1. Funzioni e grafici elementari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. Funzioni e grafici elementari"

Transcript

1 1. Funzioni e grafici elementari Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 A.A. 2016/17

2 Funzioni e grafici Grafici deducibili Funzioni periodiche Funzioni simmetriche Esercizi assegnati

3 Cos è una funzione da A in B? (A, B insiemi non vuoti) È una regola che a ogni elemento a A associa (fa corrispondere) esattamente un elemento b B (cioè uno e uno solo): f : A B A = domf è detto dominio di f. Cos è il grafico di una funzione? a b = f (a) Grf = { (x,y) A B : y = f (x) }

4 Test della retta verticale. Un grafico rappresenta una funzione se e solo se ogni retta verticale lo interseca in al più un punto (cioè in nessun punto o al massimo in un punto).

5 Esercizio 1 Quali grafici rappresentano una funzione?

6 Cos è l immagine di una funzione f : A B? Sono gli elementi di B associati a qualche elemento di A: immf = f (A) = { y B : y = f (x) per qualche x A } Data una funzione f : A B e dato un insieme A 1 A, cos è l immagine di A 1 tramite f? Sono gli elementi di B associati a qualche elemento di A 1 : f (A 1 ) = { y B : y = f (x) per qualche x A 1 }

7 Esercizio 2 Determina dominio e immagine della funzione f il cui grafico è riportato in figura. f f

8 Esercizio 3 Dato il grafico della funzione f in figura, determina f (], 1] [0,3[). f f

9 Data una funzione f : A B e dato un insieme B 1 B, cos è la preimmagine di B 1 tramite f? Sono gli elementi di A associati a qualche elemento di B 1 : f 1 (B 1 ) = { x A : f (x) B 1 }

10 Esercizio 4 Dato il grafico della funzione f in figura, determina f 1 (] 2,2[). f f

11 Quando una funzione f : A B è iniettiva? Se a elementi diversi di A corrispondono elementi diversi di B: x 1 /= x 2 f (x 1 ) /= f (x 2 ) x 1,x 2 A Quando una funzione f : A B è suriettiva su B? Se ogni elemento di B è associato a qualche elemento di A: f (A) = B cioè y B x A : f (x) = y Quando una funzione f : A B è biettiva? Se è sia iniettiva che suriettiva, cioè ogni elemento di B corrisponde esattamente a un elemento di A: y B!x A : f (x) = y

12 Test della retta orizzontale. Una funzione è iniettiva se e solo se ogni retta orizzontale ne interseca il grafico in al più un punto. Una funzione è suriettiva su B 1 se e solo se ogni retta orizzontale y = b, con b B 1, ne interseca il grafico in almeno un punto. Nota sulla suriettività. f : A f (A) è automaticamente suriettiva.

13 Esercizio 5 Individua le funzioni iniettive e quelle suriettive su R. f 1 f 2

14 Esercizio 6 Individua le funzioni iniettive e quelle suriettive su R. f 3 f 4

15 Funzioni e grafici Grafici deducibili Funzioni periodiche Funzioni simmetriche Esercizi assegnati

16 Valore assoluto. x = { x se x 0, x se x < 0. Nota: x 2 = x.

17 Grafico di y = f ( x ). Grafico di y = f (x).

18 Esercizio 7 Traccia il grafico di y = 3x 2 1.

19 Esercizio 8 Traccia il grafico di y = x 2 1 2x.

20 y = x 4, y = x 6 y = 1 x 2, y = 1 x 4 y = x 3, y = x 5 y = 1 x 3, y = 1 x 5

21 y = x 1/2, y = x 1/4 y = x 1/3, y = x 1/5 y = x a y = 1 x a a 4 a 3 y = x a 1 a 3 a 2 a 1 a 2 a 4 a R \ Q, 0 < a 1 < a 2 < 1 < a 3 < a 4

22 Funzione esponenziale: y = b x. Grafico per 0 < b < 1 Grafico per b > 1, es. y = e x ( e è circa 2.7) 1 1 Proprietà a,b > 0 r,s R n N,n 1 b 0 = 1, b 1 = b, b r > 0, ( n ) b r n r = b = b r/n, b r+s = b r b s, b r s = br b s, b rs = (b r ) s, (ab) r = a r b r, ( ) 1 r b r = = 1 ( a ) r b b r, a r = b b r.

