Forma canonica di Jordan

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Forma canonica di Jordan"

Transcript

1 Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico: A (λ) = (λ λ ) r (λ λ ) r (λ λ h ) r h Nella forma canonica di Jordan la matrice A assume la seguente forma diagonale a blocchi: J A = T J AT = J h dove ad ogni autovalore distinto λ i corrisponde un blocco di Jordan J i di dimensione pari alla molteplicità algebrica r i dell autovalore λ i, cioè pari al grado di molteplicità r i dell autovalore all interno del polinomio caratteristico A sua volta, ogni blocco di Jordan J i ha la struttura di una matrice diagonale a blocchi: J i, dimj i = r i J J i = i, i =,, h J i,qi che presenta sulla diagonale principale un numero q i di miniblocchi di Jordan J i, j pari alla molteplicità geometrica dell autovalore λ i, cioè al numero q i di autovettori linearmente indipendenti v i,j associati all autovalore λ i La struttura di tutti i miniblocchi di Jordan J i, j è la seguente: J i,j = λ i λ i λ i λ i λ i dimj i,j = ν i,j j =,, q i La dimensione ν i,j di ciascun miniblocco di Jordan J i, j è pari al dimensione della catena di autovettori generalizzati che è possibile determinare a partire Zanasi Roberto - Teoria dei Sistemi AA 5/6

2 Capitolo INTRODUZIONE dall autovettore v i,j associato al miniblocco di Jordan J i, j Valgono le seguenti relazioni: n = h r i, r i = q i i= ν i,j j= La dimensione m i del più grande miniblocco di Jordan J i, j associato all autovalore λ i : m i = max ν i,j j è pari al grado di molteplicità m i dell autovalore λ i all interno del polinomio minimo m(λ) della matrice A: m(λ) = (λ λ ) m (λ λ ) m (λ λ h ) m h Essendo m i r i, chiaramente il grado del polinomio minimo è sempre inferiore o uguale al grado del polinomio caratteristico Un caso particolare della forma canonica di Jordan si ha quando la matrice trasformata A è diagonale In questo caso di dice che la matrice A di partenza era diagonalizzabile Condizioni di diagonalizzabilità di una matrice Una matrice A di ordine n è diagonalizzabile se e solo se è verificata una delle seguenti condizioni: Se esistono n autovettori linearmente indipendenti; Se la molteplicità algebrica r i di ciascun autovalore λ i è uguale alla molteplicità geometrica m i ; Se la dimensione ν i,j di tutti i miniblocchi di Jordan J i,j è unitaria; Se, per ciascun autovalore λ i, la dimensione m i del più grande miniblocco di Jordan J i,j è unitaria; Se il grado di molteplicità m i di ciascun autovalore λ i all interno del polinomio minimo m(λ) è unitario; Zanasi Roberto - Teoria dei Sistemi AA 5/6

3 Capitolo INTRODUZIONE 3 Autovettori generalizzati I q i autovettori distinti v i,j associati all autovalore λ i si determinano risolvendo il seguente sistema lineare autonomo: (λ i I A)v i,j = j =,, q i Infatti, il numero degli autovettori distinti è q i, pari al numero di miniblocchi J i,j presenti all interno del blocco di Jordan J i Nel caso in cui si abbia q i < r i, il numero degli autovettori non è sufficiente per diagonalizzare la matrice, per cui occorre procedere, per ogni autovettore v i,j, alla determinazione della corrispondente catena v (k) i,j di autovettori generalizzati, k =,, ν i,j Tali catene si determinano risolvendo iterativamente il seguente sistema di equazioni lineari (A λ i I)v () i,j = v () i,j = v i,j (A λ i I)v (3) i,j = v () i,j (A λ i I)v (ν i,j) i,j = v (ν i,j ) i,j Noto v () i,j = v i,j, dalla prima equazione si ricava v () i,j, il quale, sostituito nell equazione successiva permette di determinare l autovettore v (3) i,j, e così via La particolare struttura quasi diagonale del miniblocco di Jordan J i,j si ottiene inserendo tra le colonne della matrice di trasformazione T queste catene di autovettori generalizzati T = [ v () i,j v () i,j v (ν i,j) i,j Zanasi Roberto - Teoria dei Sistemi AA 5/6

4 Capitolo INTRODUZIONE 4 Possiamo ora riscrivere l evoluzione libera di un sistema discreto nel modo seguente x(k) = A k x = (TAT ) k x = TA k T x = T J J J h k T x = T J k J k J k h e l evoluzione libera di un sistema continuo nel modo seguente T x x(t) = e At x = Te At T x = Te J J J h t T x = T e J t e J t e J ht T x Quindi, per poter calcolare la potenza e l esponenziale di matrice generica A è sufficiente saper calcolare la potenza e l esponenziale del seguente generico miniblocco di Jordan di dimensione ν: J = λ λ λ λ λ = λi + N Chiaramente, la matrice J può essere espressa come somma della matrice diagonale λi e di una matrice N che ha elementi non nulli, e unitari, solo sulla prima sovradiagonale Per esempio, nel caso ν = 5 si ha: N = Zanasi Roberto - Teoria dei Sistemi AA 5/6

5 Capitolo INTRODUZIONE 5 Le potenze della matrice N hanno la seguente struttura: N = N 3 = cioè, la matrice N k ha elementi non nulli solo sulla k-esima sovradiagonale La matrice N è quindi una matrice nilpotente di ordine ν: N ν = dove ν = dimn La potenza k-esima della matrice J ha quindi la forma seguente: J k = (λi + N) k = λ k I + k λ k N + k λ k N + + N k Sappiamo però che tutte le potenze N h sono nulle per h ν, per cui si ha che J k = (λi + N) k = λ k I + = Con il simbolo k λ k N + k λ k kλ k k(k ) λ k λ k kλ k λ k λ k N + + k λ ν k ν+ k λ k ν+ N ν ν k ν k ν λ k kλ k λ k k si è indicato il coefficiente binomiale h k h = k(k ) (k h + ) h! λ k ν+ λ k ν+ che rappresenta il numero di combinazioni di k oggetti presi a gruppi di h Zanasi Roberto - Teoria dei Sistemi AA 5/6

6 Capitolo INTRODUZIONE 6 Relativamente al caso tempo-continuo, l esponenziale di matrice e Jt si calcola nel modo seguente e Jt = e (λi+n)t = e λit e Nt = e λt Ie Nt = e λt n= t n n! Nn = e λt ν t n n= n! Nn = e λt [ I + tn + t N + + tν (ν )! Nnu = e λt t t t 3 t 3! ν (ν )! t t t t + t ν (ν )! t ν (ν )! Alla forma quasi diagonale sopra mostrata si giunge sempre, anche nel caso di autovalori λ i complessi coniugati In questo caso però anche i corrispondenti autovettori v, sono complessi coniugati e la forma diagonale della matrice A a cui si giunge, essendo complessa, risulta essere di problematica utilizzazione Per ovviare a questo inconveniente, nel caso di autovalori λ i complessi coniugati si preferisce utilizzare una trasformazione nello spazio degli stati che porti la matrice A ad avere sulla diagonale principale dei blocchi reali di dimensione Si faccia per esempio riferimento ad una matrice A di dimensione 6 caratterizzata da due autovalori complessi coniugati λ, con grado di molteplicità 3 nel polinomio minimo: λ, = σ ± jω, m(λ) = (λ λ ) 3 (λ λ ) 3 = [(λ σ) + ω 3 Zanasi Roberto - Teoria dei Sistemi AA 5/6

7 Capitolo INTRODUZIONE 7 Applicando la trasformazione di coordinate x = Tx T = [ v v v 3 v v v 3 si giunge alla seguente forma diagonale: A = λ λ λ λ λ λ Si ottengono cioè due soli blocchi di Jordan, ognuno dei quali è composto da un solo miniblocco a 3 dimensioni Si indichi con v i,r e v i,i, rispettivamente, la parte reale e la parte immaginaria dell autovettore complesso i-esimo (i =,, 3) Utilizzando la seguente trasformazione di coordinate: x = T x, T = [ v,r v,i v,r v,i v 3,R v 3,I è possibile trasformare la matrice A nel modo seguente à = σ ω ω σ σ ω ω σ σ ω ω σ In questo modo l evoluzione libera di sistemi lineari potrà essere espressa come combinazione lineare di soli termini reali Caso tempo discreto: Caso tempo continuo: x(k) = A k x() = TÃk T x() x(t) = e At x() = TeÃt T x() Zanasi Roberto - Teoria dei Sistemi AA 5/6

