POTENZE DI MATRICI QUADRATE
|
|
|
- Samuele Bruni
- 9 anni fa
- Visualizzazioni
Transcript
1 POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R) con un esponente k molto alto. Determinare la k- esima potenza di una matrice equivale ad effettuare i k prodotti successivi della matrice per sè stessa: A k = A }... {{ A}, k volte ma il calcolo, in generale, può risultare poco agevole come mostra il seguente esempio. Esempio Calcolare la terza potenza della matrice quadrata ( ) 2 A =. 3 2 Procediamo con il calcolo dei prodotti della matrice per sè stessa: ( ) ( ) ( ) A 2 = A A = =, e ( ) ( ) ( ) A 3 = A 2 A = = Seguendo un tale procedimento il numero di prodotti riga per colonna che andiamo a compiere è pari a (k )n 2 dove k è la potenza che vogliamo calcolare ed n è l ordine della matrice. Considerando che ogni prodotto riga
2 per colonna coinvolge n prodotti ed n somme, il numero di operazioni crescerà come (k )n 2 (2n ). Nell esempio precedente infatti abbiamo eseguito ben 8 prodotti riga per colonna (k = 3, n = 2), per un totale di 24 operazioni. Non si fa fatica ad immaginare che con il crescere della potenza e della dimensione della matrice il carico di lavoro diventi insostenibile. L obiettivo di queste dispense è quello di illustrare un metodo che permetta di risolvere questo problema con un numero di operazioni che cresca in modo ragionevole al crescere della potenza e dell ordine della matrice. Risolviamo per prima cosa un caso particolarmente semplice ma che tornerà utile in futuro: il caso di matrici diagonali. Matrici diagonali Il calcolo delle potenze di una matrice può essere notevolmente semplificato se si considera il sottoinsieme delle matrici diagonali. D M n n (R) una matrice diagonale della forma D = λ λ n, Sia infatti allora si verifica facilmente che D k = λ k λ k n, per ogni scelta di k N. In altre parole la potenza k-esima di una matrice diagonale D corrisponde alla matrice diagonale D k che ha come coefficienti le potenze k-esime degli elementi delle diagonale di D. In questo caso dunque dovremo compiere k prodotti per ognuno degli n elementi non nulli della matrice: in totale k n operazioni (notevolmente più agevole del caso precedente). Il caso di matrici diagonali risulta, da un lato, molto pratico per la naturalezza dei conti ma dall altro poco applicabile perché considera una classe molto ristretta di matrici. Il passo successivo sarà quello di applicare i risultati appena visti ad una classe più ampia di matrici: le matrici diagonalizzabili. 2
3 Matrici diagonalizzabili Come vedremo, le matrici diagonalizzabili possiedono una comoda rappresentazione in termini di una matrice invertibile ed una diagonale. Definizione Sia A M n n (R) una matrice quadrata a coefficienti reali. A è detta diagonalizzabile se esiste una matrice B M n n (R) invertibile tale che D := B AB è diagonale D = λ λ n. Allora A = BDB. () Grazie alla scrittura () possiamo calcolare piuttosto agevolmente le potenze della matrice A: A 2 = AA = (BDB )(BDB ) = BD } B {{ B} DB = BD 2 B I A 3 = A 2 A = (BD 2 B )(BDB ) = BD 2 B} {{ B} DB = BD 3 B I dove I è la matrice identità. Iterando il procedimento otteniamo per ogni k N A k = BD k B = B λ k λ k n B. (2) In conclusione, una volta trovata la matrice diagonalizzante B e la sua inversa B, il calcolo della potenza k-esima della matrice A si riduce al calcolo della potenza di una matrice diagonale D. Esempio 2 Calcolare la potenza di ordine 0 della matrice 2 A =
4 Per prima cosa calcoliamo gli autovalori della matrice A tramite il suo polinomio caratteristico. 2 λ P λ (A) = det 3 2 λ 3 = (λ 2)(λ + )(λ ) 3 2 λ Dall uguaglianza P λ (A) = 0 ricaviamo che la matrice A ammette tre autovalori reali e distinti: λ = 2, λ 2 =, λ 3 =. Ricordiamo che se una matrice A M n n (R) ha n autovalori reali distinti allora è diagonalizzabile. Nel nostro caso esiste B M 3 3 (R) invertibile tale che D = B AB con D matrice diagonale avente come coefficienti gli autovalori di A D = La matrice diagonalizzante B ha come colonne gli autovettori corrispondenti agli autovalori della matrice A. L autovettore o gli autovettori corrispondenti ad un autovalore λ sono base dell autospazio E λ λ. associato a Autospazio E 2 E 2 = {u R 3 : Au = 2u} Il sistema lineare associato risulta 2x + y z 2x = 0 3x + 2y 3z 2y = 0 3x + y 2z 2z = 0 Risolvendolo si ottiene E 2 = t : t R da cui v 2 = (,, ), base dell autospazio E 2, risulta essere l autovettore associato all autovalore λ = 2. 4
5 Autospazio E E = {u R 3 : Au = u} Il sistema lineare associato risulta 2x + y z x = 0 3x + 2y 3z y = 0 3x + y 2z z = 0 Risolvendolo si ottiene E = t 0 : t R da cui v = (, 0, ), base dell autospazio E, risulta essere l autovettore associato all autovalore λ =. Autospazio E E = {u R 3 : Au = u} Il sistema lineare associato risulta 2x + y z + x = 0 3x + 2y 3z + y = 0 3x + y 2z + z = 0 Risolvendolo si ottiene 0 E = t : t R da cui v = (0,, ), base dell autospazio E, risulta essere l autovettore associato all autovalore λ =. La matrice B si ottiene considerando come colonne gli autovettori appena trovati, nello stesso ordine in cui compaiono gli autovalori corrispondenti nella matrice diagonale: 0 B = 0. 5
6 Tramite un eliminazione di Gauss prima in avanti e poi all indietro otteniamo la sua inversa B = 0. 0 Utilizzando la formula (2) abbiamo, per un generico valore di k N, A k = BD k B = k 2 k 2 k + = 2 k + ( ) k+ 2 k 2 k + ( ) k 2 k + ( ) k+ 2 k 2 k + + ( ) k In particolare per k = 0, ricordando che 2 0 = 024, A 0 = Esercizio Calcolare la potenza di ordine 8 della matrice ( ) 2 A =
Endomorfismi e matrici simmetriche
CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori
Caso di A non regolare
Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk
Esercizi di ripasso: geometria e algebra lineare.
Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare
Esercizi sulle coniche (prof.ssa C. Carrara)
Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di
DIAGONALIZZAZIONE. M(f) =
DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,
Esercizi svolti sui sistemi lineari
Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
1 Il polinomio minimo.
Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene
Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =
Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice
Geometria BIAR Esercizi 2
Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si
15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI
15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE
DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici
Esercizi Applicazioni Lineari
Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le
(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.
5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola
(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.
1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni
Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare
Anno 5 Regole di derivazione
Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate
2.1 Esponenziale di matrici
¾ ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori Esponenziale di matrici Esercizio : Data la matrice λ A λ calcolare
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA
Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente
1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo
Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.
Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento
Forma canonica di Jordan
Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con
Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione
CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.
CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si
Capitolo 6. Sistemi lineari di equazioni differenziali. 1
Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare
ESERCIZI SUI SISTEMI LINEARI
ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione
Esercizi di Algebra lineare
Esercizi di Algebra lineare G. Romani December, 006 1. Esercizi sulle n-ple 1) Eseguire i seguenti calcoli. (, 1) + (1 3); 4(, ) + 3(4, ); 3(1,, 3) + ( )(,, 1) (3, 3, 3) + (4,, 1) + ( )(1, 4, ); (1, 4,
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Elementi di Algebra Lineare. Spazio Vettoriale (lineare)
Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi
Matematica Discreta e Algebra Lineare (per Informatica)
Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian
Geometria e algebra lineare (II parte) Bruno Martelli
Geometria e algebra lineare (II parte) Bruno Martelli Dipartimento di Matematica, Largo Pontecorvo 5, 56127 Pisa, Italy E-mail address: martelli at dm dot unipi dot it versione: 7 marzo 2017 Indice Introduzione
Applicazioni lineari e diagonalizzazione pagina 1 di 5
pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.
Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti
Raggiungibilità, Controllabilità, Osservabilità e Determinabilità
Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)
Esercizi svolti sui sistemi lineari
Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1
3. Vettori, Spazi Vettoriali e Matrici
3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n
SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia
CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione
CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce
Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari
Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano
5 Un applicazione: le matrici di rotazione
5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta
Esercizi su Autovalori e Autovettori
Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni
A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.
A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)
Dipendenza e indipendenza lineare (senza il concetto di rango)
CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori
CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica
CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: [email protected] http://www.dismi.unimo.it/members/csecchi
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è
Corso di Calcolo Numerico
Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due
Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale
Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque
Anno 4 Matrice inversa
Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere
Corso di Matematica per la Chimica
Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
MATRICI. 1. Esercizi
MATICI Esercizio Siano A = 0, B = Esercizi 2, C = 0 2 2 Calcolare: a2a B; b3a + 2B 4C; c 2A + B + 2C 2B; d3b + 2(2A C (A + B + 2C isolvere, se possibile: ( 3X + 2(A X + B + 2(C + 2X = 0; (2 4A + 2(B +
2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.
Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi
ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......
Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte
2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =
Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):
Prodotti scalari e matrici
Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V
Massimi e minimi relativi in R n
Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)
Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10
Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 2 2 Sistemi lineari 3 3 2 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 Gli esercizi contrassegnati con il simbolo * presentano un
Esercitazione di Analisi Matematica II
Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare
4 0 = 4 2 = 4 4 = 4 6 = 0.
Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono
Corso di Calcolo Numerico
Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni
CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA
COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno
ALGEBRA LINEARE PARTE II
DIEM sez. Matematica Finanziaria Marina Resta Università degli studi di Genova Dicembre 005 Indice PREMESSA INVERSA DI UNA MATRICE DETERMINANTE. DETERMINANTE DI MATRICI ELEMENTARI................. MATRICI
Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara
MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI
MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è
Le matrici. A cura di Benedetta Noris, 17 aprile Cos è una matrice. 2 Rappresentazione di una matrice generica 2
Le matrici A cura di Benedetta Noris, 17 aprile 2012 [email protected] Indice 1 Cos è una matrice 1 2 Rappresentazione di una matrice generica 2 3 Somma di matrici e prodotto di una matrice per
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
ESERCITAZIONE SU CALCOLO MATRICIALE, APPLICAZIONI LINEARI E FORME QUADRATICHE
ESERCITAZIONE SU CALCOLO MATRICIALE, APPLICAZIONI LINEARI E FORME QUADRATICHE Calcolo matriciale Il problema che vogliamo affrontare è quello di introdurre un operazione di prodotto fra due date matrici
Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I
Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0
ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il
Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 6 Eliminazione di Gauss con scambi di righe Sia A O una matrice m n. Abbiamo illustrato nella Lezione 5 un algoritmo che ha come
Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali
Motivazione: Fattorizzazioni di matrici speciali Diminuire la complessità computazionale = evitare operazioni inutili = risparmiare tempo di calcolo Diminuire l occupazione di memoria Come si fa? Si tiene
1.4 PRODOTTI NOTEVOLI
Matematica C Algebra. Le basi del calcolo letterale.4 Prodotti notevoli.4 PRODOTTI NOTEVOLI Il prodotto fra due polinomi si calcola moltiplicando ciascun termine del primo polinomio per ciascun termine
La riduzione a gradini e i sistemi lineari (senza il concetto di rango)
CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere
10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...
10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI
LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m
LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta
