biunivoca e perciò invertibile. Ricordo che f è iniettiva se per tutti gli, y di A, f() = f(y) implica
ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte).
ESERCIZI SU FUNZIONI. 1) Disegnare il grafico della funzione f : R R così definita y = f(x)= x +1 se x 0 -x 2 +1 se x < 0. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile
Analisi Matematica e Geometria 1
Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e
Verso il concetto di funzione
Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche
6. La disequazione A. per nessun x R;
Università degli Studi di Perugia - Facoltà di Ingegneria Terzo test d ingresso A.A. 0/0-6 Dicembre 0. Quale delle seguenti affermazioni è corretta? A. la funzione y = x è monotona crescente; B. le funzioni
Unità Didattica N 2 Le funzioni
Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.
Coordinate Cartesiane nel Piano
Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi
Funzioni. Parte prima. Daniele Serra
Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1
Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.
Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti
Facoltà di Ingegneria Università di Pisa
Facoltà di Ingegneria Università di Pisa Esame Debiti Formativi del 19/12/2005 1. 100 6 =... (A) 10 64 (B) 10 6 (C) 10 12 (D) 10 7 2. cos(120 ) + cos(60 ) =... (A) cos(60 ) (B) cos(180 ) (C) 0 (D) 1. log
12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.
Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese
Teorema di sostituzione o del limite di funzioni composte
Teorema di sostituzione o del limite di funzioni composte Questo teorema serve per calcolare il limite di funzioni composte sfruttando limiti fondamentali o altri limiti già noti. TEOREMA. Se esiste lim
Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica
Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi
, per cui le due curve f( x)
DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione
Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B
FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme
05 - Funzioni di una Variabile
Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016
Funzioni Pari e Dispari
Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della
Dispense di Matematica Analisi Matematica. Riccarda Rossi
Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/2010 2 Capitolo 1 Nozioni preliminari 4 Riccarda Rossi
3 LA RETTA REALE ESTESA
3 LA RETTA REALE ESTESA Abbiamo visto che i concetti di sup e inf sono utili per descrivere proprietà di insiemi superiormente/inferiormente limitati. Per coprire con questi concetti tutti gli insiemi
1.4 Geometria analitica
1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le
Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione
