Funzioni reali di variabile reale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Funzioni reali di variabile reale"

Transcript

1 Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50

2 Funzioni Definizione Sia A un sottoinsieme di R. Si chiama funzione reale definita suul insieme A,una legge che ad ogni elemento x di A associa uno e un solo numero reale. (Università di Bologna) Funzioni reali di variabile reale 2 / 50

3 Funzioni Definizione Sia A un sottoinsieme di R. Si chiama funzione reale definita suul insieme A,una legge che ad ogni elemento x di A associa uno e un solo numero reale. In questo modo viene definita una funzione f da A in R che è indicata : f : A R. (Università di Bologna) Funzioni reali di variabile reale 2 / 50

4 Funzioni Definizione Sia A un sottoinsieme di R. Si chiama funzione reale definita suul insieme A,una legge che ad ogni elemento x di A associa uno e un solo numero reale. In questo modo viene definita una funzione f da A in R che è indicata : L insieme A è detto dominio di f. f : A R. (Università di Bologna) Funzioni reali di variabile reale 2 / 50

5 Funzioni Definizione Sia A un sottoinsieme di R. Si chiama funzione reale definita suul insieme A,una legge che ad ogni elemento x di A associa uno e un solo numero reale. In questo modo viene definita una funzione f da A in R che è indicata : f : A R. L insieme A è detto dominio di f. Per ogni x di A il numero associato ad x si indica con f (x) ed è detto immagine di x attraverso f. (Università di Bologna) Funzioni reali di variabile reale 2 / 50

6 Funzioni Definizione Sia A un sottoinsieme di R. Si chiama funzione reale definita suul insieme A,una legge che ad ogni elemento x di A associa uno e un solo numero reale. In questo modo viene definita una funzione f da A in R che è indicata : f : A R. L insieme A è detto dominio di f. Per ogni x di A il numero associato ad x si indica con f (x) ed è detto immagine di x attraverso f. L insieme f (A) = {y R :esista almeno un x A tale chef (x) = y}, è detto immagine di f. (Università di Bologna) Funzioni reali di variabile reale 2 / 50

7 Funzioni Definizione Sia A un sottoinsieme di R. Si chiama funzione reale definita suul insieme A,una legge che ad ogni elemento x di A associa uno e un solo numero reale. In questo modo viene definita una funzione f da A in R che è indicata : f : A R. L insieme A è detto dominio di f. Per ogni x di A il numero associato ad x si indica con f (x) ed è detto immagine di x attraverso f. L insieme f (A) = {y R :esista almeno un x A tale chef (x) = y}, è detto immagine di f. (Università di Bologna) Funzioni reali di variabile reale 2 / 50

8 Variabili dipendenti e indipendenti (Università di Bologna) Funzioni reali di variabile reale 3 / 50

9 Variabili dipendenti e indipendenti Con queste notazioni x è detta variabile indipendente, mentre y è detta variabile dipendente. (Università di Bologna) Funzioni reali di variabile reale 3 / 50

10 Variabili dipendenti e indipendenti Con queste notazioni x è detta variabile indipendente, mentre y è detta variabile dipendente. Si osservi che le variabili sono variabile mute cioè la funzine è individuata dal dominio e dalla legge che associa ad un elemento del dominio la sua immagine. (Università di Bologna) Funzioni reali di variabile reale 3 / 50

11 Variabili dipendenti e indipendenti Con queste notazioni x è detta variabile indipendente, mentre y è detta variabile dipendente. Si osservi che le variabili sono variabile mute cioè la funzine è individuata dal dominio e dalla legge che associa ad un elemento del dominio la sua immagine. A seconda delle necessità, si daranno alla variabile indipendente e a quella dipendente nomi diversi da x e y. (Università di Bologna) Funzioni reali di variabile reale 3 / 50

12 Variabili dipendenti e indipendenti Con queste notazioni x è detta variabile indipendente, mentre y è detta variabile dipendente. Si osservi che le variabili sono variabile mute cioè la funzine è individuata dal dominio e dalla legge che associa ad un elemento del dominio la sua immagine. A seconda delle necessità, si daranno alla variabile indipendente e a quella dipendente nomi diversi da x e y. Ad esempio se si vuole descrivere uno spostamento in fisica, si usa in genere, t = f (s) che rappresenta una funzione con variabile indipendente s (lo spazio) e variabile dipendente t (il tempo). (Università di Bologna) Funzioni reali di variabile reale 3 / 50

13 Grafico Definizione L insieme G(f ) = {(x,y) R 2 : x A e y = f (x)} è detto grafico della funzione f : A R. (Università di Bologna) Funzioni reali di variabile reale 4 / 50

14 Grafico Definizione L insieme G(f ) = {(x,y) R 2 : x A e y = f (x)} è detto grafico della funzione f : A R. Il grafico di una funzione fornisce una descrizione geometrica della funzione e ne visualizza le proprietà: in particolare nel caso di funzione reale di variabile reale qui considerato, (Università di Bologna) Funzioni reali di variabile reale 4 / 50

15 Grafico Definizione L insieme G(f ) = {(x,y) R 2 : x A e y = f (x)} è detto grafico della funzione f : A R. Il grafico di una funzione fornisce una descrizione geometrica della funzione e ne visualizza le proprietà: in particolare nel caso di funzione reale di variabile reale qui considerato, il grafico è un sottoinsieme del piano cartesiano, (Università di Bologna) Funzioni reali di variabile reale 4 / 50

16 Grafico Definizione L insieme G(f ) = {(x,y) R 2 : x A e y = f (x)} è detto grafico della funzione f : A R. Il grafico di una funzione fornisce una descrizione geometrica della funzione e ne visualizza le proprietà: in particolare nel caso di funzione reale di variabile reale qui considerato, il grafico è un sottoinsieme del piano cartesiano, il dominio è un sottoinsieme dell asse delle ascisse, (Università di Bologna) Funzioni reali di variabile reale 4 / 50

17 Grafico Definizione L insieme G(f ) = {(x,y) R 2 : x A e y = f (x)} è detto grafico della funzione f : A R. Il grafico di una funzione fornisce una descrizione geometrica della funzione e ne visualizza le proprietà: in particolare nel caso di funzione reale di variabile reale qui considerato, il grafico è un sottoinsieme del piano cartesiano, il dominio è un sottoinsieme dell asse delle ascisse, l immagine f (A) è un sottoinsieme dell asse delle ordinate. (Università di Bologna) Funzioni reali di variabile reale 4 / 50

18 Grafico Definizione L insieme G(f ) = {(x,y) R 2 : x A e y = f (x)} è detto grafico della funzione f : A R. Il grafico di una funzione fornisce una descrizione geometrica della funzione e ne visualizza le proprietà: in particolare nel caso di funzione reale di variabile reale qui considerato, il grafico è un sottoinsieme del piano cartesiano, il dominio è un sottoinsieme dell asse delle ascisse, l immagine f (A) è un sottoinsieme dell asse delle ordinate. In particolare il grafico è un sottoinsieme di punti del piano cartesiano tale che, (Università di Bologna) Funzioni reali di variabile reale 4 / 50

19 Grafico Definizione L insieme G(f ) = {(x,y) R 2 : x A e y = f (x)} è detto grafico della funzione f : A R. Il grafico di una funzione fornisce una descrizione geometrica della funzione e ne visualizza le proprietà: in particolare nel caso di funzione reale di variabile reale qui considerato, il grafico è un sottoinsieme del piano cartesiano, il dominio è un sottoinsieme dell asse delle ascisse, l immagine f (A) è un sottoinsieme dell asse delle ordinate. In particolare il grafico è un sottoinsieme di punti del piano cartesiano tale che, su ogni retta parallela all asse y passante per un punto (a,0) del dominio, c è uno e un sol punto del grafico. (Università di Bologna) Funzioni reali di variabile reale 4 / 50