8 Capitolo INTRODUZIONE 8 Nel caso tempo discreto, se si indica con λ e θ, rispettivamente, il modulo e la fase del numero complesso λ i = σ + jω, e con j la seguente matrice emisimmetrica j = λ = σ + ω, allora si ha che λ = σ + j ω = λ e jθ θ = arctan ω σ = λ cos θ + j λ sin θ σ ω ω σ = λ ω cos θ sin θ sin θ cos θ λ θ σ = λ e θj λ e quindi la matrice à può essere espressa nella forma à = λ e θj I λ e θj I λ e θj La potenza k-esima della matrice cioè à k = à k = [ cos kθ sin kθ λ k sin kθ cos kθ à è ha la forma seguente λ k e kθj k λ k e (k )θj k(k ) λ k e (k )θj λ k e kθj k λ k e (k )θj λ k e kθj [ cos(k )θ sin(k )θ k λ k sin(k )θ cos(k )θ λ k [ cos kθ sin kθ sin kθ cos kθ k(k ) λ k [ cos(k )θ sin(k )θ sin(k )θ cos(k )θ [ cos(k )θ sin(k )θ k λ k sin(k )θ cos(k )θ λ k [ cos kθ sin kθ sin kθ cos kθ Zanasi Roberto - Teoria dei Sistemi AA 5/6

9 Capitolo INTRODUZIONE 9 Nel caso di sistemi tempo continui, per calcolare agevolmente l esponenziale eãt è bene utilizzare il seguente formalismo: σ ω ω σ = σ σ + ω ω = σi + ωj La matrice à assume la forma à = σi + ωj I σi + ωj I σi + ωj Le matrici I e j commutano tra di loro per cui Quindi si ricava che eãt e (σi+ωj)t = e σti e ωtj = = e σt e ωtj te ωtj t eωtj e ωtj e ωtj e ωtj eσt e σt = e σt cos ωt sin ωt sin ωt cos ωt cos ωt sin ωt sin ωt cos ωt I ti t I I ti I = e σt cos ωt e σt sin ωt te σt cos ωt te σt sin ωt t eσt cos ωt t eσt sin ωt e σt sin ωt e σt cos ωt te σt sin ωt te σt cos ωt t eσt t sin ωt eσt cos ωt e σt cos ωt e σt sin ωt te σt cos ωt te σt sin ωt e σt sin ωt e σt cos ωt te σt sin ωt te σt cos ωt e σt cos ωt e σt sin ωt e σt sin ωt e σt cos ωt Zanasi Roberto - Teoria dei Sistemi AA 5/6

10 Capitolo INTRODUZIONE Esempio Calcolare l esponenziale di matrice e jα : jα = α α e jα = Il polinomio caratteristico della matrice jα è: jα (λ) = det(λi jα) = λ α α λ cos α sin α sin α cos α = (λ + α ) = (λ jα)(λ + jα) L autovettore v corrispondente all autovalore λ = jα è: (λ I jα)v = jα α α jα j = v = L autovettore v corrispondente all autovalore λ = jα è il complesso coniugato dell autovettore v : v = v = La matrice di trasformazione T che porta la matrice jα in forma canonica di Jordan è: T = [ v v = T = j j j j j L esponenziale di matrice cercato può quindi essere espresso nel modo seguente: e jα jα = Te jα = e jα +e jα ejα e jα j T = e jα e jα j e jα +e jα j j = j e jα e jα cos α sin α sin α cos α j j j j Zanasi Roberto - Teoria dei Sistemi AA 5/6

11 Capitolo INTRODUZIONE Esempio Dato il seguente sistema dinamico ẋ(t) = x(t), x = determinare l evoluzione libera x(t) del sistema a partire dalla condizione iniziale x() = x La soluzione formale del problema è la seguente: x(t) = e At x = Te At T x dove T è la matrice di trasformazione che diagonalizza la matrice A Per determinare T occorre calcolare gli autovalori e gli autovettori di A det(si A) = s s s = s(s 4s + 5) = s[(s ) + ) Gli autovalori sono s, = ± j e s 3 = L autovettore complesso v corrispondente all autovalore s = + j è il seguente: (s I A)v = o + j + j j L autovettore reale v 3 corrispondente all autovalore s = è: (A s I)v 3 = o La seguente matrice di trasformazione T T = [ v,r v,i v 3 = v = o v = v 3 = o v 3 =, T = 5 porta la matrice A nella forma canonica reale di Jordan: A = T AT = j + j 3 3 L evoluzione libera x(t) del sistema a partire dalla condizione iniziale x è quindi la seguente: x(t) = T e t cos t e t sin t e t sin t e t cos t T x Zanasi Roberto - Teoria dei Sistemi AA 5/6