23 Grafico di y = f (x) + k, (k > 0) Grafico di y = f (x) k, (k > 0)

24 Grafico di y = f (x + h), (h > 0) Grafico di y = f (x h), (h > 0)

25 Traslazioni a confronto. y = f (x) + k y = f (x + h) y = f (x) k y = f (x h)

26 Esercizio 9 Traccia il grafico di y = ( 1 2) x

27 Quando una funzione f : A B è invertibile? Quando è iniettiva. Se f : A B è invertibile, cos è la sua funzione inversa? f 1 : f (A) A b a = f 1 (b) quell unico a tale che f (a) = b. Nota: f 1 (x) /= ( f (x) ) 1 = 1 f (x).

28 Proprietà fondamentale delle funzioni inverse. Se f : A B è invertibile, allora f 1( f (x) ) = x x A, f ( f 1 (x) ) = x x f (A). Grafico di y = f 1 (x): simmetrico al Grf rispetto alla bisettrice y = x.

29 Funzione logaritmo: y = lg b x (b > 0,b /= 1). La funzione b x : R ]0,+ [ è invertibile. Per definizione, y = lg b x: ]0,+ [ R è la funzione inversa di y = b x. Grafico con 0 < b < 1 Grafico con b > 1, es. b = e (lnx := lg e x) y = e x 1 1 y = lnx y = lg 1 (x) 2 1

30 Proprietà dei logaritmi. a,b ]0,+ [ \ { 1}, r,s > 0, t R Inoltre lg b 1 = 0, lg b b = 1, ( r ) lg b (rs) = lg b r + lg b s, lg b = lg s b r lg b s, lg b r t = t lg b r, lg b r = lg a r lg a b. y = lg b x x = b y, lg b b x = x x R, b lg b x = x x ]0,+ [.

31 Esercizio 10 Traccia il grafico di y = lg 1 (4x). 2

32 Esercizio 11 Traccia il grafico di y = e 2lnx.

33 Funzioni iperboliche. coshx = ex +e x, sinhx = ex e x 2 2 f (x) = sinhx, tanhx = ex e x e x +e x. f (x) = coshx f (x) = tanhx cosh 2 x sinh 2 x = 1 x R, tanhx = sinhx coshx { X = coshx, Y = sinhx X 2 Y 2 = 1 iperbole x R.

34 Come si ricava esplicitamente l espressione della funzione inversa di una funzione invertibile y = f (x)? ( arcoshx := cosh 1 x = ln x + ( arsinhx := sinh 1 x = ln ) x 2 1 x + x artanhx := tanh 1 x = 1 2 ln 1 + x 1 x x [1,+ [, ) x R, x ] 1,1[.

35 Grafico di y = f (x). Grafico di y = f ( x).

36 Esercizio 12 Traccia il grafico di y = tanh(1 x).

37 Grafico di y = Bf (x) B > 1. Grafico di y = bf (x) 0 < b < 1.

38 Grafico di y = f (Ax) A > 1. Grafico di y = f (ax) 0 < a < 1.

39 Dilatazioni e contrazioni a confronto. y = Bf (x) y = f (Ax) y = bf (x) y = f (ax)

40 Esercizio 13 Traccia il grafico di y = tan(2 x ).

41 Esercizio 14 Traccia il grafico di y = cos ( ) 2π 3x 6.

42 In alternativa: y = cos ( ) ( 2π 3x 6 = cos x 2 π ) 3

43 y = arccosx π y = arcsinx π y = arctanx π 2

44 Conclusioni sui grafici deducibili. Le trasformazioni riguardano tutti i grafici reali, non solo quelli delle funzioni elementari richiamate. A volte è necessario applicare le trasformazioni in un preciso ordine, altre volte no. Se un certo ordine non funziona, provarne un altro. Per tracciare y = f ( x h ), rappresentiamo y = f (x), y = f ( x ) e infine y = f ( x h ). Per tracciare y = f (h x), riscriviamo y = f (h x) = f ( (x h) ) e rappresentiamo y = f (x), y = f ( x) e infine y = f ( (x h) ). Per tracciare y = f (ax h), riscriviamo y = f (ax h) = f e infine y = f ( a ( x h a ) ) e rappresentiamo y = f (x), y = f (ax) ( a ( x h a ) ). Memorizza i grafici delle funzioni elementari con le indicazioni numeriche fondamentali!

45 Funzioni e grafici Grafici deducibili Funzioni periodiche Funzioni simmetriche Esercizi assegnati

46 Quando una funzione f : A R R è T-periodica (periodica di periodo T)? Quando contemporaneamente: A è periodico, cioè x A x + T A; f (x + T) = f (x) per ogni x A. Risulta f (x + Tk) = f (x) per ogni x A, per ogni k Z. Esempi: y = cosx, y = sinx y = tanx

47 Esercizio 15 Determina il periodo di y = tan ( x 3) cosx.

48 Verifica della periodicità di y = tan ( x 3) cosx.

49 y = tan ( x 3) cosx, f (x + 6π) = f (x)

50 Esercizio 16 Determina il periodo di y = sin 2 x. 1 π

51 Funzioni e grafici Grafici deducibili Funzioni periodiche Funzioni simmetriche Esercizi assegnati

52 Esercizio 17 Quali grafici rappresentano una funzione?

53 Esercizio 18 Quali grafici rappresentano funzioni iniettive, funzioni suriettive su R, funzioni suriettive su [0,1] (fra i grafici ), funzioni biettive da R in R?