20 Il seguente grafico rappresenta una funzione: Il seguente grafico non rappresenta una funzione: (Università di Bologna) Funzioni reali di variabile reale 5 / 50

21 Esempi La funzione f : R R. f (x) = 1 è una funzione costante che associa ad ogni numero reale il numero 1 Il suo dominio è l insieme dei numeri reali, la sua immagine è l insieme { 1} (Università di Bologna) Funzioni reali di variabile reale 6 / 50

22 La funzione f : [ 4,5) R f (x) = 1 x è una funzione con dominio [ 4,5) e immagine f ([ 4,5)) = ( 4,5]. Si noti che il punto ( 4,5) appartiene al grafico di f, mentre il punto (5, 4) non appartiene al grafico di f. (Università di Bologna) Funzioni reali di variabile reale 7 / 50

23 Funzione identità La funzione f : R R così definita f (x) = x è chiamata funzione identità, ha dominio e immagine l insieme dei numeri reali R. (Università di Bologna) Funzioni reali di variabile reale 8 / 50

24 Funzione quadrato La funzione f : R R con f (x) = x 2 è una funzione con dominio R e immagine f (R) = [0,+ ) (Università di Bologna) Funzioni reali di variabile reale 9 / 50

25 Funzione definita a pezzi La funzione f : R R così definita f (x) = x 2 se x < 1 2 se 1 x 1 x se 1 < x ha dominio R e immagine f (R) = { 2} [1,+ ). (Università di Bologna) Funzioni reali di variabile reale 10 / 50

26 Funzione cubo La funzione f : R R con f (x) = x 3 è una funzione con dominio R e immagine f (R) = R. (Università di Bologna) Funzioni reali di variabile reale 11 / 50

27 Funzioni iniettive Una funzione f : A R è tale se ad ogni punto del dominio, corrisponde uno e un solo elemento nell immagine, (Università di Bologna) Funzioni reali di variabile reale 12 / 50

28 Funzioni iniettive Una funzione f : A R è tale se ad ogni punto del dominio, corrisponde uno e un solo elemento nell immagine, ma dato un elemento dell immagine può provenire tramite f da di più di un punto del dominio. (Università di Bologna) Funzioni reali di variabile reale 12 / 50

29 Funzioni iniettive Una funzione f : A R è tale se ad ogni punto del dominio, corrisponde uno e un solo elemento nell immagine, ma dato un elemento dell immagine può provenire tramite f da di più di un punto del dominio. Quando ogni elemento dell immagine di f proviene da un solo elemento di A, la funzione f si dice iniettiva. Quindi (Università di Bologna) Funzioni reali di variabile reale 12 / 50

30 Funzioni iniettive Una funzione f : A R è tale se ad ogni punto del dominio, corrisponde uno e un solo elemento nell immagine, ma dato un elemento dell immagine può provenire tramite f da di più di un punto del dominio. Quando ogni elemento dell immagine di f proviene da un solo elemento di A, la funzione f si dice iniettiva. Quindi Definizione f : A R è iniettiva se ogni volta che f (x 1 ) = f (x 2 )allora x 1 = x 2 (Università di Bologna) Funzioni reali di variabile reale 12 / 50

31 Grafico di funzioni iniettive Una funzione è iniettiva se il suo grafico gode della seguente proprietà : (Università di Bologna) Funzioni reali di variabile reale 13 / 50

32 Grafico di funzioni iniettive Una funzione è iniettiva se il suo grafico gode della seguente proprietà : ogni retta orizzontale passante per un punto dell immagine, interseca il grafico in un solo punto. (Università di Bologna) Funzioni reali di variabile reale 13 / 50

33 Grafico di funzioni iniettive Una funzione è iniettiva se il suo grafico gode della seguente proprietà : ogni retta orizzontale passante per un punto dell immagine, interseca il grafico in un solo punto. Ad esempio la funzione f : R R : f (x) = x 2 non è iniettiva, infatti f (x) = 9 ha due soluzioni: x = 3 e x = 3 (Università di Bologna) Funzioni reali di variabile reale 13 / 50

34 La funzione f : R R : f (x) = 2x 1 è iniettiva, infatti sia f (x 1 ) = f (x 2 ) cioè 2x 1 1 = 2x 2 1 implica x 1 = x 2 (Università di Bologna) Funzioni reali di variabile reale 14 / 50

35 Anche la funzione f : R R : f (x) = x 3 è iniettiva, infatti sia f (x 1 ) = f (x 2 ) cioè (x 1 ) 3 = (x 2 ) 3 implica x 1 = x 2. (Università di Bologna) Funzioni reali di variabile reale 15 / 50

36 Somma, prodotto, quoziente di funzioni reali Sia f : A R e e g : B R due funzioni reali di variabili reale. (Università di Bologna) Funzioni reali di variabile reale 16 / 50

37 Somma, prodotto, quoziente di funzioni reali Sia f : A R e e g : B R due funzioni reali di variabili reale. Definiamo somma il prodotto di f e g come segue: (Università di Bologna) Funzioni reali di variabile reale 16 / 50

38 Somma, prodotto, quoziente di funzioni reali Sia f : A R e e g : B R due funzioni reali di variabili reale. Definiamo somma il prodotto di f e g come segue: f + g : A B R, (f + g)(x) = f (x) + g(x), (Università di Bologna) Funzioni reali di variabile reale 16 / 50

39 Somma, prodotto, quoziente di funzioni reali Sia f : A R e e g : B R due funzioni reali di variabili reale. Definiamo somma il prodotto di f e g come segue: f + g : A B R, (f + g)(x) = f (x) + g(x), f. g : A B R, (f. g)(x) = f (x). g(x), (Università di Bologna) Funzioni reali di variabile reale 16 / 50

40 Somma, prodotto, quoziente di funzioni reali Sia f : A R e e g : B R due funzioni reali di variabili reale. Definiamo somma il prodotto di f e g come segue: f + g : A B R, (f + g)(x) = f (x) + g(x), f. g : A B R, (f. g)(x) = f (x). g(x), f g : A B \ {x : g(x) = 0} R, f f (x) g (x) = g(x) (Università di Bologna) Funzioni reali di variabile reale 16 / 50

41 Esempi Siano f (x) = 3x + 1 e g(x) = x 2. (Università di Bologna) Funzioni reali di variabile reale 17 / 50

42 Esempi Siano f (x) = 3x + 1 e g(x) = x 2. f, g : R R (Università di Bologna) Funzioni reali di variabile reale 17 / 50

43 Esempi Siano f (x) = 3x + 1 e g(x) = x 2. f, g : R R Allora f + g, f. g : R R e (Università di Bologna) Funzioni reali di variabile reale 17 / 50

44 Esempi Siano f (x) = 3x + 1 e g(x) = x 2. f, g : R R Allora f + g, f. g : R R e f g : R \ {0} R (Università di Bologna) Funzioni reali di variabile reale 17 / 50

45 Esempi Siano f (x) = 3x + 1 e g(x) = x 2. f, g : R R Allora f + g, f. g : R R e f g : R \ {0} R (f + g)(x) = x 2 + 3x + 1, (Università di Bologna) Funzioni reali di variabile reale 17 / 50

