Scomposizione in fratti semplici
|
|
|
- Rosa Casini
- 9 anni fa
- Visualizzazioni
Transcript
1 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta di questo tipo: F (s) P (s) Q(s) : b m s m + b m s m b s + b 0 s n + a n s n a s + a 0 La differenza r n m fra i gradi del denominatore e del numeratore prende il nome di grado relativo della funzione razionale F (s). La funzione F (s) può essere scomposta in fratti semplici se è strettamente propria, cioè se presenta una grado relativo r. La funzione F (s) può sempre essere espressa anche in forma fattorizzata: F (s) K (s z ) (s z )... (s z m ) (s p ) (s p )... (s p n ) Le costanti complesse z,..., z m e p,..., p n vengono dette, rispettivamente, zeri e poli della funzione F (s). Valutazione grafica della funzione F (s):
2 .. SCOMPOSIZIONE IN FRATTI SEMPLICI. Ad ogni polo reale p i della funzione F (s) viene associata una costante di tempo τ i così definita: Im τ i p i p i τ i Re La costante di tempo τ i è positiva se il polo reale p i è negativo. Un analoga definizione vale anche per le costanti di tempo τ j associate agli zeri: τ j /z j. Nel caso di poli complessi coniugati p, σ ± j ω (σ è la parte reale e ω è la parte immaginaria) spesso si utilizza anche la seguente parametrizzazione di tipo polare : p, σ ± j ω δ ω n ± j ω n ω n cos ϕ ± j ω n sin ϕ p Im ω dove ω n è detta pulsazione naturale: ϕ ω n ω n p p σ + ω e δ è detto coefficiente di smorzamento: δ cos ϕ σ σ + ω p σ Re Valgono quindi le relazioni seguenti: σ δ ω n, ω ω n L utilizzo della parametrizzazione polare (δ, ω n ) risulterà molto utile nello studio temporale e frequenziale dei sistemi dinamici lineari.
3 .. SCOMPOSIZIONE IN FRATTI SEMPLICI. 3 In relazione all antitrasformazione si distinguono due casi: i) tutti i poli sono semplici; ii) si hanno poli multipli. Nel caso di poli semplici la funzione può essere scomposta come segue: F (s) P (s) Q(s) P (s) n (s p ) (s p )... (s p n ) i K i s p i Le costanti K i (dette residui) sono reali in corrispondenza dei poli reali, complesse coniugate in corrispondenza delle coppie di poli complessi coniugati. Esse si ricavano utilizzando la formula: K i (s p i ) P (s) Q(s) spi Una volta che la funzione F (s) è stata scomposta in fratti semplici, è immediato antitrasformarla: Esempio. Sia f(t) n K i e p it 5 s + 3 F (s) : (s + ) (s + ) (s + 3) K s + + K s + + K 3 s + 3 I residui si calcolano nel modo seguente: 5 ( ) + 3 K ( + ) ( + 3) per cui si può scrivere e quindi K K 3 i 5 ( ) + 3 ( + ) ( + 3) 7 5 ( 3) + 3 ( 3 + ) ( 3 + ) 6 F (s) s s + 6 s + 3 f(t) e t + 7 e t 6 e 3t
4 .. SCOMPOSIZIONE IN FRATTI SEMPLICI. 4 Quando si hanno coppie di poli complessi coniugati p σ + j ω, p σ j ω anche i residui sono complessi coniugati p ϕ Im ω n ω K u + j v, K u j v La somma di fratti semplici ad essi relativa è σ Re Posto u + j v s σ j ω + u j v s σ + j ω M : K u + v, ϕ : arg K arg (u + j v ), p si può scrivere ( M e jϕ e jϕ ) + s σ j ω s σ + j ω da cui, antitrasformando, si ottiene M ( e σ t+j(ω t+ϕ ) + e ) σ t j(ω t+ϕ ), funzione che può essere posta nella forma, Esempio. Sia: M e σ t cos(ω t + ϕ ) oppure M e σ t sen(ω t + ϕ + π/) F (s) : 7s 8s + 5 s 3 + s + 5s K s + K s + j + K 3 s + + j I residui sono i seguenti: K (0 + j) (0 + + j) e pertanto da cui, antitrasformando, K 7 ( + j) 8 ( + j) + 5 ( + j) ( + j + + j) 3 + j4 K 3 7 ( j) 8 ( j) + 5 ( j) ( j + j) 3 j4 F (s) s j4 s + j + 3 j4 s + + j, f(t) + 0 e t cos (t + ϕ), dove 0 K e ϕarctan(4/3)53.3.