54 Esercizio 19 Traccia il grafico delle seguenti funzioni; stabilisci graficamente se sono iniettive e qual è la loro immagine. (a) y = 3x + 2, (b) y = 2x x + 1, { (c) y = 3 x 1 x se x 0, x + 2, (d) y = 1 x 2 se x < 0, (e) y = x + 1 x, (f) y = x x, ( ) 1 x (g) y = + 2, (h) y = x 1, (i) y = e x 2 3, (j) y = lg(1 x), (k) y = lg 1 2 (x + 3), (l) y = lnx 2, ( (m) y = 2sin x π 4 ), (n) y = tan( x 1), (o) y = 2arctan(3x 6), (p) y = arccos x.

55 Esercizio 20 Traccia il grafico delle seguenti funzioni; stabilisci graficamente se sono iniettive e qual è la loro immagine. (a) y = 1 3x, (b) y = 1 + 9x 2, (c) y = x 2 3x x, (d) y = x 3 + 1, (e) y = 2x 4, (f) y = 3 x, (g) y = x 1/2, (h) y = x π 1, (i) y = 2e x 1, (j) y = ln x 1, 2 (k) y = artanh( 2 x ), (l) y = coshx 2, π ), (m) y = 2 sin( 3 3 x (n) y = cos 2 x sin 2 x, (o) y = arcsin(sinx), (p) y = cos(arccosx).

56 Esercizio 21 Data f (x) = 3x 1 x+2, determina graficamente f (] 2,1]), f ([ 1,1]), f (],1] \ { 2}), f 1 (]3,4]). Esercizio 22 Data f (x) = 3 x 1 x +2, determina f 1 ([1,2]) e f 1 ([ 2, 1]). Esercizio 23 Trova f (R), f ([ 1,2]), f 1 ({0}) e f 1([ 1 2, 1 2]), per f (x) = { x 1 se x 0, x 2 + 2x se x < 0. Esercizio 24 Data f (x) = 4x x 2, determina graficamente domf, immf, f ([1,2]), f (]1,4]).

57 Esercizio 25 Data f (x) = x+ x x 2, trova graficamente dominio, immagine e f 1 ([ 1,3]). Esercizio 26 Traccia il grafico di f (x) = 1 2 9x x 8; in base a questo, trova domf, stabilisci se la funzione è iniettiva e scegli il codominio di f affinché sia suriettiva. Esercizio 27 Determina grafico, dominio e immagine di y = 2sinx 1 e y = cos(x +π) + 2.

Funzioni (parte II).

Funzioni (parte II). Funzioni (parte II). Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 21 ottobre 214 Paola Mannucci e Alvise Sommariva Introduzione. 1/ 55 Funzioni trigonometriche.

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

Dispense di Matematica Analisi Matematica. Riccarda Rossi

Dispense di Matematica Analisi Matematica. Riccarda Rossi Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/2010 2 Capitolo 1 Nozioni preliminari 4 Riccarda Rossi

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

Funzioni elementari: logaritmi 1 / 11

Funzioni elementari: logaritmi 1 / 11 Funzioni elementari: logaritmi 1 / 11 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log a x con a > 0 e a 1. 2 / 11 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni

Dettagli

Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola

Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola Equazioni goniometriche elementari 1 Questa presentazione è dedicata a risolvere equazioni trigonometriche elementari Sono dette elementari le equazioni del tipo sin(x)=m, cos(x) = m e tan(x) = m, con

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

Funzioni elementari. per ogni x R. 1 se n =0

Funzioni elementari. per ogni x R. 1 se n =0 Funzioni elementari 1 Funzioni elementari...pag. 1 1.1. Potenze ad esponente naturale...pag. 1 1.2. Potenze ad esponente intero negativo...pag. 2 1.3. Potenze ad esponente razionale positivo non intero...pag.