46 Esempi Siano f (x) = 3x + 1 e g(x) = x 2. f, g : R R Allora f + g, f. g : R R e f g : R \ {0} R (f + g)(x) = x 2 + 3x + 1, (f. g)(x) = (3x + 1)x 2 = 3x 3 + x 2 (Università di Bologna) Funzioni reali di variabile reale 17 / 50

47 Esempi Siano f (x) = 3x + 1 e g(x) = x 2. f, g : R R Allora f + g, f. g : R R e f g : R \ {0} R (f + g)(x) = x 2 + 3x + 1, (f. g)(x) = (3x + 1)x 2 = 3x 3 + x 2 f 3x+1 g (x) = x 2 (Università di Bologna) Funzioni reali di variabile reale 17 / 50

48 Composizione di funzioni Consideriamo due funzioni f : X Y e g : Y Z. Risulta naturale considerare la funzione h : X Z definita come: f seguita da g. (Università di Bologna) Funzioni reali di variabile reale 18 / 50

49 Consideriamo ora funzioni reali di variabile reale. (Università di Bologna) Funzioni reali di variabile reale 19 / 50

50 Consideriamo ora funzioni reali di variabile reale. Date due funzioni f : A R e g : B R. (Università di Bologna) Funzioni reali di variabile reale 19 / 50

51 Consideriamo ora funzioni reali di variabile reale. Date due funzioni f : A R e g : B R. Se f (A) B, all elemento x in A si associal l elemento t = f (x) di B e a questo a un elemento si associa y = g(f (x)) di g(b). Ciò porta alla seguente (Università di Bologna) Funzioni reali di variabile reale 19 / 50

52 Consideriamo ora funzioni reali di variabile reale. Date due funzioni f : A R e g : B R. Se f (A) B, all elemento x in A si associal l elemento t = f (x) di B e a questo a un elemento si associa y = g(f (x)) di g(b). Ciò porta alla seguente Definizione Date due funzioni f : A R e g : B R, con f (A) B, definiamo funzione composta : g f la funzione g f : A R che associa ad x in A il valore g(f (x)). Quindi: (g f )(x) = g(f (x)). (Università di Bologna) Funzioni reali di variabile reale 19 / 50

53 Calcolo della funzione composta Prima di esaminare qualche esempio, ribadiamo che per calcolare il valore della funzione g f in un punto x di A (Università di Bologna) Funzioni reali di variabile reale 20 / 50

54 Calcolo della funzione composta Prima di esaminare qualche esempio, ribadiamo che per calcolare il valore della funzione g f in un punto x di A prima si calcola il valore t = f (x) di f in x e successivamente (Università di Bologna) Funzioni reali di variabile reale 20 / 50

55 Calcolo della funzione composta Prima di esaminare qualche esempio, ribadiamo che per calcolare il valore della funzione g f in un punto x di A prima si calcola il valore t = f (x) di f in x e successivamente si calcola il valore g(t) di g in t. (Università di Bologna) Funzioni reali di variabile reale 20 / 50

56 Calcolo della funzione composta Prima di esaminare qualche esempio, ribadiamo che per calcolare il valore della funzione g f in un punto x di A prima si calcola il valore t = f (x) di f in x e successivamente si calcola il valore g(t) di g in t. Operiamo cioè al seguente modo: per ottenere la legge x g(f (x)), operiamo: (Università di Bologna) Funzioni reali di variabile reale 20 / 50

57 Calcolo della funzione composta Prima di esaminare qualche esempio, ribadiamo che per calcolare il valore della funzione g f in un punto x di A prima si calcola il valore t = f (x) di f in x e successivamente si calcola il valore g(t) di g in t. Operiamo cioè al seguente modo: per ottenere la legge x g(f (x)), operiamo: x f (x) g(f (x)). (Università di Bologna) Funzioni reali di variabile reale 20 / 50

58 In un certo senso usiamo già la nozione di funzione composta quando applichiamo il teorema di Pitagora per dedurre la lunghezza dell ipotenusa di un triangolo rettangolo di cateti 1 e x. (Università di Bologna) Funzioni reali di variabile reale 21 / 50

59 In un certo senso usiamo già la nozione di funzione composta quando applichiamo il teorema di Pitagora per dedurre la lunghezza dell ipotenusa di un triangolo rettangolo di cateti 1 e x. Dapprima consideriamo la funzione f (x) = 1 + x 2 cioè la funzione che prende un numero reale ne considera il quadrato e somma il quadrato di 1 (questa funzione f associa alla lunghezza del cateto x l area del quadrato sull ipotenusa) (Università di Bologna) Funzioni reali di variabile reale 21 / 50

60 In un certo senso usiamo già la nozione di funzione composta quando applichiamo il teorema di Pitagora per dedurre la lunghezza dell ipotenusa di un triangolo rettangolo di cateti 1 e x. Dapprima consideriamo la funzione f (x) = 1 + x 2 cioè la funzione che prende un numero reale ne considera il quadrato e somma il quadrato di 1 (questa funzione f associa alla lunghezza del cateto x l area del quadrato sull ipotenusa) mentre g(x) = x (cioè la funzione che prende un numero reale positivo o nullo e ne fa la radice quadrata,ovvero all area di un quadrato associa il lato), La funzione composta, ossia la funzione che associa alla lunghezza del cateto la lunghezza dell ipotenusa è data da (Università di Bologna) Funzioni reali di variabile reale 21 / 50

61 In un certo senso usiamo già la nozione di funzione composta quando applichiamo il teorema di Pitagora per dedurre la lunghezza dell ipotenusa di un triangolo rettangolo di cateti 1 e x. Dapprima consideriamo la funzione f (x) = 1 + x 2 cioè la funzione che prende un numero reale ne considera il quadrato e somma il quadrato di 1 (questa funzione f associa alla lunghezza del cateto x l area del quadrato sull ipotenusa) mentre g(x) = x (cioè la funzione che prende un numero reale positivo o nullo e ne fa la radice quadrata,ovvero all area di un quadrato associa il lato), La funzione composta, ossia la funzione che associa alla lunghezza del cateto la lunghezza dell ipotenusa è data da (g f )(x) = g(1 + x 2 ) = 1 + x 2 (Università di Bologna) Funzioni reali di variabile reale 21 / 50

62 Esempio Consideriamo le funzioni: f (x) = 3x e g(x) = x + 3 Calcoliamo (g f )( 1), (f g)( 1),(g f )(x),(f g)(x),(g g)(x) (Università di Bologna) Funzioni reali di variabile reale 22 / 50

63 Esempio Consideriamo le funzioni: f (x) = 3x e g(x) = x + 3 Calcoliamo (g f )( 1), (f g)( 1),(g f )(x),(f g)(x),(g g)(x) Si ha f,g : R R, f (R) = [6,+ ) B = R, (Università di Bologna) Funzioni reali di variabile reale 22 / 50

64 Esempio Consideriamo le funzioni: f (x) = 3x e g(x) = x + 3 Calcoliamo (g f )( 1), (f g)( 1),(g f )(x),(f g)(x),(g g)(x) Si ha f,g : R R, f (R) = [6,+ ) B = R, quindi g f, f g e g g sono definite su tutto R (Università di Bologna) Funzioni reali di variabile reale 22 / 50

65 Esempio Consideriamo le funzioni: f (x) = 3x e g(x) = x + 3 Calcoliamo (g f )( 1), (f g)( 1),(g f )(x),(f g)(x),(g g)(x) Si ha f,g : R R, f (R) = [6,+ ) B = R, quindi g f, f g e g g sono definite su tutto R f ( 1) = 3( 1) = 9 e g(9) = = 6,pertanto (g f )( 1) = 6 (Università di Bologna) Funzioni reali di variabile reale 22 / 50

66 Esempio Consideriamo le funzioni: f (x) = 3x e g(x) = x + 3 Calcoliamo (g f )( 1), (f g)( 1),(g f )(x),(f g)(x),(g g)(x) Si ha f,g : R R, f (R) = [6,+ ) B = R, quindi g f, f g e g g sono definite su tutto R f ( 1) = 3( 1) = 9 e g(9) = = 6,pertanto (g f )( 1) = 6 g( 1) = ( 1) + 3 = 4 e f (4) = 3(4) = 54 pertanto (f g)( 1) = 54. (Università di Bologna) Funzioni reali di variabile reale 22 / 50

67 Esempio Consideriamo le funzioni: f (x) = 3x e g(x) = x + 3 Calcoliamo (g f )( 1), (f g)( 1),(g f )(x),(f g)(x),(g g)(x) Si ha f,g : R R, f (R) = [6,+ ) B = R, quindi g f, f g e g g sono definite su tutto R f ( 1) = 3( 1) = 9 e g(9) = = 6,pertanto (g f )( 1) = 6 g( 1) = ( 1) + 3 = 4 e f (4) = 3(4) = 54 pertanto (f g)( 1) = 54. la funzione composta g f è definita da (Università di Bologna) Funzioni reali di variabile reale 22 / 50

68 Esempio Consideriamo le funzioni: f (x) = 3x e g(x) = x + 3 Calcoliamo (g f )( 1), (f g)( 1),(g f )(x),(f g)(x),(g g)(x) Si ha f,g : R R, f (R) = [6,+ ) B = R, quindi g f, f g e g g sono definite su tutto R f ( 1) = 3( 1) = 9 e g(9) = = 6,pertanto (g f )( 1) = 6 g( 1) = ( 1) + 3 = 4 e f (4) = 3(4) = 54 pertanto (f g)( 1) = 54. la funzione composta g f è definita da (g f ) (x) = g(3x 2 + 6) = (3x 2 + 6) + 3 = 3x 2 3 (Università di Bologna) Funzioni reali di variabile reale 22 / 50

69 Esempio Consideriamo le funzioni: f (x) = 3x e g(x) = x + 3 Calcoliamo (g f )( 1), (f g)( 1),(g f )(x),(f g)(x),(g g)(x) Si ha f,g : R R, f (R) = [6,+ ) B = R, quindi g f, f g e g g sono definite su tutto R f ( 1) = 3( 1) = 9 e g(9) = = 6,pertanto (g f )( 1) = 6 g( 1) = ( 1) + 3 = 4 e f (4) = 3(4) = 54 pertanto (f g)( 1) = 54. la funzione composta g f è definita da (g f ) (x) = g(3x 2 + 6) = (3x 2 + 6) + 3 = 3x 2 3 (f g)(x) = f ( x + 3) = 3( x + 3) = 3x 2 18x + 33 (Università di Bologna) Funzioni reali di variabile reale 22 / 50

70 Esempio Consideriamo le funzioni: f (x) = 3x e g(x) = x + 3 Calcoliamo (g f )( 1), (f g)( 1),(g f )(x),(f g)(x),(g g)(x) Si ha f,g : R R, f (R) = [6,+ ) B = R, quindi g f, f g e g g sono definite su tutto R f ( 1) = 3( 1) = 9 e g(9) = = 6,pertanto (g f )( 1) = 6 g( 1) = ( 1) + 3 = 4 e f (4) = 3(4) = 54 pertanto (f g)( 1) = 54. la funzione composta g f è definita da (g f ) (x) = g(3x 2 + 6) = (3x 2 + 6) + 3 = 3x 2 3 (f g)(x) = f ( x + 3) = 3( x + 3) = 3x 2 18x + 33 (g g)(x) = g( x + 3) = ( x + 3) + 3 = x (Università di Bologna) Funzioni reali di variabile reale 22 / 50

71 Si noti che g f è diverso da f g; questo significa che la composizioni di funzioni non è commutativa, (Università di Bologna) Funzioni reali di variabile reale 23 / 50

72 Si noti che g f è diverso da f g; questo significa che la composizioni di funzioni non è commutativa, vale invece la proprietà associativa, ossia h (g f ) = (h g) f. (Università di Bologna) Funzioni reali di variabile reale 23 / 50

73 Dominio per la composizione di funzioni Consideriamo le due funzioni f (x) = 2 x 2 e g(x) = x. Possiamo sempre fare (g f )(x)? (Università di Bologna) Funzioni reali di variabile reale 24 / 50

74 Dominio per la composizione di funzioni Consideriamo le due funzioni f (x) = 2 x 2 e g(x) = x. Possiamo sempre fare (g f )(x)? E se lo possiamo fare, qual è il dominio di questa funzione composta? (Università di Bologna) Funzioni reali di variabile reale 24 / 50

75 Dominio per la composizione di funzioni Consideriamo le due funzioni f (x) = 2 x 2 e g(x) = x. Possiamo sempre fare (g f )(x)? E se lo possiamo fare, qual è il dominio di questa funzione composta? La funzione f è ha R come dominio. (Università di Bologna) Funzioni reali di variabile reale 24 / 50

76 Dominio per la composizione di funzioni Consideriamo le due funzioni f (x) = 2 x 2 e g(x) = x. Possiamo sempre fare (g f )(x)? E se lo possiamo fare, qual è il dominio di questa funzione composta? La funzione f è ha R come dominio. La funzione composta è data da (g f ) (x) = g(f (x)) = g(2 x 2 ) = 2 x 2 e quindi per poterla calcolare devo assicurarmi che l argomento della radice sia maggiore o uguale a zero. Quindi dobbiamo prendere in considerazione solamente l insieme: {x R : 2 x 2 0} = [ 2, 2]. (Università di Bologna) Funzioni reali di variabile reale 24 / 50

77 Dominio per la composizione di funzioni Consideriamo le due funzioni f (x) = 2 x 2 e g(x) = x. Possiamo sempre fare (g f )(x)? E se lo possiamo fare, qual è il dominio di questa funzione composta? La funzione f è ha R come dominio. La funzione composta è data da (g f ) (x) = g(f (x)) = g(2 x 2 ) = 2 x 2 e quindi per poterla calcolare devo assicurarmi che l argomento della radice sia maggiore o uguale a zero. Quindi dobbiamo prendere in considerazione solamente l insieme: {x R : 2 x 2 0} = [ 2, 2]. In sostanza, nonostante f abbia R come dominio, il fatto che poi si debba applicare la funzione g (il cui dominio è più piccolo dell immagine di f ) obbliga a restringere il dominio di f per potere applicare la funzione g. (Università di Bologna) Funzioni reali di variabile reale 24 / 50

78 Dominio per la composizione di funzioni Consideriamo le due funzioni f (x) = 2 x 2 e g(x) = x. Possiamo sempre fare (g f )(x)? E se lo possiamo fare, qual è il dominio di questa funzione composta? La funzione f è ha R come dominio. La funzione composta è data da (g f ) (x) = g(f (x)) = g(2 x 2 ) = 2 x 2 e quindi per poterla calcolare devo assicurarmi che l argomento della radice sia maggiore o uguale a zero. Quindi dobbiamo prendere in considerazione solamente l insieme: {x R : 2 x 2 0} = [ 2, 2]. In sostanza, nonostante f abbia R come dominio, il fatto che poi si debba applicare la funzione g (il cui dominio è più piccolo dell immagine di f ) obbliga a restringere il dominio di f per potere applicare la funzione g. In conclusione,il dominio della funzione composta g f è dom( g f ) = {x dom f : f (x) dom g} (Università di Bologna) Funzioni reali di variabile reale 24 / 50

79 Esempio Consideriamo le funzioni: f (x) = x, definita in A = [0,+ ) e g(x) = x 1,definita in tutto R. (Università di Bologna) Funzioni reali di variabile reale 25 / 50

80 Esempio Consideriamo le funzioni: f (x) = x, definita in A = [0,+ ) e g(x) = x 1,definita in tutto R. f (A) = [0,+ ) R e la funzione composta g f è definita da (g f )(x) = g( x) = x 1 = x 1. D altra parte la funzione f g non esiste per nessun valore reale di x, poiché l immagine di g è (, 1] e non ha nessun punto in comune con il dominio [0,+ )di f. (Università di Bologna) Funzioni reali di variabile reale 25 / 50

81 Gli esempi che seguono mostrano come individuare le funzioni componenti di una funzione composta. In qualche caso c è un solo modo di scomporre una funzione, in altri no. Se si scompone una funzione per poter fare su di essa dei conti (ad esempio, ricerca dell insieme di definizione o, come vedremo negli argomenti successivi, calcolo di limiti o derivate) si favoriscono le scomposizioni più semplici. In qualche caso invece una scomposizione apparentemente più complicata può aiutare a vedere meglio particolari proprietà o evidenziare una particolare costruzione. (Università di Bologna) Funzioni reali di variabile reale 26 / 50

82 Esempi La funzione F(x) = x 1 si può descrivere solo come segue: (Università di Bologna) Funzioni reali di variabile reale 27 / 50

83 Esempi La funzione F(x) = x 1 si può descrivere solo come segue: prendi un qualunque numero reale x 1: ad esso sottrai 1; poi calcola la radice quadrata del risultato. In simboli: x ( ) 1 x 1 x 1 e quindi si può vedere come la funzione composta (g f )(x) = g(f (x)) con f (x) = x 1, g(t) = t. (Università di Bologna) Funzioni reali di variabile reale 27 / 50

84 La funzione F(x) = 3(x 2) + 1,che si può leggere come: al triplo della differenza tra x e 2 aggiungi 1, è ottenuta attraverso i seguenti 3 passaggi: x ( ) 2 x 2 3( ) 3(x 2) ( )+1 3(x 2) + 1 e quindi è la funzione composta (h g f )(x) = h(g(f (x))) con f (x) = x 2, g(t) = 3t, h(z) = z + 1. (Università di Bologna) Funzioni reali di variabile reale 28 / 50

85 La funzione F(x) = 3(x 2) + 1,che si può leggere come: al triplo della differenza tra x e 2 aggiungi 1, è ottenuta attraverso i seguenti 3 passaggi: x ( ) 2 x 2 3( ) 3(x 2) ( )+1 3(x 2) + 1 e quindi è la funzione composta (h g f )(x) = h(g(f (x))) con f (x) = x 2, g(t) = 3t, h(z) = z + 1. Ma la stessa funzione si riscrive F(x) = 3x 5 e si può dunque ottenere facendo solo i seguenti due passaggi: x 3( ) 3x ( ) 5 3x 5 e quindi si può vedere come la funzione composta (g f )(x) = g(f (x)) con f (x) = 3x,g(t) = t 5. (Università di Bologna) Funzioni reali di variabile reale 28 / 50

86 FUNZIONI SIMMETRICHE Sia A R simmetrico rispetto all origine: questo significa che se x A, allora x A (Università di Bologna) Funzioni reali di variabile reale 29 / 50

87 FUNZIONI SIMMETRICHE Sia A R simmetrico rispetto all origine: questo significa che se x A, allora x A Definizione Una funzione f : A R si dice pari se: f ( x) = f (x), per ogni x A. (Università di Bologna) Funzioni reali di variabile reale 29 / 50

88 FUNZIONI SIMMETRICHE Sia A R simmetrico rispetto all origine: questo significa che se x A, allora x A Definizione Una funzione f : A R si dice pari se: f ( x) = f (x), per ogni x A. Una funzione f : A R si dice dispari se f ( x) = f (x), per ogni x A. (Università di Bologna) Funzioni reali di variabile reale 29 / 50

89 Grafici di funzioni simmetriche (Università di Bologna) Funzioni reali di variabile reale 30 / 50

90 Grafici di funzioni simmetriche Una funzione pari ha il grafico è simmetrico rispetto all asse delle ordinate. (Università di Bologna) Funzioni reali di variabile reale 30 / 50

91 Grafici di funzioni simmetriche Una funzione pari ha il grafico è simmetrico rispetto all asse delle ordinate. Ad esempio le funzioni f (x) = x 2,x 4,...,x 2k definite su R, sono pari. (Università di Bologna) Funzioni reali di variabile reale 30 / 50

92 Grafici di funzioni simmetriche Una funzione pari ha il grafico è simmetrico rispetto all asse delle ordinate. Ad esempio le funzioni f (x) = x 2,x 4,...,x 2k definite su R, sono pari. Una funzione dispari ha il grafico è simmetrico rispetto all origine degli assi. (Università di Bologna) Funzioni reali di variabile reale 30 / 50

93 Grafici di funzioni simmetriche Una funzione pari ha il grafico è simmetrico rispetto all asse delle ordinate. Ad esempio le funzioni f (x) = x 2,x 4,...,x 2k definite su R, sono pari. Una funzione dispari ha il grafico è simmetrico rispetto all origine degli assi. Ad esempio le funzioni f (x) = x 3 x 5,...,x 2k+1 definite su R, sono dispari. (Università di Bologna) Funzioni reali di variabile reale 30 / 50

94 grafici di funzioni per simmetria Considerata la funzione g(x) = x,e data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R. dove A = { x : x A} (Università di Bologna) Funzioni reali di variabile reale 31 / 50

95 grafici di funzioni per simmetria Considerata la funzione g(x) = x,e data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R. dove A = { x : x A} Si avrà (g f )(x) = g(f (x)) = f (x) (f g)(x) = f (g(x)) = f ( x) (Università di Bologna) Funzioni reali di variabile reale 31 / 50

96 grafici di funzioni per simmetria Considerata la funzione g(x) = x,e data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R. dove A = { x : x A} Si avrà (g f )(x) = g(f (x)) = f (x) (f g)(x) = f (g(x)) = f ( x) Costruiamo i due grafici supponendo di conoscere il grafico di f. (Università di Bologna) Funzioni reali di variabile reale 31 / 50

97 grafici di funzioni per simmetria Considerata la funzione g(x) = x,e data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R. dove A = { x : x A} Si avrà (g f )(x) = g(f (x)) = f (x) (f g)(x) = f (g(x)) = f ( x) Costruiamo i due grafici supponendo di conoscere il grafico di f. Il grafico di f (x) è il simmetrico al grafico di f rispetto all asse delle ascisse. (Università di Bologna) Funzioni reali di variabile reale 31 / 50

98 grafici di funzioni per simmetria Considerata la funzione g(x) = x,e data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R. dove A = { x : x A} Si avrà (g f )(x) = g(f (x)) = f (x) (f g)(x) = f (g(x)) = f ( x) Costruiamo i due grafici supponendo di conoscere il grafico di f. Il grafico di f (x) è il simmetrico al grafico di f rispetto all asse delle ascisse. Il grafico di f ( x) è il simmetrico del grafico di f rispetto all asse delle ordinate. (Università di Bologna) Funzioni reali di variabile reale 31 / 50

99 Esempo f 1 (x) = 2 + x e f 2 (x) = x (rosso) allora f 1 (x) = 2 x e f 2 (x) = x (verde) mentre f 1 ( x) = 2 x e f 2 ( x) = x (bleu) (Università di Bologna) Funzioni reali di variabile reale 32 / 50

100 grafici di funzioni per translazioni Considerata la funzione g(x) = x + c, data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R dove A = {y : y + c A} = {x c : x A} (Università di Bologna) Funzioni reali di variabile reale 33 / 50

101 grafici di funzioni per translazioni Considerata la funzione g(x) = x + c, data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R dove A = {y : y + c A} = {x c : x A} Si avrà che (g f )(x) = g(f (x)) = f (x) + c, mentre (Università di Bologna) Funzioni reali di variabile reale 33 / 50

102 grafici di funzioni per translazioni Considerata la funzione g(x) = x + c, data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R dove A = {y : y + c A} = {x c : x A} Si avrà che (g f )(x) = g(f (x)) = f (x) + c, mentre (f g)(x) = f (g(x)) = f (x + c) (Università di Bologna) Funzioni reali di variabile reale 33 / 50

103 grafici di funzioni per translazioni Considerata la funzione g(x) = x + c, data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R dove A = {y : y + c A} = {x c : x A} Si avrà che (g f )(x) = g(f (x)) = f (x) + c, mentre (f g)(x) = f (g(x)) = f (x + c) Costruiamo i due grafici supponendo di conoscere il grafico di f (Università di Bologna) Funzioni reali di variabile reale 33 / 50

104 grafici di funzioni per translazioni Considerata la funzione g(x) = x + c, data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R dove A = {y : y + c A} = {x c : x A} Si avrà che (g f )(x) = g(f (x)) = f (x) + c, mentre (f g)(x) = f (g(x)) = f (x + c) Costruiamo i due grafici supponendo di conoscere il grafico di f Il grafico di f (x) + c è il il grafico di f translato nella direzione dell asse delle ordinate di c. (Università di Bologna) Funzioni reali di variabile reale 33 / 50

105 grafici di funzioni per translazioni Considerata la funzione g(x) = x + c, data una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A R dove A = {y : y + c A} = {x c : x A} Si avrà che (g f )(x) = g(f (x)) = f (x) + c, mentre (f g)(x) = f (g(x)) = f (x + c) Costruiamo i due grafici supponendo di conoscere il grafico di f Il grafico di f (x) + c è il il grafico di f translato nella direzione dell asse delle ordinate di c. Il grafico di f (x + c) è il il grafico di f translato nella direzione dell asse delle ascisse di c. (Università di Bologna) Funzioni reali di variabile reale 33 / 50

106 Per esempio,sia e f (x) = x (rosso) e c 1 = 2, c 1 = 3 allora f(x) + 2 = x + 2 e f(x) 3 = x 3 (bleu) mentre f(x + 2) = x + 2 e f ( x 3) = x 3 (verde) (Università di Bologna) Funzioni reali di variabile reale 34 / 50

107 Grafici di funzioni con valore assoluto Considerata la funzione g(x) = x, e una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A A R. (Università di Bologna) Funzioni reali di variabile reale 35 / 50

108 Grafici di funzioni con valore assoluto Considerata la funzione g(x) = x, e una funzione f : A R, si possono considerare le composizioni: g f : A R f g : A A R. Si avrà che (g f )(x) = g(f (x)) = f (x), mentre (f g)(x) = f (g(x)) = f ( x ) Costruiamo { i due grafici supponendo di conoscere il grafico di f f (x) se f (x) 0 f (x) = f (x) se f (x) < 0 Il grafico di f (x) si ottiene dunque lasciando invariato il grafico di f che si trova nel primo e secondo quadrante, perchè in questo caso, essendo f (x) 0 f (x) = f (x). Quindi, per i punti in cui il grafico di f si trova nel terzo e quarto quadrante, si ha f (x) 0 e f (x) = f (x) pertanto si sostituisce il grafico di f in questi quadranti con il suo simmetrico rispetto all asse delle ascisse. (Università di Bologna) Funzioni reali di variabile reale 35 / 50

109 Il grafico di f ( x ) è il simmetrico all asse delle ordinate essendo f ( x ) una funzione pari. (Università di Bologna) Funzioni reali di variabile reale 36 / 50

110 Il grafico di f ( x ) è il simmetrico all asse delle ordinate essendo f ( x ) una funzione pari. { f (x) se x 0 f ( x ) = f ( x) se x < 0 Quindi per ottenere il grafico di f ( x ) si lascia invariato il grafico di f per x 0 e si simmetrizza questo grafico rispetto all asse delle ordinate per x < 0. (Università di Bologna) Funzioni reali di variabile reale 36 / 50

111 Per esempio { siano f (x) = x 2 + x + 2 = (1 + x)(2 x) (rosso ) allora x f (x) = 2 + x + 2 se 1 x 2 x 2 x 2 se x < 1,x > 2 (bleu) { x mentre f ( x ) = 2 + x + 2 se x 0 x 2 x + 2 se x < 0 (verde) (Università di Bologna) Funzioni reali di variabile reale 37 / 50

112 FUNZIONI PERIODICHE Una funzione f : A R si dice periodica se esiste T R tale che f (x) = f (x + T),per ogni x A (Università di Bologna) Funzioni reali di variabile reale 38 / 50

113 FUNZIONI PERIODICHE Una funzione f : A R si dice periodica se esiste T R tale che f (x) = f (x + T),per ogni x A Il più piccolo numero reale positivo per cui è valida la relazione precedente è detto periodo di f. (Università di Bologna) Funzioni reali di variabile reale 38 / 50

114 FUNZIONI PERIODICHE Una funzione f : A R si dice periodica se esiste T R tale che f (x) = f (x + T),per ogni x A Il più piccolo numero reale positivo per cui è valida la relazione precedente è detto periodo di f. Ad esempio le funzioni f (x) = sinx; f (x) = cosx e f (x) = tanx = sinx cosx sono periodiche. (Università di Bologna) Funzioni reali di variabile reale 38 / 50

115 FUNZIONI PERIODICHE Una funzione f : A R si dice periodica se esiste T R tale che f (x) = f (x + T),per ogni x A Il più piccolo numero reale positivo per cui è valida la relazione precedente è detto periodo di f. Ad esempio le funzioni f (x) = sinx; f (x) = cosx e f (x) = tanx = sinx cosx sono periodiche. (Università di Bologna) Funzioni reali di variabile reale 38 / 50

116 Il periodo di f (x) = sinx (blu) e f (x) = cosx (rosso) è 2π (Università di Bologna) Funzioni reali di variabile reale 39 / 50

117 Il periodo di f (x) = sinx (blu) e f (x) = cosx (rosso) è 2π (Università di Bologna) Funzioni reali di variabile reale 39 / 50

118 Il periodo di f (x) = sinx (blu) e f (x) = cosx (rosso) è 2π Il periodo di f (x) = tanx è π (Università di Bologna) Funzioni reali di variabile reale 39 / 50

119 FUNZIONE INVERSA Sia f : A R una funzione iniettiva, allora per ogni elemento y di f (A) c è un solo x in A tale che risulti y = f (x) Si può definire allora una funzione g : f (A) A R ponendo, per ogni y di f (A), g(y) = x f (x) = y. (Università di Bologna) Funzioni reali di variabile reale 40 / 50

120 FUNZIONE INVERSA Sia f : A R una funzione iniettiva, allora per ogni elemento y di f (A) c è un solo x in A tale che risulti y = f (x) Si può definire allora una funzione g : f (A) A R ponendo, per ogni y di f (A), g(y) = x f (x) = y. La funzione così definita è tale che per ogni x A si ha g(f (x)) = x e per ogni y f (A) si ha f (g(y)) = y: per questo di solito si indica con f 1. (Università di Bologna) Funzioni reali di variabile reale 40 / 50

121 FUNZIONE INVERSA Sia f : A R una funzione iniettiva, allora per ogni elemento y di f (A) c è un solo x in A tale che risulti y = f (x) Si può definire allora una funzione g : f (A) A R ponendo, per ogni y di f (A), g(y) = x f (x) = y. La funzione così definita è tale che per ogni x A si ha g(f (x)) = x e per ogni y f (A) si ha f (g(y)) = y: per questo di solito si indica con f 1. Definizione Sia f : A R una funzione iniettiva. La funzione f 1 : f (A) R definita ponendo per ogni y f (A) si chiama funzione inversa di f. f 1 (y) = x f (x) = y (Università di Bologna) Funzioni reali di variabile reale 40 / 50

122 Si ha quindi che, per ogni x A: x f f (x) f 1 f 1 (f (x)) = x (Università di Bologna) Funzioni reali di variabile reale 41 / 50

123 Si ha quindi che, per ogni x A: x f f (x) f 1 f 1 (f (x)) = x e per ogni y f (A) si ha y f 1 f 1 (y) f f (f 1 (y)) = y (Università di Bologna) Funzioni reali di variabile reale 41 / 50

124 Si ha quindi che, per ogni x A: x f f (x) f 1 f 1 (f (x)) = x e per ogni y f (A) si ha y f 1 f 1 (y) f f (f 1 (y)) = y Non sempre, anche se esiste, si può ricavare esplicitamente la funzione inversa. Nel caso dell esempio che segue è possibile: basta scrivere f (x) = y risolvere questa come un equazione in x cioè ricavare la x in funzione di y. (Università di Bologna) Funzioni reali di variabile reale 41 / 50

125 Esempio Si consideri la funzione f : R R f (x) = 2x + 3. (Università di Bologna) Funzioni reali di variabile reale 42 / 50

126 Esempio Si consideri la funzione f : R R f (x) = 2x + 3. f è iniettiva. (Università di Bologna) Funzioni reali di variabile reale 42 / 50

127 Esempio Si consideri la funzione f : R R f (x) = 2x + 3. f è iniettiva. Quindi poniamo y = 2x + 3, ; otteniamo x = 1 2 y 3 2. (Università di Bologna) Funzioni reali di variabile reale 42 / 50

128 Esempio Si consideri la funzione f : R R f (x) = 2x + 3. f è iniettiva. Quindi poniamo y = 2x + 3, ; otteniamo x = 1 2 y 3 2. Pertanto f 1 (y) = 1 2 y 3 2. (Università di Bologna) Funzioni reali di variabile reale 42 / 50

129 Esempio Si consideri la funzione f : R R f (x) = 2x + 3. f è iniettiva. Quindi poniamo y = 2x + 3, ; otteniamo x = 1 2 y 3 2. Pertanto f 1 (y) = 1 2 y 3 2. verifichiamo che la funzione trovata è effettivamente l inversa di f (Università di Bologna) Funzioni reali di variabile reale 42 / 50

130 Esempio Si consideri la funzione f : R R f (x) = 2x + 3. f è iniettiva. Quindi poniamo y = 2x + 3, ; otteniamo x = 1 2 y 3 2. Pertanto f 1 (y) = 1 2 y 3 2. verifichiamo che la funzione trovata è effettivamente l inversa di f f 1 (f (x)) = f 1 (2x + 3) = 1 2 (2x + 3) 3 2 = x = x (Università di Bologna) Funzioni reali di variabile reale 42 / 50

131 Esempio Si consideri la funzione f : R R f (x) = 2x + 3. f è iniettiva. Quindi poniamo y = 2x + 3, ; otteniamo x = 1 2 y 3 2. Pertanto f 1 (y) = 1 2 y 3 2. verifichiamo che la funzione trovata è effettivamente l inversa di f f 1 (f (x)) = f 1 (2x + 3) = 1 2 (2x + 3) 3 2 = x = x f (f 1 (y)) = f ( 1 2 y 3 2 ) = 2( 1 2 y 3 2 ) + 3 = y = y (Università di Bologna) Funzioni reali di variabile reale 42 / 50

132 (Università di Bologna) Funzioni reali di variabile reale 43 / 50

133 Anche la funzione f (x) = x 3 è iniettiva e la sua immagine è R (Università di Bologna) Funzioni reali di variabile reale 44 / 50

134 Anche la funzione f (x) = x 3 è iniettiva e la sua immagine è R La sua funzione inversa si chiama radice cubica e si indica f 1 (y) = 3 y (Università di Bologna) Funzioni reali di variabile reale 44 / 50

135 Anche la funzione f (x) = x 3 è iniettiva e la sua immagine è R La sua funzione inversa si chiama radice cubica e si indica f 1 (y) = 3 y 3 Si ha quindi x 3 = x, mentre ( 3 y) 3 = y o ricordando che le variabili di una funzione sono mute ( 3 x) 3 = x. (Università di Bologna) Funzioni reali di variabile reale 44 / 50

136 Anche la funzione f (x) = x 3 è iniettiva e la sua immagine è R La sua funzione inversa si chiama radice cubica e si indica f 1 (y) = 3 y 3 Si ha quindi x 3 = x, mentre ( 3 y) 3 = y o ricordando che le variabili di una funzione sono mute ( 3 x) 3 = x. A questo proposito si osservi che la variabile della funzione inversa e anche di quella diretta può essere espressa da qualunque lettera, dunque la funzione inversa dell esempio precedente può essere scritta come f 1 (x) = 1 2 x 3 2, mentre la funzione inversa di f (x) = x3 può essere scritta f 1 (x) = 3 x (Università di Bologna) Funzioni reali di variabile reale 44 / 50

137 Abbiamo già visto che f (x) = x 2 non è iniettiva se si prende come dominio tutto R. (Università di Bologna) Funzioni reali di variabile reale 45 / 50

138 Abbiamo già visto che f (x) = x 2 non è iniettiva se si prende come dominio tutto R. Lo diventa però se si restringe il dominio a [0,+ ): (verificarlo sul grafico) (Università di Bologna) Funzioni reali di variabile reale 45 / 50

139 Abbiamo già visto che f (x) = x 2 non è iniettiva se si prende come dominio tutto R. Lo diventa però se si restringe il dominio a [0,+ ): (verificarlo sul grafico) Quindi : f (x) = x 2 considerando f : [0,+ ) R è iniettiva e la sua immagine è di nuovo [0,+ ),( f : [0,+ ) [0,+ )) (Università di Bologna) Funzioni reali di variabile reale 45 / 50

140 Abbiamo già visto che f (x) = x 2 non è iniettiva se si prende come dominio tutto R. Lo diventa però se si restringe il dominio a [0,+ ): (verificarlo sul grafico) Quindi : f (x) = x 2 considerando f : [0,+ ) R è iniettiva e la sua immagine è di nuovo [0,+ ),( f : [0,+ ) [0,+ )) In questo caso f 1 (y) = y. f : [0,+ ) [0,+ ) (Università di Bologna) Funzioni reali di variabile reale 45 / 50

141 Abbiamo già visto che f (x) = x 2 non è iniettiva se si prende come dominio tutto R. Lo diventa però se si restringe il dominio a [0,+ ): (verificarlo sul grafico) Quindi : f (x) = x 2 considerando f : [0,+ ) R è iniettiva e la sua immagine è di nuovo [0,+ ),( f : [0,+ ) [0,+ )) In questo caso f 1 (y) = y. f : [0,+ ) [0,+ ) Si può fare lo stesso ragionamento anche se x 0: ma in questo caso la soluzione è f 1 (y) = y, quindi l inversa della funzione f (x) = x 2 f : (,0] R è f 1 (y) = y. (Università di Bologna) Funzioni reali di variabile reale 45 / 50

142 Grafico delle funzioni inverse Per quanto riguarda il grafico della funzione f 1, osserviamo che un punto P = (t,s) appartiene al grafico di f 1 se e solo se s = f 1 (t); (Università di Bologna) Funzioni reali di variabile reale 46 / 50

143 Grafico delle funzioni inverse Per quanto riguarda il grafico della funzione f 1, osserviamo che un punto P = (t,s) appartiene al grafico di f 1 se e solo se s = f 1 (t); questo è equivalente ad affermare che f (s) = t cioè P 0 = (s,t) appartiene al grafico di f. (Università di Bologna) Funzioni reali di variabile reale 46 / 50

144 Grafico delle funzioni inverse Per quanto riguarda il grafico della funzione f 1, osserviamo che un punto P = (t,s) appartiene al grafico di f 1 se e solo se s = f 1 (t); questo è equivalente ad affermare che f (s) = t cioè P 0 = (s,t) appartiene al grafico di f. P = (t,s) G(f 1 ) P 0 = (s,t) G(f ), (Università di Bologna) Funzioni reali di variabile reale 46 / 50

145 Grafico delle funzioni inverse Per quanto riguarda il grafico della funzione f 1, osserviamo che un punto P = (t,s) appartiene al grafico di f 1 se e solo se s = f 1 (t); questo è equivalente ad affermare che f (s) = t cioè P 0 = (s,t) appartiene al grafico di f. P = (t,s) G(f 1 ) P 0 = (s,t) G(f ), ciò significa che ogni punto P del grafico di f 1 si ottiene da un punto P 0 del grafico di f scambiando le coordinate. (Università di Bologna) Funzioni reali di variabile reale 46 / 50

146 Grafico delle funzioni inverse Per quanto riguarda il grafico della funzione f 1, osserviamo che un punto P = (t,s) appartiene al grafico di f 1 se e solo se s = f 1 (t); questo è equivalente ad affermare che f (s) = t cioè P 0 = (s,t) appartiene al grafico di f. P = (t,s) G(f 1 ) P 0 = (s,t) G(f ), ciò significa che ogni punto P del grafico di f 1 si ottiene da un punto P 0 del grafico di f scambiando le coordinate. Scambiare le coordinate di un punto nel piano equivale ad operare una simmetria rispetto alla bisettrice del primo-terzo quadrante. (Università di Bologna) Funzioni reali di variabile reale 46 / 50

147 Grafico delle funzioni inverse Per quanto riguarda il grafico della funzione f 1, osserviamo che un punto P = (t,s) appartiene al grafico di f 1 se e solo se s = f 1 (t); questo è equivalente ad affermare che f (s) = t cioè P 0 = (s,t) appartiene al grafico di f. P = (t,s) G(f 1 ) P 0 = (s,t) G(f ), ciò significa che ogni punto P del grafico di f 1 si ottiene da un punto P 0 del grafico di f scambiando le coordinate. Scambiare le coordinate di un punto nel piano equivale ad operare una simmetria rispetto alla bisettrice del primo-terzo quadrante. Di conseguenza il grafico di f 1 è simmetrico del grafico di f rispetto alla bisettrice del primo-terzo quadrante. (Università di Bologna) Funzioni reali di variabile reale 46 / 50

148 L idea è illustrata in ciascuna delle due figure sottostanti accostando i grafici di f (rossa) e di f 1 (verde). In particolare nella prima figura sono rappresentati i grafici di f (x) = 2x + 3 e di f 1 (x) = 1 2 x 3 2. (Università di Bologna) Funzioni reali di variabile reale 47 / 50

149 Disegniamo anche i grafici di delle potenze e delle radici sopra illustrate f : [0,+ ) [0,+ ) f (x) = x 2 (rossa) e f 1 (x) = x (verde) (Università di Bologna) Funzioni reali di variabile reale 48 / 50

150 f : (,0] [0,+ ) f (x) = x 2 (rossa) e f 1 (x) = x (verde) (Università di Bologna) Funzioni reali di variabile reale 49 / 50

151 f (x) = x 3 (rossa) e f 1 (x) = 3 x(verde) f : R R e f 1 : R R (Università di Bologna) Funzioni reali di variabile reale 50 / 50

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Lezione 16: La funzione modulo. La composizione

Lezione 16: La funzione modulo. La composizione Lezione 16: La funzione modulo. La composizione Nelle prossime lezioni richiameremo un po di funzioni elementari insieme ad alcune proprietà generali delle funzioni. Prima di cominciare introduciamo una

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Funzioni (parte II).

Funzioni (parte II). Funzioni (parte II). Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 21 ottobre 214 Paola Mannucci e Alvise Sommariva Introduzione. 1/ 55 Funzioni trigonometriche.

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Proporzioni, proprietà, risoluzione, proporzionalità diretta e inversa: una proposta didattica innovativa di Luciano Porta

Proporzioni, proprietà, risoluzione, proporzionalità diretta e inversa: una proposta didattica innovativa di Luciano Porta Proporzioni, proprietà, risoluzione, proporzionalità diretta e inversa: una proposta didattica innovativa di Luciano Porta Le proporzioni strutturano il pensiero in modo potente ed elegante per cui sono

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n 0 ottobre 008 A. MARTINI Castelranco Veneto (TV) Relazioni e Funzioni. Insieme delle parti. Partizione di un insieme 3. Prodotto cartesiano 4. Deinizione di relazione 5. Deinizione di unzione 6. Funzioni

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

DISTANZA TRA DUE PUNTI NEL PIANO CARTESIANO

DISTANZA TRA DUE PUNTI NEL PIANO CARTESIANO Geogebra DISTANZA TRA DUE PUNTI NEL PIANO CARTESIANO 1. Apri il programma Geogebra, assicurati che siano visualizzati gli assi e individua il punto A (0, 0). a. Dove si trova il punto A? b. Individua il

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

La parabola. Giovanni Torrero Aprile La poarabola come luogo geometrico

La parabola. Giovanni Torrero Aprile La poarabola come luogo geometrico La parabola Giovanni Torrero Aprile 2006 1 La poarabola come luogo geometrico Definizione 1 (La parabola come luogo geometrico) La parabola è il luogo geometrico formato da tutti e soli i punti del piano

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Appunti ed esercizi di geometria analitica PRIMA PARTE

Appunti ed esercizi di geometria analitica PRIMA PARTE Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica? Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza

Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza Anno 2 Radicali algebrici e aritmetici: condizioni di esistenza 1 Introduzione Perché studiare i radicali? In matematica ogni volta che facciamo un operazione dobbiamo anche vedere se è possibile tornare

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE UNITÀ DIDATTICA FUNZIONI GONIOMETRICHE 1 La misura degli angoli In ogni circonferenza è possibile definire una corrispondenza biunivoca tra angoli al centro e archi: a ogni angolo al centro corrisponde

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Scrivo l equazione di circonferenze di cui mi vengono forniti alcuni elementi

Scrivo l equazione di circonferenze di cui mi vengono forniti alcuni elementi Scrivo l equazione di circonferenze di cui mi vengono forniti alcuni elementi In questa scheda presenterò alcuni esercizi inerenti la circonferenza includendo una piccola spiegazione che spero vi aiuti

Dettagli