5 .. SCOMPOSIZIONE IN FRATTI SEMPLICI. 5 Esempio. Si calcoli la risposta al gradino unitario del seguente sistema: G(s) ω n s + δω n s + ω n Occorre antitrasformare la seguente funzione di uscita: Y (s) G(s)X(s) ω n s(s + δω n s + ω n ) ω n s(s ω n e jϕ p )(s ωn e jϕ p ) p ϕ Im ω n ω ω n ϕ p dove e K s + K s ω n e jϕ p + K s ω n e jϕ p p, δω n ± jω n ϕ p π ϕ π arccos δ σ δω n p Re Il calcolo dei residui è immediato: K lim s 0 ω n s + δω n s + ω n Essendo: K lim s ω n e jϕp M K ω n s(s ω n e jϕ p ) ω n ω n e jϕ p (ωn e jϕ p ωn e jϕ p ) sin ϕ p sin(π ϕ) sin ϕ e jϕp j sin ϕ p ϕ argk ϕ p π (π ϕ) π ϕ + π arctan e antitrasformando si ottiene (cos(α + π ) sin α): ] y(t) + M e δωnt cos [ω n t + ϕ + e δω nt cos [ω n t + arctan δ e δω nt sin [ω n t + arctan ] δ δ + π ] + π
6 .. SCOMPOSIZIONE IN FRATTI SEMPLICI. 6 Antitrasformazione: il caso di poli multipli Si suppone che la funzione razionale F (s) abbia h poli distinti p i (i,..., h), ciascuno caratterizzato da un ordine di molteplicità r i ( h i r i n): F (s) P (s) Q(s) P (s) h (s p ) r (s p ) r... (s ph ) r h Le costanti K il si ricavano mediante la formula K il (l )! d l ds l (s p i) r P (s) i Q(s) i spi r i l K il (s p i ) r i l+ dove (i,..., h; l,..., r i ). Antitrasformando la F (s) si ottiene: f(t) h i r i l K il (r i l)! tr i l e p it I coefficienti K il sono complessi coniugati in corrispondenza di poli complessi coniugati. I termini complessi coniugati corrispondono a prodotti di esponenziali reali e funzioni trigonometriche, e si ottengono con un procedimento del tutto analogo a quello seguito nel caso di poli distinti. Esempio: dove F (s) (s + ) (s + ) K s + + K s + + K (s + ) K [(s + ) F (s)] s K d [ (s + ) F (s) ] d ds s ds [ s + ] s K [ (s + ) F (s) ] s Antitrasformando si ottiene: f(t) e t e t + t e t
7 .. SCOMPOSIZIONE IN FRATTI SEMPLICI. 7 Sviluppi in somme di fratti semplici Si consideri il rapporto di polinomi Valgono le seguenti proprietà: F (s) b ms m + b m s m b s + b 0 a n s n + a n s n a s + a 0 i) se è nm+, la somma dei residui di F (s) è b m an ; ii) se è n m+, la somma dei residui di F (s) è zero. Si ricorda che, nello sviluppo in fratti, i residui di F (s) sono i coefficienti dei termini con polinomio a denominatore di primo grado. Esempio : s z F (s) (s p ) (s p ) (s p 3 ) A + B + C s p s p s p 3 Calcolati A e B, il calcolo del residuo C è immediato: C (A + B). Esempio : F (s) (s p ) (s p ) A (s p ) + B + C s p s p Il coefficiente A e il residuo C si possono calcolare immediatamente: A p p, C Applicando la proprietà ii si deduce: B C. Esempio 3: (p p ) s z F (s) (s p ) 3 (s p ) A (s p ) + B 3 (s p ) + C + D s p s p Il coefficiente A e il residuo D si calcolano immediatamente. Applicando la proprietà ii si deduce: C D. Moltiplicando ambo i membri dello sviluppo per (s p ) si ottiene: s z A (s p ) (s p ) (s p ) + B + C + D s p s p s p A (s p ) + B + E s p s p da cui si calcola E p z (p p ) Applicando la proprietà ii al nuovo sviluppo, si ottiene B E.
8 .. SCOMPOSIZIONE IN FRATTI SEMPLICI. 8 L unica difficoltà nell antitrasformazione delle funzioni razionali fratte è la fattorizzazione del polinomio a denominatore. Il comportamento dell antitrasformata per t tendente all infinito è legato alla posizione dei poli in rapporto all asse immaginario. Infatti, nel caso di poli semplici si hanno termini (modi) del tipo: K, K e σt, K e σt sen (ω t + ϕ) in cui σ e ω sono le parti reale e immaginaria dei poli considerati, mentre nel caso di poli multipli si hanno termini (modi) del tipo: K t h, K t h e σt, K t h e σt sen (ω t + ϕ) in cui h è un intero compreso fra l unità e r, essendo r l ordine di molteplicità dei poli considerati. Nel caso di poli semplici, i termini tendono a zero per t tendente all infinito se la parte reale del relativo polo è negativa, restano limitati se essa è nulla e divergono se essa è positiva. Nel caso di poli multipli, i termini tendono a zero se la parte reale del relativo polo è negativa e divergono se essa è nulla o positiva. L antitrasformata di una funzione razionale fratta rimane limitata se e solo se la funzione da antitrasformare non presenta alcun polo a parte reale positiva e gli eventuali poli a parte reale nulla sono semplici, diverge in caso contrario. I poli che caratterizzano la trasformata della risposta del sistema a un segnale di ingresso (come l impulso di Dirac, il gradino, la sinusoide) sono quelli della funzione di trasferimento, più quelli relativi al segnale di ingresso. Il sistema risulta stabile (asintoticamente) quando tutti i suoi poli sono a parte reale negativa: infatti in tal caso le sue variabili tendono a riacquistare asintoticamente per t tendente all infinito i valori che avevano prima della perturbazione.
9 .. SCOMPOSIZIONE IN FRATTI SEMPLICI. 9 Modi della risposta nel caso di poli distinti (r ): Modi della risposta nel caso di poli multipli (r ):
ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.
Risposta temporale: esempi
...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:
Reti nel dominio delle frequenze. Lezione 10 2
Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio
Risposta al gradino di un sistema del primo ordine
0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di
Diagrammi di Nyquist o polari
0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1
RICHIAMI MATEMATICI. x( t)
0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri
5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =
Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni
06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti
Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching
CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;
1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema
Funzione di trasferimento
Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: [email protected] URL: www-lar.deis.unibo.it/~crossi Definizione
Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)
Sintesi diretta (Complementi di Controlli Automatici: prof. Giuseppe Fusco) La tecnica di progetto denominata sintesi diretta ha come obiettivo il progetto di un controllore C(s) il quale assicuri che
CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema
CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u
Graficazione qualitativa del luogo delle radici
.. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa
Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s
.. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:
Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi.
.. 3.2 Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I
SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: [email protected]
Fondamenti di Controlli Automatici
Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono
Controlli automatici L-A
Controlli automatici L-A Compendio delle dispense del prof. Paolo Castaldi Marco Alessandrini Università degli Studi di Bologna (Sede di Cesena) Quest opera è stata rilasciata sotto la licenza Creative
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e
Reti nel dominio del tempo. Lezione 7 1
Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli
Stabilità e retroazione
0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile
Stabilità e risposte di sistemi elementari
Parte 4 Aggiornamento: Settembre 2010 Parte 4, 1 Stabilità e risposte di sistemi elementari Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL: www-lar.deis.unibo.it/~lmarconi
Lezione 8. Stabilità dei sistemi di controllo
Lezione 8 Stabilità dei sistemi di controllo Poli di un sistema di controllo Riprendiamo lo schema a blocchi di un sistema di controllo in retroazione: d y + + + y L(s) + + n Fig. 1 : Sistema di controllo
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE Ing. Luigi Biagiotti Tel. 051 2093034 / 051 2093068 e-mail: [email protected] http://www-lar.deis.unibo.it/~lbiagiotti
Calcolo del movimento di sistemi dinamici LTI
Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per
Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario
Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella
Analisi dei sistemi in retroazione
Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: [email protected]
SISTEMI DIGITALI DI CONTROLLO
Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza [email protected] Lucidi tratti dal libro C. Bonivento,
Svolgimento degli esercizi del Capitolo 1
Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione
rapporto tra ingresso e uscita all equilibrio.
Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.
Il criterio di Nyquist
0.0. 4.5 1 Il criterio di Nyquist IlcriteriodiNyquistconsentedistabilireseunsistema,delqualesiconosce la risposta armonica ad anello aperto, sia stabile o meno una volta chiuso in retroazione: r(t) e(t)
Forma canonica di Jordan
Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:
Il luogo delle radici. G(s) - H(s)
Il luogo delle radici r + e D(s) u - H(s) G(s) Esempio: controllo proporzionale: u(t)=ke(t) Strumenti per analizzare la stabilita` del sistema a catena chiusa al variare di K (criteri di Routh e Nyquist)
4 Analisi nel dominio del tempo delle rappresentazioni in
Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]
Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE
Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima
Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i,
Numeri complessi Esercizi svolti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 4 3 4i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria
Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist
Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s
STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist
I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : [email protected] INTRODUZIONE STABILITÀ DEI SISTEMI Metodo
Simulazione dei sistemi: esercitazione 1
Simulazione dei sistemi: esercitazione 1 Esempio 1: studio di un sistema massa-molla Si consideri il sistema di figura 1 in cui ad un corpo di massa M, vincolato ad un riferimento tramite una molla di
Diagrammi di Bode. Lezione 16 1
Diagrammi di Bode Lezione 16 1 Funzione di trasferimento da considerare Tracciare il diagramma di Bode (solo spettro di ampiezza) della funzione di trasferimento: H() s = Punti critici: ss ( + 500) ( s+
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CRITERIO DI ROUTH-HURWITZ
1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione
a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,
ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1
Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell
Metodo delle trasformate di Laplace. Lezione 12 1
Metodo delle trasformate di Laplace Lezione Fasi del metodo Trasformazione della rete dal dominio del tempo al dominio di Laplace Calcolo della rete in Laplace con metodi circuitali Calcolo delle antitrasformate
Segnali e Sistemi (Ingegneria Informatica)
Segnali e Sistemi (Ingegneria Informatica) Lezione 3 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1 SIMMETRIE DEI SEGNALI - Simmetria pari (Definizioni analoghe nel caso discreto) Segnale pari
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
FILTRI ANALOGICI L6/1
FILTRI ANALOGICI Scopo di un filtro analogico è l eliminazione di parte del contenuto armonico di un segnale, lasciandone inalterata la porzione restante. In funzione dell intervallo di frequenze del segnale
Esercizi sul luogo delle radici
FA Esercizi 6, 1 Esercizi sul luogo delle radici Analisi di prestazioni a ciclo chiuso, progetto di regolatori facendo uso del luogo delle radici. Analisi di prestazioni FA Esercizi 6, 2 Consideriamo il
Funzioni di trasferimento
1 Funzioni di trasferimento Introduzione 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: introduzione uso dei decibel e delle scale logaritmiche diagrammi di Bode 4 Funzione di trasferimento
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
CONTENUTI. Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti. I grado II grado
CONTENUTI Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti EQUAZIONI I grado II grado intere fratte intere fratte EQUAZIONI ALGEBRICHE generalità Dicesi
Luogo delle Radici. Università degli Studi di Firenze. L. Chisci, P. Falugi
Università degli Studi di Firenze Luogo delle Radici L. Chisci, P. Falugi Corso di Fondamenti di Automatica per CdL Ing. dell Informazione e Ing. dell Ambiente e delle Risorse Anno Accademico 005/06 Fondamenti
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Banda passante e sviluppo in serie di Fourier
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: [email protected]
Lo studio dell evoluzione libera nei sistemi dinamici
Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto
Capitolo 6. Sistemi lineari di equazioni differenziali. 1
Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare
Tracciamento dei Diagrammi di Bode
Tracciamento dei Diagrammi di Bode L. Lanari, G. Oriolo Dipartimento di Ingegneria Informatica, Automatica e Gestionale Sapienza Università di Roma October 24, 24 diagrammi di Bode rappresentazioni grafiche
Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma:
Serie di Fourier Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: x( t) = = 0, A cos ( 2πf t + ϕ ) Cioè: ogni segnale periodico di periodo T si può scrivere come somma
SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE. ESERCIZI SUL CRITERIO DI BODE Completamente svolti
SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE ESERCIZI SUL CRITERIO DI BODE Completamente svolti A cura del prof. Michele ZIMOTTI 1 Esercizi sulla stabilità
10 = 100s. s10. Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no.1. Esercizio no.2. Esercizio no.
Edutecnica Diagrammi di Bode Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no. soluzione a pag. + Esercizio no. soluzione a pag.3 0 + Esercizio no.3
Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità
Capitolo 7 Stabilità dei sistemi di controllo 8.1 Generalità 8. Criterio generale di stabilità 8.3 Esercizi - Criterio generale di stabilità 8.4 Criterio di stabilità di Nyquist 8.5 Esercizi - Criterio
SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003
SECONDO COMPIINO DI SEGNALI E SISEMI 3 Dicembre 003 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: vk) con a parametro
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase
I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3
I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale
Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st
Esercizio. Si consideri la funzione di trasferimento G(s) = K + st + sτ. Si dimostri che, qualunque siano i valori dei parametri reali K, T e τ, il relativo diagramma di Nyquist è una circonferenza. Si
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio
Tracciamento dei Diagrammi di Nyquist
Fondamenti di Automatica Tracciamento dei Diagrammi di Nyquist L. Lanari Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti Università di Roma La Sapienza Ultima modifica November
0.1 Numeri complessi C
0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni
rapporto tra l'incremento della funzione e l' incremento corrispondente della
DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica [email protected] EQUAZIONI DI SECONDO GRADO Definizione: Dicesi
Elettrotecnica Esercizi di riepilogo
Elettrotecnica Esercizi di riepilogo Esercizio 1 I 1 V R 1 3 V 2 = 1 kω, = 1 kω, R 3 = 2 kω, V 1 = 5 V, V 2 = 4 V, I 1 = 1 m. la potenza P R2 e P R3 dissipata, rispettivamente, sulle resistenze e R 3 ;
IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero
IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno
ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1
ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale
Controlli Automatici T. Analisi Armonica. Parte 5 Aggiornamento: Settembre Prof. L. Marconi
Parte 5 Aggiornamento: Settembre 2010 Parte 5, 1 Analisi Armonica Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL: www-lar.deis.unibo.it/~lmarconi Analisi
Le funzioni reali di una variabile reale
Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B
L ANALISI ARMONICA DI UN SEGNALE PERIODICO
L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che
Sintesi di reti correttrici e progetto analitico di controllori PID
Sintesi di reti correttrici e progetto analitico di controllori PID A. Ferrante January 4, 204 Il materiale esposto in questa nota è tratto da [] cui si rimanda per maggiori dettagli. Sintesi di Bode Si
Capitolo 1 ANALISI COMPLESSA
Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del
La funzione di risposta armonica
0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =
A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame
COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni
Corso di Geometria III - A.A. 2016/17 Esercizi
Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare
R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )
Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:
Risposta a regime (per ingresso costante e per ingresso sinusoidale)
Risposta a regime (per ingresso costante e per ingresso sinusoidale) Esercizio 1 (es. 1 del Tema d esame del 18-9-00) s + 3) 10 ( s + 1)( s + 4s ) della risposta all ingresso u ( a gradino unitario. Non
Funzioni Pari e Dispari
Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