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 Il simbolo o piccolo Siano f (x) e g(x) funzioni infinitesime per x x 0 e consideriamo f (x) il lim

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte Limiti e continuità Richiami sulle unzioni - parte II Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Continuità di funzioni

Continuità di funzioni Continuità di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 2 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

Università degli studi di Udine - Sede di Pordenone

Università degli studi di Udine - Sede di Pordenone Università degli studi di Udine - Sede di Pordenone Facoltà di Scienze della Formazione - Corso di Corso di Matematica e Statistica Tema d esame AA2009/2010-27 gennaio 2010 Esercizio 1a Esplicitare la

Dettagli

Derivate. Paola Mannucci e Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 12 novembre 2014

Derivate. Paola Mannucci e Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 12 novembre 2014 Derivate. Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 12 novembre 2014 Paola Mannucci e Alvise Sommariva Derivate. 1/ 106 Approssimazione Problema. Data

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni

Dettagli

1 Funzioni. M. Simonetta Bernabei & Horst Thaler

1 Funzioni. M. Simonetta Bernabei & Horst Thaler 1 Funzioni M. Simonetta Bernabei & Horst Thaler A function f from set A to set B is a rule of correspondence that assigns to each element x in the set A exactly one element y in the set B. Y 1 2 3 4 5

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio. Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la

Dettagli

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Consideriamo le seguenti situazioni: Il volume V di una sfera di raggio r è dato dalla formula V = 4 3 r3. Dopo t anni, la massa rimasta di una quantità iniziale m 0 di

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

Note di trigonometria

Note di trigonometria Note di trigonometria Daniel Gessuti indice Elementi di Trigonometria Seno, coseno e tangente Relazione fondamentale Secante, cosecante e cotangente 3 Le funzioni seno, coseno e tangente e le loro inverse

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

Elenco dei Simboli. Appendice A. N: insieme dei numeri naturali. Z: insieme dei numeri interi. Q: insieme dei numeri razionali.

Elenco dei Simboli. Appendice A. N: insieme dei numeri naturali. Z: insieme dei numeri interi. Q: insieme dei numeri razionali. Appendice A Elenco dei Simboli : per ogni, qualunque, tutti. : esiste almeno uno.!: esiste un unico. : nonesiste. N: insieme dei numeri naturali. Z: insieme dei numeri interi. Q: insieme dei numeri razionali.

Dettagli

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Edile-Architettura e dell Edilizia Analisi Matematica I Prova Scritta del 8.2.

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Edile-Architettura e dell Edilizia Analisi Matematica I Prova Scritta del 8.2. Analisi Matematica I Prova Scritta del 822013 1 Data la funzione f(x) = x + 1 + x + ln ( ) 2x + 1 x 1 (a) Studiare il dominio di definizione e l esistenza di eventuali asintoti orizzontali/verticali/obliqui

Dettagli

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE IIIC. Insegnante Pellegrino Innocenza. Disciplina MATEMATICA

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE IIIC. Insegnante Pellegrino Innocenza. Disciplina MATEMATICA PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a. s. 2016-2017 CLASSE IIIC Insegnante Pellegrino Innocenza Disciplina MATEMATICA PROGRAMMA SVOLTO Equazioni e disequazioni algebriche Ripasso di equazioni

Dettagli

Ottavio Serra Esercizi di calcolo 2 Funzioni invertibili

Ottavio Serra Esercizi di calcolo 2 Funzioni invertibili Ottavio Serra Esercizi di calcolo Funzioni invertibili Una funzione f: A B iniettiva e suriettiva è biunivoca e perciò invertibile. Ricordo che f è iniettiva se per tutti gli, y di A, f() = f(y) implica

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Esercitazione su grafici di funzioni elementari e domini di funzioni

Esercitazione su grafici di funzioni elementari e domini di funzioni Esercitazione su grafici di funzioni elementari e domini di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Ottobre 0. Come tali sono ben lungi dall essere esenti

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Esercitazioni di Analisi Matematica I

Esercitazioni di Analisi Matematica I Esercitazioni di Analisi Matematica I Andrea Corli 3 agosto 6 ii Indice Introduzione v Nozioni preliminari. Sommatorie.......................................... Fattoriali...........................................3

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo

Dettagli

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE:

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE: Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa 12 gennaio 2013 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica.