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Caso di A non regolare

Caso di A non regolare Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per

Dettagli

2.1 Esponenziale di matrici

2.1 Esponenziale di matrici ¾ ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori Esponenziale di matrici Esercizio : Data la matrice λ A λ calcolare

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti

Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti Matrice esponenziale Sia A R n,n una matrice quadrata n n Per definire l esponenziale di A, prendiamo spunto dall identità e

Dettagli

Complementi di Algebra e Fondamenti di Geometria

Complementi di Algebra e Fondamenti di Geometria Complementi di Algebra e Fondamenti di Geometria Capitolo 3 Forma canonica di Jordan M. Ciampa Ingegneria Elettrica, a.a. 29/2 Capitolo 3 Forma canonica di Jordan Nel Capitolo si è discusso il problema

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Equazioni di Stato: soluzione tramite la matrice esponenziale

Equazioni di Stato: soluzione tramite la matrice esponenziale Equazioni di Stato: soluzione tramite la matrice esponenziale A. Laudani November 15, 016 Un po di Sistemi Consideriamo il problema di Cauchy legato allo stato della nostra rete elettrica {Ẋ(t) = A X(t)

Dettagli

POTENZE DI MATRICI QUADRATE

POTENZE DI MATRICI QUADRATE POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 2 2 Sistemi lineari 3 3 2 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 Gli esercizi contrassegnati con il simbolo * presentano un

Dettagli

Capitolo 6. Sistemi lineari di equazioni differenziali. 1

Capitolo 6. Sistemi lineari di equazioni differenziali. 1 Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare

Dettagli

Esercizi di Fondamenti di Sistemi Dinamici

Esercizi di Fondamenti di Sistemi Dinamici Giuseppe Fusco Esercizi di Fondamenti di Sistemi Dinamici ARACNE Copyright MMVIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 a/b 00173 Roma (06 93781065

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC Calcolo del movimento di sistemi dinamici LTI Esempi di soluzione per sistemi dinamici LTI TC Esempi di soluzione per sistemi LTI TC Scomposizione in fratti semplici (parte I) Esempio di soluzione 1 Scomposizione

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Note sulle Catene di Markov

Note sulle Catene di Markov Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo

Dettagli

DIAGONALIZZAZIONE. M(f) =

DIAGONALIZZAZIONE. M(f) = DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

AUTOVALORI. NOTE DI ALGEBRA LINEARE

AUTOVALORI. NOTE DI ALGEBRA LINEARE AUTOVALORI. NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 GENNAIO 2011 1. Il polinomio minimo Sia f : V V un endomorfismo lineare di uno spazio vettoriale di dimensione finita sul campo K. Per ogni

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo 5. OSSERVABILITÀ E RICOSTRUIBILITÀ 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0. 2.2 Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiede l antitrasformazione di una funzione razionale fratta

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

Complementi di Algebra e Fondamenti di Geometria

Complementi di Algebra e Fondamenti di Geometria Complementi di Algebra e Fondamenti di Geometria Capitolo Diagonalizzazione di matrici: Autovalori ed autovettori M. Ciampa Ingegneria Elettrica, a.a. 2009/200 Capitolo Diagonalizzazione di matrici: Autovalori

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI

SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 161 ROMA, ITALY andreucci@dmmm.uniroma1.it 1. Lo spazio delle soluzioni Un sistema

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Lo studio dell evoluzione libera nei sistemi dinamici

Lo studio dell evoluzione libera nei sistemi dinamici Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

Fondamenti di Algebra Lineare e Geometria TEMA A

Fondamenti di Algebra Lineare e Geometria TEMA A Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale ed Ingegneria dell Energia - Canale B Secondo Appello - luglio TEMA A Risolvere i seguenti esercizi motivando adeguatamente ogni risposta.

