EQUAZIONE DELLA RETTA
|
|
|
- Gianpiero Giovannini
- 9 anni fa
- Visualizzazioni
Transcript
1 EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale ad una costante: L equazione di una retta r parallela all asse y è cioè è uguale ad una costante: EQUAZIONE DELLE BISETTRICI DEI QUADRANTI Ricordiamo la definizione di bisettrice: la bisettrice di un angolo è il luogo di punti equidistanti dai lati dell angolo. Essendo quindi tutti i punti equidistanti dai due assi, l equazione l della bisettrice del I e III quadrante è: L equazione equazione della bisettrice del II e IV quadrante è: EQUAZIONE DELLA RETTA PASSANTE PER L ORIGINE Consideriamo una retta passante per l origine distinta dagli assi cartesiani: la retta è il luogo dei punti aventi ordinata proporzionale all ascissa secondo un coefficiente opportuno. Infatti siano, e, due punti generici della retta r, ma distinti dall origine: siano e le proiezioni ortogonali di e sull asse x: i triangoli e sono simili (perché hanno angoli uguali) e si ha pertanto la seguente proporzione tra i segmenti e tra le loro relative misure:
2 Dato che i punti P e Q sono generici, possiamo concludere che per tutti i punti della retta, diversi dall origine, il rapporto tra ordinata e ascissa è costante, tale costante si indica con. Il valore di si chiama coefficiente angolare o pendenza della retta (maggiore è il valore di, maggiore è l angolo). Rette parallele hanno lo stesso coefficiente angolare. Se >0, la retta appartiene al I e III quadrante. Se 1, otteniamo la bisettrice del I e III quadrante. Se <0, la retta appartiene al II e IV quadrante. Se 1, otteniamo la bisettrice del II e IV quadrante. EQUAZIONE DELLA RETTA IN POSIZIONE GENERICA Dobbiamo ricavare l equazione di una generica retta del piano, non passante per l origine e non parallela ad alcuno degli assi cartesiani. Pertanto si può concludere che: + Consideriamo una retta non passante per l origine e non parallela ad alcuno degli assi cartesiani. Sia 0, il punto in cui r interseca l asse y. Sia la traslazione del sistema di riferimento che porta l origine in. Nel sistema la retta r passa per l origine e quindi avrà equazione ; sostituendo in tale equazione al posto di e al posto di in base alle equazioni della traslazione, si otterrà l equazione di nel sistema, in cui non passa per l origine, in formule: + è l equazione di una generica retta del piano, dove è il coefficiente angolare e è detta intercetta o ordinata dell origine, in quanto è l ordinata del punto di intersezione della retta con l asse y. L equazione + viene chiamata equazione della retta in forma esplicita o anche equazione della funzione lineare. Se 0 si ottiene l equazione di una retta passante per l origine. Se >0 la retta generica forma un angolo acuto con l asse x.
3 Se <0 l angolo formato è ottuso. Se 0 si ha l equazione di una retta parallela all asse x. CONDIZIONE DI PARALLELISMO Condizione necessaria e sufficiente affinché due rette siano parallele è che i loro coefficienti angolari siano uguali. CONDIZIONE DI PERPENDICOLARITÀ Condizione necessaria e sufficiente affinché due rette siano perpendicolari è che i coefficienti angolari siano l uno l antireciproco dell altro. 1 EQUAZIONE GENERALE DELLA RETTA La più generale equazione di primo grado in e (equazione lineare in due variabili) è Quest equazione rappresenta, al variare dei coefficienti a, b, c, una qualsiasi retta del piano. Prende il nome di equazione generale della retta o anche di equazione della retta in forma implicita. Il coefficiente viene detto termine noto. I vari casi possibili sono: In questo caso l equazione è completa e può essere rispetto a y essendo 0 Il coefficiente angolare è L intercetta è
4 !0 #!0 0 L equazione assume la forma + # 0, cioè #. per l origine, di coefficiente angolare #, che è l equazione di una retta 0 #! 0 (con qualsiasi) L equazione diventa # + 0, ossia #, che è l equazione di una retta re parallela all asse x (se 0 è l equazione dell asse x stessa).! 0 # 0 (con c qualsiasi) L equazione diventa + 0, cioè che è l equazione di una retta parallela all asse y (se 0 è l equazione dell asse y stesso). 0 # 0 0 L equazione, riducendosi all identità 0 0,, risulta verificata per qualsiasi coppia ordinata di numeri reali, essa non rappresenta alcuna retta, ma il piano stesso. 0 # 0!0 L equazione non ha soluzioni e non ha rappresentazione grafica. FASCIO IMPROPRIO DI RETTE Il fascio improprio di rette è l insieme di tutte le rette di un piano che sono tra loro parallele. L equazione che rappresenta il fascio improprio è: + Il coefficiente angolare è comune a tutte le rette, l intercetta è variabile. Al variare di in R si ottengono tutte le rette del fascio e per 0 si ottiene quella passante per l origine che è considerata la retta base del fascio alla quale tutte le altre sono parallele. FASCIO PROPRIO DI RETTE L equazioni della traslazione degli assi sono: Il fascio di rette proprio è l insieme di tutte le rette del piano che passano per uno stesso punto, detto centro o sostegno del fascio. fascio Nell equazione del fascio proprio il coefficiente angolare dovrà essere variabile in quanto le l rette del fascio hanno ciascuna un diverso coefficiente angolare. L equazione del fascio proprio di rette passanti per l origine degli assi è con variabile in R. Consideriamo un fascio di rette di centro * +, +.. Operiamo una traslazione degli assi che porti l origine nel punto *. nel riferimento * il fascio di rette è rappresentato dall equazione.
5 + + Quindi: dove è il coefficiente angolare variabile, rappresenta il fascio di rette di centro,. COEFFICIENTE ANGOLARE DELLA RETTA PASSANTE PER DUE PUNTI Consideriamo i punti, e,. L equazione del fascio di rette di centro, è Imponendo che la generica retta di questo fascio passi per, ossia che le coordinate di soddisfino la precedente equazione, si ottiene: Cioè Pertanto: il coefficiente angolare della retta passante per due punti dati si ottiene come rapporto tra la differenza delle ordinate dei due punti e la differenza delle corrispondenti ascisse. EQUAZIONE DELLA RETTA PASSANTE PER DUE PUNTI Siano, e, due punti della retta. L equazione della retta passante per e per si otterrà scrivendo l equazione della retta passante per, e con coefficiente angolare uguale a quello della retta, cioè ; si avrà quindi: Dividendo ambo i membri per, si ha: Che è l equazione della retta passante per due punti dati, e, e non parallela ad alcun asse cartesiano.
6 DISTANZA DI UN PUNTO DA UNA RETTA Per calcolare la distanza di un generico punto +, + dalla retta di equazione + # + 0 si usa la seguente formula: # # Cioè la distanza di un punto da una retta di equazione + # + 0 si ottiene sostituendo nel primo membro dell equazione della retta al posto di e le coordinate + e + del punto e dividendo il valore assoluto del risultato per la radice quadrata della somma dei quadrati dei coefficienti di e di nell equazione stessa. EQUAZIONE DELLE BISETTRICI DI UN ANGOLO Determiniamo le equazioni delle bisettrici degli angolii formati dalle rette incidenti r ed s, di equazione rispettivamente: r) s) + # # Sia, un punto generico di una delle bisettrici. Applicando la formula della distanza tra un punto e una retta, si ha: ---, E perciò, dovendo essere ---, # + + # + # + + # + # + + # + # + + # + # + # # + + # Le equazioni delle due bisettrici si ottengono dalla formula considerando una volta il segno + e una volta il segno -.
7 ASSE DI UN SEGMENTO L asse di un segmento è la retta perpendicolare al segmento e passante per il suo punto medio. L asse è anche il luogo geometrico di tutti e soli i punti del piano che sono equidistanti dagli estremi del segmento. Quindi per trovare l equazione dell asse di un segmento possiamo fare: Ossia + + Sviluppando e riducendo si avrà l equazione cercata, che risulta un equazione lineare in e. FASCIO DI RETTE GENERATO DA DUE RETTE Consideriamo due rette ed %, incidenti, di equazione r) + # + 0 s) 2 + # e sia * +, + il loro punto di intersezione. Le due rette generano un fascio proprio di rette di centro * e sono dette rette generatrici, in particolare la retta è la prima generatrice e la retta % è la seconda generatrice. L equazione del fascio di rette generato da due rette è: Se 0,, si ottiene la seconda generatrice. Se 0,, si ottiene la prima generatrice. + # # Per non avere due costanti ( e ), si divide per e si ottiene Se, allora + # # # # Se 0, perde significato e si suol dire che è «infinito» e si scrive ( uguale a infinito) o ( tende all infinito). La forma nella quale è di solito assegnato un fascio proprio di rette è:
8 Avendo supposto che le generatrici ed siano incidenti, il coefficiente angolare è: + + Esso risulta in funzione di e, al variare di, si ottengono le diverse rette del fascio con inclinazione variabile. Se le generatrici ed fossero parallele, si avrebbe il fascio improprio di rettee generato da ed e il coefficiente angolare è In pratica un equazione di primo grado in e rappresenta: un fascio proprio di rette, se il coefficiente angolare è funzione di k; un fascio improprio di rette, se il coefficiente angolare è costante. Il centro del fascio proprio si determina intersecando le generatrici del fascio. AREA DEL TRIANGOLO Esiste una regola che ci permettee di calcolare l area di un triangolo conoscendone solo le coordinate de vertici, questa è la regola di Sarrus, dal nome del matematico francese Pierre Frederic Sarrus Per trovare il determinante della matrice bisogna riportare le prime due colonne a destre della matrice e poi moltiplicare le diagonali:
Geometria Analitica Domande e Risposte
Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano
Piano cartesiano e Retta
Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L
1. LA GEOMETRIA ANALITICA
LA GEOMETRIA ANALITICA IL PIANO CARTESIANO Coordinate cartesiane Due rette orientate nel piano perpendicolari tra loro, aventi come punto d intersezione il punto O, costituiscono un sistema di riferimento
Esempio: Trovare le coordinate del punto medio del segmento di estremi. Applicando la formula, abbiamo che:
IL PINO CRTESINO E L RETT Il punto medio di un segmento Il punto medio di un segmento è quel punto M che appartiene al segmento e ha la stessa distanza dagli estremi e del segmento. Dati i punti, il punto
Condizione di allineamento di tre punti
LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.
Geometria Analitica Domande e Risposte
Geometria Analitica Domande e Risposte La Retta. Qual è l equazione della retta in forma nel piano cartesiano? L equazione della generica retta nel piano cartesiano in forma esplicita è y mx q, mentre
Punti nel piano cartesiano
Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : ax + by + c = 0 ( 1 ) Forma implicita
Prof. Marco La Fata La Retta nel piano Cartesiano La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : a + b + c = 0 ( ) Forma implicita Questa è in forma
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
Appunti: il piano cartesiano. Distanza tra due punti
ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti
1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:
QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.
GEOMETRIA ANALITICA ESERCIZI CON SOLUZIONI
utore: Enrico Manfucci - 0/0/0 GEOMETRI NLITIC ESERCIZI CON SOLUZIONI. Posizionare nel piano cartesiano e calcolare la distanza delle seguenti coppie di punti: a. (, ) e (, ) I due punti hanno la stessa
Unità Didattica N 9 : La parabola
0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)
Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:
La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione
GEOMETRIA ANALITICA
GEOMETRIA ANALITICA [email protected] LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un
1.4 Geometria analitica
1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le
Determina il terzo vertice A di un triangolo di cui. l ortocentro
La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un
In particolare, la forma esplicita dell equazione di una retta passante per l origine, diversa dall asse y, è:
L RETT NEL PINO CRTESINO Ogni retta del piano cartesiano è identificata da un equazione, che si può presentare in diverse forme, tutte equivalenti tra loro. In particolare, l equazione di una retta si
Il piano cartesiano e la retta
Il piano cartesiano e la retta PIANO CARTESIANO DISTANZA TRA DUE PUNTI P (X 1,Y 1 ) Q (X,Y ) PQ (X X1) (Y Y1 ) PUNTO MEDIO DI UN SEGMENTO X M X 1 X Y M Y 1 Y ESERCITAZIONI 1. DATI I PUNTI A(3,-) E B(-5,4):
GEOMETRIA ANALITICA Prof. Erasmo Modica
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il
Capitolo 2. Cenni di geometria analitica nel piano
Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea
LA RETTA
EQUAZIONE DEL Ogni equazione di I grado in due variabili x e y rappresenta nel piano cartesiano una retta, per cui si dice che a x + b y + c = 0 è l equazione di una retta in forma implicita. OSSERVAZIONE:
PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010
PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).
RETTA NEL PIANO CARTESIANO
RETTA NEL PIANO CARTESIANO Def: una funzione matematica del tipo rappresenta nel piano cartesiano una RETTA. Quindi l EQUAZIONE DI UNA RETTA in forma generica è sempre della forma: COEFFICIENTE ANGOLARE:
LE COORDINATE CARTESIANE
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica [email protected] LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate
C I R C O N F E R E N Z A...
C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della
Appunti per la classe terza. Geometria Analitica
Istituto Professionale L. Lagrange Torino A.S. 008-009 Appunti per la classe terza Geometria Analitica Autore: Di Liscia Francesca Indice 1 Piano cartesiano 1.1 Punto medio......................................
UNITÀ DIDATTICA 5 LA RETTA
UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme
Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione
Esercizi geometria analitica nel piano Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1. Scrivere le equazioni parametriche delle rette r e s di equazioni cartesiane r : 2x y + = 0
LA RETTA NEL PIANO CARTESIANO
LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;
Distanza tra punti e punto medio di un segmento. x1 + x 2
Distanza tra punti e punto medio di un segmento Siano P = (x 1, y 1 ) e Q = (x 2, y 2 ) due punti del piano cartesiano. La distanza di P da Q vale: P Q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 (si utilizza il Teorema
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
ELEMENTI DI GEOMETRIA ANALITICA (Prova di verifica delle conoscenze) Cognome...Nome... Classe... Data...
ELEMENTI DI GEMETRIA ANALITICA (Prova di verifica delle conoscenze) Cognome...Nome... Classe... Data... 1. Completa: a. La formula matematica che mette in relazione il valore della x al corrispondente
Chi non risolve esercizi non impara la matematica.
2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente
Svolgimento degli esercizi sulla circonferenza
Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57
Schede di e-tutoring sulla geometria analitica
Schede di e-tutoring sulla geometria analitica 9 aprile 2012 Una retta ha equazione esplicita y = mx + n e in questo caso dalla fisica sappiamo che m fornisce il grado di pendenza della retta e si chiama
IL PIANO CARTESIANO E LA RETTA
IL PIANO CARTESIANO E LA RETTA PIANO CARTESIANO DISTANZA TRA DUE PUNTI P (X 1,Y 1 ) Q (X 2,Y 2 ) PQ (X 2 2 2 X1) (Y2 Y1 ) PUNTO MEDIO DI UN SEGMENTO X M X 1 X 2 2 Y M Y 1 Y 2 2 ESERCITAZIONI 1. DATI I
GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO
GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali
La circonferenza nel piano cartesiano
6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la
CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica [email protected] DEFINIZIONI Definizione. Dicesi parabola il luogo
Note di geometria analitica nel piano
Note di geometria analitica nel piano e-mail: [email protected] Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................
Quadro riassuntivo di geometria analitica
Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive
Matematica Lezione 6
Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 6 Sonia Cannas 25/10/2018 Retta passante per un punto e direzione assegnata Data l equazione di una retta in forma esplicita y = mx
Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi
GEOMETRIA ANALITICA PIANO CARTESIANO Ad ogni punto P del piano corrisponde una coppia di numeri sugli assi cartesiani. La coppia di numeri che indichiamo con (x,) prendono il nome di coordinate cartesiane
Compito di Matematica / Classe 2Dsa / 10-marzo-17 / Alunno:
Compito di Matematica / Classe 2Dsa / 10-marzo-17 / Alunno: Assegnato il triangolo di vertici A 6, 5 B 5, 2 C(13, 2) determina l ortocentro e il circocentro. Determina l equazione della retta di Eulero.
Il sistema di riferimento cartesiano
1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello
IL PIANO CARTESIANO E LA RETTA
IL PIANO CARTESIANO E LA RETTA ESERCIZI 1. Le coordinate di un punto su un piano 1 A Scrivi le coordinate dei punti indicati in figura. 1 B Scrivi le coordinate dei punti indicati in figura. Rappresenta
Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:
ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati
L EQUAZIONE DI UNA RETTA CAPITOLO 3. IL PIANO CARTESIANO E LA RETTA
L EQUAZIONE DI UNA RETTA CAPITOLO 3. IL PIANO CARTESIANO E LA RETTA L EQUAZIONE DI UNA RETTA 2 /20 1. LE EQUAZIONI LINEARI DI DUE VARIABILI Un equazione lineare in due variabili x e y è un equazione di
Macerata 19 dicembre 2014 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI ( ) ( ) ( ) C 2; 1.
Macerata 9 dicembre 04 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO In un riferimento cartesiano ortogonale è dato il fascio di rette: k + x k y + k + = 0. Determina il centro C del
Coordinate Cartesiane
- - Coordinate Cartesiane Su di una retta r consideriamo un punto, detto origine, un verso positivo indicato con una freccia ed un segmento unitario U. In questo caso la retta r dicesi asse delle ascisse
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)
GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono
Precorso di Matematica
Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,
La retta nel piano cartesiano
La retta nel piano cartesiano note a cura di Luigi Carlo Oldani - novembre 9 A technique ceases to be a trick and becomes a method only when it has been encountered enough times to seem natural. W.J.LeVeque,
7. Il piano cartesiano
7. Il piano cartesiano Come è possibile stabilire una corrispondenza biunivoca tra un punto appartenente a una retta e un numero reale, è possibile stabilirla tra un punto del piano e una coppia ordinata
Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche
La retta nel piano cartesiano
La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
Geometria BATR-BCVR Esercizi 9
Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio
In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.
L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze
P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k
Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,
Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.
Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:
Geometria BAER Canale A-K Esercizi 10
Geometria BAER 2016-2017 Canale A-K Esercizi Esercizio 1. Data la retta r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 010-011 Prova di Matematica : Piano cartesiano e retta Alunno: Classe: C 10.03.011 prof. Mimmo Corrado Dato il triangolo di vertici: 6; 3, ; 1, 4;
Lezione 5 Geometria Analitica 1
Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla
Esercizi svolti. Geometria analitica: rette e piani
Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;
Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni
Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VII: soluzioni 12 novembre 2009 1 Geometria dello spazio Esercizio 1 Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Nel Piano
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
Soluzione verifica scritta dell 8/10/2013
Soluzione verifica scritta dell 8/10/013 * * * Problema n. 1 a) Determinare l equazione della parabola con asse parallelo all asse y, avente il vertice nel punto V ; ) e passante per l origine degli assi
ELEMENTI DI GEOMETRIA ANALITICA Conoscenze (tutti)
ELEMENTI DI GEMETRIA ANALITICA Conoscenze (tutti) 1. Completa. a. La formula matematica che mette in relazione il valore della x con il corrispondente valore della y si chiama... b. Le equazioni di primo
L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y
La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela
Piano cartesiano e retta
Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione
Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA
Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA INTRODUZIONE La parabola fa parte di un insieme di curve (circonferenza, ellisse, iperbole) chiamate coniche, perché si possono
Le coniche retta generatrice
Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono
determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si
PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad
Problemi sulla retta
1 3 appartenenza di punti a rette Stabilisci se le seguenti terne di punti sono costituite da punti allineati e, in caso affermativo, determina l equazione della retta su cui essi giacciono: a) AA(1; 1)
Francesco Zumbo
La retta - Teorema di Talete - Equazione della retta: passante per due punti, implicita, esplicita - Parallele e Perpendicolari - Fascio Propio e improprio - Intersezione tra rette Francesco Zumbo www.francescozumbo.it
La parabola terza parte Sintesi
La parabola terza parte Sintesi [ ] Qual è l equazione generale della parabola con l asse di simmetria orizzontale ( cioè parallelo all asse x )? Con quale trasformazione si ricava questa equazione da
Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P
1 Geometria analitica nel piano
Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )
Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza
Liceo Scientifico Michelangelo - Forte dei Marmi Esercizi sulla circonferenza svolti - Classe Terza Esercizio 0. Stabilire se le equazioni x + y x + 3y + e x + y x + 6y 3 rappresentano una circonferenza
Problemi sulla circonferenza verso l esame di stato
Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza
Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y
LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette