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. 2ALS Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. Si consiglia il libro: Matematica-recupero dei debiti formativi e ripasso estivo 2 ISBN 978-88-24741279

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

FUNZIONI E LORO PROPRIETA'

FUNZIONI E LORO PROPRIETA' FUNZIONI E LORO PROPRIETA' Definizione: Dati due insiemi A e B si dice funzione di A in B una qualunque legge che faccia corrispondere ad ogni elemento di A uno ed un solo elemento di B. Si indica con

Dettagli

LE RELAZIONI E LE FUNZIONI

LE RELAZIONI E LE FUNZIONI LE RELAZIONI E LE FUNZIONI ESERCIZI. Le relazioni binarie e la loro rappresentazione Rappresenta in forma sagittale e tramite una tabella a doppia entrata la seguente relazione binaria e scrivi le coppie

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x

Dettagli

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie LICEO ARTISTICO STATALE BRUNO MUNARI, CREMONA Anno scolastico 2011-2012 PROGRAMMA SVOLTO DI MATEMATICA CLASSE IV A Ripasso: le disequazioni e le loro proprietà: (pag. 2, Volume SL 1) - gli intervalli limitati

Dettagli

Formule Utili Analisi Matematica per Informatici a.a

Formule Utili Analisi Matematica per Informatici a.a Formule Utili Analisi Matematica per Informatici a.a. 006-007 Dott. Simone Zuccher dicembre 006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione

Dettagli

ELETTRONICA ELETTROTECNICA AUTOMAZIONE

ELETTRONICA ELETTROTECNICA AUTOMAZIONE ISTITUTO SUPERIORE ENRICO FERMI PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE a.s. 2016/2017 INDIRIZZO SCOLASTICO: BIENNIO IT.TECN: X TRIENNIO IT.TECN. LICEO SC. APPLICATE. DISCIPLINA: COMPLEMENTI DI MATEMATICA

Dettagli

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B) Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },

Dettagli

In base alla definizione di limite, la definizione di continuità può essere data come segue:

In base alla definizione di limite, la definizione di continuità può essere data come segue: Def. Sia f una funzione a valori reali definita in un intervallo I (itato o ilitato) e sia un punto interno all intervallo I. Si dice che f è continua nel punto se: ( )= ( ) Una funzione f è continua in

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 014-015 Classe: 3 H Docente: Paola Zanolo Disciplina: Matematica Ripassare tutto il programma preparando un formulario per

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R 9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 lsantone@liceoantonelli.novara.it http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 26 - SESSIONE SUPPLETIVA QUESITO Si considerino il rettangolo ABCD e la parabola avente l asse di simmetria parallelo alla retta AD, il vertice nel punto medio del lato AB e passante

Dettagli

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 7 Insegnante MIANI LUCIO Classe 4LTS Materia matematica preventivo consuntivo 96 0 titolo modulo 1. Funzione esponenziale e logaritmica 2. Le coniche 3. Disequazioni

Dettagli

Funzioni funzione univocità relazione univoca variabile dipendente variabile indipendente primo insieme secondo insieme

Funzioni funzione univocità relazione univoca variabile dipendente variabile indipendente primo insieme secondo insieme Funzioni Chiamiamo unzione un insieme di coppie ordinate che goda della seguente proprietà: non possono appartenere alla stessa unzione due coppie ordinate che abbiano lo stesso primo elemento e diversi

Dettagli

ARGOMENTI SETTIMANA 1.

ARGOMENTI SETTIMANA 1. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - A. Benvegnù 1 Date d esame: 24/1/217, aule P3-Lu3-Lu4; ore 9.-12.; 24/2/217, aule P3-Lu3-Lu4; ore 9.- 12.; 28/6/217, aule

Dettagli

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Il corso prevede 3 ore settimanali Sono previste 2 verifiche scritte nel trimestre e 3 nel pentamestre PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Testo in adozione:

Dettagli

Esercizi sugli integrali impropri

Esercizi sugli integrali impropri Esercizi sugli integrali impropri Esercizio. Studiare 2 x4 dx. Svolgimento: è un integrale improprio, in quanto f(x) =, x (, 2] ha una singolarità in : x4 lim x + x4 = +. Osserviamo che f è positiva, quindi

Dettagli

A grande richiesta, esercizi di matematica.!

A grande richiesta, esercizi di matematica.! A grande richiesta, esercizi di matematica.! A partire dalla conoscenza del grafico di f(x) = sinx disegna il grafico delle seguenti funzioni g(x) =sin(x+π/4); g(x) = sin(x-π/3) g(x) =sin(2x); g(x) = sin(x/3)

Dettagli

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati ora.

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati ora. Si raccolgono qui temi d esame, esercizi e domande di teoria dati negli anni 3-5 nei corsi di Analisi Matematica I presso il DTG di Vicenza. Il materiale è stato reso disponibile dai docenti che hanno

Dettagli

Indice degli argomenti

Indice degli argomenti Indice degli argomenti 1 Teoria degli insiemi 2 Numeri 3 Calcolo combinatorio 4 Approssimazioni, propagazione degli errori, percentuali 5 Funzioni reali 6 Funzioni lineari 7 Programmazione lineare 8 Funzioni

Dettagli