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Esercizi di Geometria - 1

Esercizi di Geometria - 1 Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCIZI SULLE EQUAZIONI DIFFERENZIALI 1. Generalità 1.1. Verifica delle soluzioni. Verificare se le funzioni date sono soluzioni delle equazioni differenziali. xy = 2y, y = 5x 2. y = x 2 + y 2, y = 1

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Algebra Lineare Autovalori

Algebra Lineare Autovalori Algebra Lineare Autovalori Stefano Berrone Sandra Pieraccini Dipartimento di Matematica Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy e-mail: sberrone@calvino.polito.it sandra.pieraccini@polito.it

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Autovalori ed Autovettori di una matrice Siano Se A = (a i,j ) i,j=1,...,n R n n, 0 x = (x i ) i=1,...,n R n λ R Ax = λx (1) allora λ è detto autovalore di

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0 Dipartimento di Matematica e Informatica Anno Accademico 206-207 Corso di Laurea in Informatica (L-3) Prova scritta di Matematica Discreta (2 CFU) 6 Settembre 207 Parte A [0 punti] Sia data la successione

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Analisi dei dati corso integrato - Algebra lineare,

Analisi dei dati corso integrato - Algebra lineare, Analisi dei dati corso integrato - Algebra lineare, 050308-2 1 Ortogonalita nel piano Sia fissato nel piano un sistema di riferimento cartesiano ortogonale monometrico, con origine in O Tranne avviso contrario,

Dettagli

Fondamenti di Algebra Lineare e Geometria

Fondamenti di Algebra Lineare e Geometria Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale ed Ingegneria dell Energia - Canale B Primo Appello - 6 giugno 24 TEMA A Risolvere i seguenti esercizi motivando adeguatamente ogni risposta.

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Geometria e algebra lineare (II parte) Bruno Martelli

Geometria e algebra lineare (II parte) Bruno Martelli Geometria e algebra lineare (II parte) Bruno Martelli Dipartimento di Matematica, Largo Pontecorvo 5, 56127 Pisa, Italy E-mail address: martelli at dm dot unipi dot it versione: 7 marzo 2017 Indice Introduzione

Dettagli

Sistemi dinamici lineari

Sistemi dinamici lineari Capitolo 1. INTRODUZIONE 1.19 Sistemi dinamici lineari La funzione di stato che descrive un sistema dinamico lineare, è rappresentabile in forma matriciale nel seguente modo: Per sistemi continui: Per

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Definizioni e operazioni fondamentali

Definizioni e operazioni fondamentali MATRICI Definizioni e operazioni fondamentali Autovalori e autovettori Potenza Esponenziale Limiti, derivate e integrali Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 DEFINIZIONI

Dettagli

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,

Dettagli

Fondamenti di Automatica: Esercitazioni 2016

Fondamenti di Automatica: Esercitazioni 2016 Fondamenti di Automatica: Esercitazioni 2016 Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina F.d.A. 2 Indice 1 Algebra delle matrici e numeri

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI LUCIA GASTALDI 1. Matrici. Operazioni fondamentali. Una matrice A è un insieme di m n numeri reali (o complessi) ordinati, rappresentato nella tabella

Dettagli

Vincenzo Aieta CONICHE, FASCI DI CONICHE

Vincenzo Aieta CONICHE, FASCI DI CONICHE Vincenzo Aieta CONICHE, FASCI DI CONICHE Le coniche 1 Teoria delle Coniche Il nome conica deriva dal semplice fatto che gli antichi Greci secando con un piano una conica a doppia falda ottenevano, a seconda

Dettagli

Soluzioni dei Problemi di analisi

Soluzioni dei Problemi di analisi Copyright 9 - The McGraw-Hill Companies srl Soluzioni dei Problemi di analisi. x l t =. x l t = cost+sint cost sint. x l t =. x l t =. x l t = 6. x = e t 7. x = c ; x ft = e t e t cost e t e t cost+sint

Dettagli

Analisi delle componenti principali

Analisi delle componenti principali Analisi delle componenti principali Serve a rappresentare un fenomeno k-dimensionale tramite un numero inferiore o uguale a k di variabili incorrelate, ottenute trasformando le variabili osservate Consiste

Dettagli

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici Introduzione S S S Rango di matrici Si dice sottomatrice d'una matrice data la matrice ottenuta selezionando un certo numero di righe e di colonne della matrice iniziale. Lezione 24.wpd 08/01/2011 XXIV

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

Analisi delle corrispondenze

Analisi delle corrispondenze Analisi delle corrispondenze Obiettivo: analisi delle relazioni tra le modalità di due (o più) caratteri qualitativi Individuazione della struttura dell associazione interna a una tabella di contingenza

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE 1 Funzioni libere I punti stazionari di una funzione libera di più variabili si ottengono risolvendo il sistema di equazioni

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t)

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t) Esercizio Circuiti R in serie). Si considerino i sistemi elettrici R rappresentati nella seguente figura: + + + + u t) R y t) u t) R y t) Si consideri inoltre il sistema ottenuto collegando in serie i

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli