I numeri sulla Mole Antonelliana.
|
|
|
- Gabriele Bianco
- 9 anni fa
- Visualizzazioni
Transcript
1 I numeri sulla Mole Antonelliana. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. I voli dei numeri Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6, 987, dove ogni nuovo numero rappresenta la somma dei due che lo precedono. Ad esempio Se si e capito tutto fin qui, il lettore non dovrebbe trovare difficolta a calcolare qual e il numero che segue dopo 987. (Risposta: 97). Nota Storica:Questa serie di numeri e nota come serie di numeri di Fibonacci in onore a Leonardo da Pisa, conosciuto col nome paterno di figlio Bonacci, cioe Fibonacci (detto anche Bigollo), che verso il 3 ha studiato questa succesione di numeri a proposito del seguente problema sulla riproduzione dei conigli: Quante coppie di conigli si ottengono in un anno supponendo che ogni coppia dia alla luce un altra coppia ogni mese e che le coppie piu giovani siano in grado di riprodursi gia al secondo mese di vita? La soluzione al problema studiato da Fibonacci e 377, cioe dopo un anno ci sono 377 coppie di conigli. Infatti, F n F F F F 3 F 4 F F 6 F 7 F 8 F 9 F F F mese coppie Dove F n sodisfa F n F n + F n se n Numeri di Fibonacci Geometria
2 e { F, La formula di Binet. F. Problem.. Quanto grande e F?. Ad esempio, se ci chiediamo se F e minore o maggiore di 8, qual e la risposta giusta?? Per rispondere a questa domanda, ci servirebbe (forse) una formula per calcolare l n-esimo numero F n. Certamente il lettore informato sa che questa formula esiste ed e conosciuta con il nome di formula di Binet (ca. 843), ma era gia conosciuta da Eulero e Daniele Bernoulli (ver Eccola qui, ( F n ) n ( + 3 ) n Notiamo che questa identita e ben lontana dall essere evidente o banale. Ad esempio, come spiegare la radice di, che non e un numero intero? (Ricordate che F n e un numero intero, in quanto rappresenta il numero di coppie di conigli...). Quindi, se la formula e giusta ci sono delle semplificazioni misteriose... Esercizio : Verificare che, effettivamente, la formula di Binet funziona per n e n. Di solito, si dimostra la formula di Binet a partire dal principio di induzione, cioe : Esercizio : Dimostrare usando il principio di induzione che la formula di Binet funziona per ogni n. Ma la dimostrazione per induzione non ci aiuta a capire l origine di questa bellissima formula; allora come e nata questa formula?. In seguito il lettore trovera una possibile risposta (tra altre possibili) tramite i concetti di Autovalori ed Autovettori. Prima di lasciare questa parte risolviamo il Problema. usando il fatto che (grazie alla Formula di Binet...): ( F n ) n ( ) n 3, 78 Numeri di Fibonacci Geometria
3 dove +3, 78 che riccorda l anno di nascita di Eulero, cioe Allora, F ( ) 3 (( 3 ) ) > > > Dunque F e maggiore di 8. Con i logaritmi si vede che in realta F ne ha piu di venti cifre, cioe F o( ). Fibonacci e matrici Osserviamo che l equazione equivale al sistema: F n F n + F n { Fn F n + G n G n F n Come gia sappiamo, possiamo scrivere questo sistema tramite matrici, vettori colonna e prodotti fra loro, cioe Fn Fn G n G n Fn Allora la colonna C n risulta da quella C G n tramite la moltiplicazione per n la matrice A. Quindi possiamo scrivere: Siccome C n A C n risulta: A C n C n A C n A A C n A C n C n Dunque applicando reiteratamente questa idea si ottiene: dove C F G. A n C C n Quindi risulta che dobbiamo calcolare la potenza n di una matrice A, cioe n dobbiamo calcolare Numeri di Fibonacci 3 Geometria
4 Calcolo della potenza n-esima di una matrice Se una matrice D e diagonale, ad esempio D e molto facile calcolare D 3 n. Infatti, D n n 3 n e non ci sono problemi. λ λ Piu in generale se D allora D β n n β n Quindi non ci sono problemi per calcolare D n se D e diagonale. Un altro caso dove e facile calcolare la potenza n-essima di A e quando possiamo scrivere la matrice A come: A MDM dove la D e una matrice diagonale e la matrice M e arbitraria (ma ovviamente invertibile, visto che l equazione contiene M ). Nota.. Se queste due matrici D e M esistono si dice che la matrice A e diagonalizzabile. Osservare che questo e equivalente a: M AM D Vediamo perche e facile calcolare A n quando A e diagonalizzabile. Infatti, A n MDM MDM MDM MDM MDM }{{} n volte M DDD }{{ DD} M MD n M n volte poiche i fattori MM si elidono, per definizione di inversa. Dunque, se conosciamo D n e M possiamo calcolare A n senza problema. non e diagonalizzabile. Non e vero che esistono sempre M e D, ad esempio la matrice A Numeri di Fibonacci 4 Geometria
5 Diagonalizzando Fibonacci n Allora per il calcolo di sarebbe ideale trovare una matrice diagonale D e una matrice invertibile M tale che: MDM Come trovare M e D? L idea e assumere che M e D esistano e cercare di trovarli tramite qualche trucchetto... Notiamo che l equazione precedente implica: M MD. Se ricordiamo come si ricava il prodotto tra matrici notiamo che, poiche D e diagonale, le colonne M ed M della M, soddisfano a: M λm e M βm λ dove D, che pero non conosciamo, cioe conoscendo D sarebbe facile β calcolare M risolvendo i seguenti sistemi (equivalenti alle equazioni di sopra) per le colonne M e M della M : λ λ M β β M Quest ultimo sistema e molto interessante perche ci dice che le colonne M,M sono soluzioni di un sistema omogeneo. Ricordo inoltre che vogliamo che M (la stessa cosa per M ) sia una colonna di una matrice invertibile, dunque M. Questo ci forza a prendere λ (e pure β ) uguale ad una radice del determinante della Numeri di Fibonacci Geometria
6 λ matrice λ e solo se:, cioe questo sistema omogeneo ha delle soluzioni non banali se, λ det( λ ) λ λ Da dove λ ±, questi numeri sono i cosidetti numeri d oro (vedere Livio per delle interessanti proprieta di questi numeri). Nota.3. Nel linguaggio dell Algebra lineare i numeri ± si chiamano autovalori della matrice. Piu in generale, data una matrice A si calcola il polinomio P (λ) det(a λid) che si chiama polinomio caratteristico. Le radici di P (λ) si chiamano autovalori. + Dunque possiamo prendere D uguale a. Adesso non e difficile trovare le colonne M e M della matrice M, cioe queste colonne sono soluzioni dei sistemi omogeni le cui matrici sono: Possiamo allora prendere M e M Nota.4. Nel linguaggio dell Algebra lineare si dice che le colonne M e M sono due autovettori della matrice. Piu in generale, una soluzione x (cioe, x non nullo) del sistema omogeneo la cui matrice e A λid, dove λ e un autovalore di A si chiama autovettore di A. Storicamente il polinomio caratteristico nasce con il lavoro di Luigi Lagrange su le perturbazioni secolari delle orbite planetarie vicine alle orbite di Keplero. Dunque, la equazione det(a λid) era chiamata equazione secolare Arnold, pag.4. Ancora oggi in Astronomia, Fisica e Chimica questa equazioni si la conosce come equazione secolare McSi.. Numeri di Fibonacci 6 Geometria
7 Quindi abbiamo ottenuto cio che volevamo, cioe L inversa Finalmente, + + e Dunque n + ( + ) n ( ) n Per trovare F n dobbiamo quindi calcolare, ricordiamo, cioe Fn G n + ( + ) n ( ) n + n + Fn G n + ( + ) n ( ) n L ultima moltiplicazione fornisce, Fn G n 3+ ( + 3+ ( + dunque abbiamo il risultato finale, cioe ( F n + 3 ) n ) n + 3 ( ) n ( ) n + ) n ( + 3 ) n Siccome < risulta per n la seguente approssimazione: F n, 78 φ n ( + ) n ( ) n ( + ) n ( ) n 3+ 3 Numeri di Fibonacci 7 Geometria
8 REFERENCES Geometria. dove φ, 689 e la sezione aurea aurea. Ad esempio, F, 78 φ 377,... che fa vedere la bonta della approssimazione!! References Arnold Livio McSi Arnold, V.I.: Lectures on Partial Differential Equations, Springer Universitext 4. Livio, M.: La sezione aurea - Storia di un numero e di un mistero che dura da tremila anni, Traduzione di Stefano Galli, Rizzoli, Prima edizione: 3. McQuarrie, D.A. and Simon, J.D.: CHIMICA FISICA Un approcio molecolare, Trad. di M. Roncaglia, revisione di C. Galli. Ed. Zanichelli,. Numeri di Fibonacci 8 Geometria
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA
Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere
Geometria BIAR Esercizi 2
Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
1 Definizione di sistema lineare omogeneo.
Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari
Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.
Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento
DIAGONALIZZAZIONE. M(f) =
DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,
4 0 = 4 2 = 4 4 = 4 6 = 0.
Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono
Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni
Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base
Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni
Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
Endomorfismi e matrici simmetriche
CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori
Esercizi di ripasso: geometria e algebra lineare.
Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare
Metodo di Gauss-Jordan 1
Metodo di Gauss-Jordan 1 Nota Bene: Questo materiale non debe essere considerato come sostituto delle lezioni. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi
1 Il polinomio minimo.
Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene
Esercizi per Geometria II Geometria euclidea e proiettiva
Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si
Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3.
Esercizi. Soluzioni.. Siano dati i vettori,, R. (i) Far vedere che formano una base di R. (ii) Ortonormalizzarla col metodo di Gram-Schmidt. (iii) Calcolare le coordinate del vettore X = 5 Sol. (i) Usiamo
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi.
LeLing14: Ancora numeri complessi e polinomi Ārgomenti svolti: Risoluzione di ax + bx + c = 0 quando a, b, c sono numeri complessi La equazione di Eulero: e i θ = cos(θ) + i sin(θ) La equazione x n = a,
Inversa di una matrice
Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:
Massimi e minimi relativi in R n
Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)
Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.
Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.
Teorema delle Funzioni Implicite
Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)
Somma diretta di sottospazi vettoriali
Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso
Autovalori ed autovettori di una matrice
Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo
A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.
A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)
Metodi per la risoluzione di sistemi lineari
Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.
Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi
Piccolo teorema di Fermat
Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)
MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE
DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici
misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x
4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto
Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi
Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare
0.1 Spazi Euclidei in generale
0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo
2.1 Esponenziale di matrici
¾ ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori Esponenziale di matrici Esercizio : Data la matrice λ A λ calcolare
GEOMETRIA /2009 II
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:
Algebra lineare Geometria 1 11 luglio 2008
Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
POTENZE DI MATRICI QUADRATE
POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)
(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.
5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola
Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari
Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
Geometria e algebra lineare (II parte) Bruno Martelli
Geometria e algebra lineare (II parte) Bruno Martelli Dipartimento di Matematica, Largo Pontecorvo 5, 56127 Pisa, Italy E-mail address: martelli at dm dot unipi dot it versione: 7 marzo 2017 Indice Introduzione
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da
Esercizi sulle coniche (prof.ssa C. Carrara)
Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di
Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009
Capitolo Ingegneria Meccanica; Algebra lineare e Geometria 8/9. Esercii svolti su rette e piani Eserciio. Stabilire se le due rette r e s sono coincidenti oppure no: ( ( ( ( ( ( 7 r : = + t ; s : = + t
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ
Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo
Caso di A non regolare
Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente
1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F
5 Un applicazione: le matrici di rotazione
5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta
1 Riduzione per righe e matrici equivalenti per righe.
Geometria Lingotto. LeLing2: Sistemi lineari omogenei. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi gia risolti. Il metodo di Gauss-Jordan e la forma echelon.
Esercizi Applicazioni Lineari
Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le
Funzioni implicite - Esercizi svolti
Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita
La successione di Fibonacci
La successione di Fibonacci Figura 1 Sulla Mole Antonelliana si accende la successione di Fibonacci ( ideazione dell architetto Mario Merz ) La relazione ricorsiva F n = F n-1 + F n-, n 3, unitamente alle
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si
Giuseppe Accascina. Note del corso di Geometria e Algebra
Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
Massimi e minimi vincolati
Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché
Decomposizione LU di una matrice quadrata
Appendice al Cap. 5 Decomposizione LU di una matrice quadrata Una qualunque matrice quadrata M = {m ij } di ordine N, reale, invertibile, i cui minori principali siano tutti non nulli, si può sempre decomporre
MATRICI. 1. Esercizi
MATICI Esercizio Siano A = 0, B = Esercizi 2, C = 0 2 2 Calcolare: a2a B; b3a + 2B 4C; c 2A + B + 2C 2B; d3b + 2(2A C (A + B + 2C isolvere, se possibile: ( 3X + 2(A X + B + 2(C + 2X = 0; (2 4A + 2(B +
Esame di Geometria - 9 CFU (Appello del 14 gennaio A)
Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire
Esercizi riguardanti limiti di successioni e di funzioni
Esercizi riguardanti iti di successioni e di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Novembre 20. Come tali sono ben lungi dall essere esenti da errori,
Metodo dei minimi quadrati e matrice pseudoinversa
Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati
Parte 12a. Trasformazioni del piano. Forme quadratiche
Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,
Prodotti scalari e matrici
Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V
1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.
1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi
8. Completamento di uno spazio di misura.
8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
Dipendenza e indipendenza lineare (senza il concetto di rango)
CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori
10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...
10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI
IV-2 Forme quadratiche
1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli
Esercizi sul Principio d Induzione
AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando
ESERCIZI SUI SISTEMI LINEARI
ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione
Corso di Calcolo Numerico
Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due
Anno 4 Matrice inversa
Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere
(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.
1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).
15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI
15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono
Correzione primo compitino, testo B
Correzione primo compitino, testo B gennaio 20 Parte Esercizio Facciamo riferimento alle pagine 22 e 2 del libro di testo Quando si ha a che fare con la moltiplicazione o la divisione di misure bisogna
LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f
LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
Spirali. Novembre Spirali Novembre / 19
Spirali Novembre 2013 Spirali Novembre 2013 1 / 19 ;-) Spirali Novembre 2013 2 / 19 La spirale è uno dei simboli più antichi e più estesi che si conoscono. Modena Spirali Novembre 2013 3 / 19 La spirale
