Tracciamento dei Diagrammi di Bode
|
|
|
- Filippa Patti
- 9 anni fa
- Visualizzazioni
Transcript
1 Tracciamento dei Diagrammi di Bode L. Lanari, G. Oriolo Dipartimento di Ingegneria Informatica, Automatica e Gestionale Sapienza Università di Roma October 24, 24
2 diagrammi di Bode rappresentazioni grafiche separate del modulo W (jω) e della W (jω) del numero complesso W (jω) al variare di ω (, + ) essendo Im[W(j!)] Im W(j!) W(j!) W(j!) Re[ W(j!) ] Re (/W (jω)) = W (jω) ( ) le fasi di /W (jω) si ottengono ribaltando quelle di W (jω) sia W (s) = W (s) W 2 (s); essendo (W (jω) W 2 (jω)) = W (jω) + W 2 (jω) ( ) le fasi di W (jω) si ottengono sommando quelle di W (jω) e W 2 (jω) Lanari, Oriolo: Tracciamento dei Diagrammi di Bode
3 il modulo W (jω) non gode di proprietà come le ( ),( ) si passa al logaritmo; in particolare, il modulo si esprime in decibel (db) W (jω) db = 2 log W (jω) essendo /W (jω) db = W (jω) db ( ) i moduli in db di /W (jω) si ottengono ribaltando quelli di W (jω) sia W (s) = W (s) W 2 (s); essendo W (jω) W 2 (jω) db = W (jω) db + W 2 (jω) db ( ) i moduli in db di W (jω) si ottengono sommando quelli di W (jω) e W 2 (jω) alcuni valori notevoli. db = 2, db =, db = 2, db = 4, 2 db 3 Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 2
4 le pulsazioni vengono riportate sull asse delle ascisse usando una scala logaritmica in base decade decade 2!.5.5 la funzione log (x) è lineare in tale scala log! ! (scala logaritmica) i diagrammi di alcune funzioni elementari (fattori monomio, binomio e trinomio, vedi più avanti) assumono una forma particolarmente semplice un altro vantaggio derivante dall adozione delle scale logaritmiche (in ascissa per le pulsazioni, e in ordinata per i moduli) è ovviamente la possibilità di rappresentare ampi intervalli di variazione delle grandezze Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 3
5 forma di Bode della risposta armonica W (jω) = costante monomi binomi trinomi monomi binomi trinomi contiene 4 tipi di fattori elementari costante k monomio jω proviene da uno zero (se a numeratore) o da un polo (se a denominatore) in s = binomio + jωτ proviene da uno zero (se a numeratore) o da un polo (se a denominatore) reale in /τ trinomio + 2ζjω/ω n + (jω) 2 /ωn 2 proviene da una coppia di zeri (se a numeratore) o di poli (se a denominatore) complessi coniugati in a ± jb, con ω n = a 2 + b 2 e ζ = a/ω n Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 4
6 fattore costante k sul piano complesso (e.g., k =, k 2 =.5, k 3 = ) k3 Im k2 k Re modulo Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 5
7 fattore monomio a numeratore jω Im sul piano complesso! 9 o e si ha jω db = 2 log ω Re 4 modulo Modulo (db) db/dec Pulsazione (rad/s) Pulsazione (rad/s) Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 6
8 dalle ( ), ( ) si ha fattore monomio a denominatore /jω 4 modulo Modulo (db) db/dec Pulsazione (rad/s) Pulsazione (rad/s) Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 7
9 fattore binomio a numeratore + jωτ Im > Im < sul piano complesso! oppure Re Re! modulo: + jωτ db = 2 log + ω 2 τ 2 ; essendo si ha + jωτ db + ω 2 τ 2 se ω / τ ω τ se ω / τ se ω / τ 2 log ω + 2 log τ se ω / τ queste due semirette costituiscono il diagramma asintotico del modulo nota: lo scostamento max tra il diagramma reale e quello asintotico si ha proprio in corrispondenza alla pulsazione di rottura / τ e vale + jτ/ τ db = 2 log 2 3 Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 8
10 : procedendo in modo analogo si ha + jωτ se ω / τ 9 ( 9 ) se ω / τ e τ > (τ < ) questi due asintoti vengono raccordati da un segmento che parte da./ τ e termina in / τ ; il diagramma asintotico della è quindi costituito da una spezzata a tre lati nota: lo scostamento max tra il diagramma reale e quello asintotico si ha in corrispondenza alle pulsazioni./ τ e / τ, e vale circa ±6 Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 9
11 fattore binomio a numeratore + jωτ 4 modulo Modulo (db) per τ > per τ < Lanari, Oriolo: Tracciamento dei Diagrammi di Bode
12 fattore binomio a denominatore /( + jωτ) dalle ( ), ( ) si ha -3 modulo Modulo (db) per τ > per τ < Lanari, Oriolo: Tracciamento dei Diagrammi di Bode
13 fattore trinomio a numeratore + 2ζjω/ω n + (jω) 2 /ω 2 n ³ 3 ³ ³ ³ > > > 3 2 Im sul piano complesso ³ 2 ³ ³ ³ = - Re modulo: essendo + 2 ζ (jω) + (jω)2 ω n ω 2 n = ω2 ω 2 n + j2ζ ω ω n = ( ω2 ω 2 n ) 2 + 4ζ 2ω2 ω 2 n si ha + 2 ζ (jω) + (jω)2 ω n ω 2 n se ω ω n ω 2 ω 2 n se ω ω n Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 2
14 da cui + 2 ζ (jω) + (jω)2 ω n ωn 2 db se ω ω n 4 log ω 4 log ω n se ω ω n queste due semirette costituiscono il diagramma asintotico del modulo nota: lo scostamento tra il diagramma reale e quello asintotico in corrispondenza alla pulsazione naturale ω n vale 2 log 2 ζ dipende da ζ! e.g., per ζ = lo scostamento in db vale, per ζ =.5 vale, per ζ = vale 6 se ζ < / 2.77, il modulo di un fattore trinomio a numeratore ha un picco negativo (antirisonanza) in prossimità della pulsazione naturale, tanto più accentuato quanto minore è ζ Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 3
15 : procedendo in modo analogo si ha ( + 2 ζ ω n (jω) + (jω)2 ω 2 n ) se ω ω n 8 ( 8 ) se ω ω n e ζ > (ζ < ) la transizione tra questi due valori avviene in modo simmetrico rispetto alla pulsazione naturale ω n, e tanto più bruscamente quanto minore è ζ ; in particolare, per ζ = si ha una discontinuità nel diagramma delle fasi in corrispondenza a ω n nota: non esiste un diagramma asintotico per la del termine trinomio Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 4
16 fattore trinomio a numeratore 6 modulo al variare di ζ (antirisonanza per ζ <.77) Modulo (db) ! n! n.! n al variare di ζ ! n! n! n al variare di ζ ! n ! n! n Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 5
17 fattore trinomio a denominatore dalle ( ), ( ) si ha 6 modulo al variare di ζ (risonanza per ζ <.77) Modulo (db) ! n ! n! n al variare di ζ al variare di ζ ! n ! n! n ! n! n! n Lanari, Oriolo: Tracciamento dei Diagrammi di Bode 6
Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi.
.. 3.2 Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I
Diagrammi di Bode. Lezione 16 1
Diagrammi di Bode Lezione 16 1 Funzione di trasferimento da considerare Tracciare il diagramma di Bode (solo spettro di ampiezza) della funzione di trasferimento: H() s = Punti critici: ss ( + 500) ( s+
Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità
Capitolo 7 Stabilità dei sistemi di controllo 8.1 Generalità 8. Criterio generale di stabilità 8.3 Esercizi - Criterio generale di stabilità 8.4 Criterio di stabilità di Nyquist 8.5 Esercizi - Criterio
Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s
.. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:
COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE
COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE Un sistema risponde ad una sinusoide in ingresso con una sinusoide in uscita della stessa pulsazione. In generale la sinusoide d uscita ha una diversa
Tracciamento dei Diagrammi di Nyquist
Fondamenti di Automatica Tracciamento dei Diagrammi di Nyquist L. Lanari Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti Università di Roma La Sapienza Ultima modifica November
s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;
1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema
Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db
Esercizio 1 2 G(s) 28 (s 1) (s.5)(s 1) Poli: p1 = -.5 p2 = -1 zeri: z1 = 1 (dx) Tipo: g= Guadagno: G() = 56 = 2log1(56) ~ 35 db Bode del Modulo 3 Scala 4 6 5 4 3 Magnitude (db) 2 1-1 -2 1.1.2.3 1 1 Piazzamento
Rappresentazione grafica delle funzioni di trasferimento: diagrammi di Bode
Capitolo 7 Rappresentazione grafica delle funzioni di trasferimento: diagrammi di Bode 7. Rappresentazione grafica di funzioni di trasferimento razionali La funzione di trasferimento e una funzione di
Funzioni di trasferimento
1 Funzioni di trasferimento Introduzione 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: introduzione uso dei decibel e delle scale logaritmiche diagrammi di Bode 4 Funzione di trasferimento
Diagrammi di Nyquist o polari
0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1
Lezione 8. Stabilità dei sistemi di controllo
Lezione 8 Stabilità dei sistemi di controllo Poli di un sistema di controllo Riprendiamo lo schema a blocchi di un sistema di controllo in retroazione: d y + + + y L(s) + + n Fig. 1 : Sistema di controllo
Controlli Automatici T. Analisi Armonica. Parte 5 Aggiornamento: Settembre Prof. L. Marconi
Parte 5 Aggiornamento: Settembre 2010 Parte 5, 1 Analisi Armonica Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL: www-lar.deis.unibo.it/~lmarconi Analisi
Tracciamento diagrammi di Nyquist
Appunti Tracciamento Nyquist Ing. E.arone www.gprix.it Tracciamento diagrammi di Nyquist Prerequisiti Due Amenità sui numeri complessi Formula di Eulero: Appunti Tracciamento Nyquist Ing. E.arone www.gprix.it
Diagrammi di Bode e polari
Marzo - Giugno Automation Robotics and System CONTROL Corso di laurea in Ingegneria Meccatronica DIAGRAMMI DI BODE Cesare Fantuzzi ([email protected]) Cristian Secchi ([email protected])
LA RISPOSTA ARMONICA DEI SISTEMI LINEARI (regime sinusoidale) S o (t)
ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INF LA RISPOSTA ARMONICA DEI SISTEMI LINEARI (regime sinusoidale) S i (t) Sistema LINEARE S o (t) Quando si considerano i sistemi lineari, per essi è applicabile
Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st
Esercizio. Si consideri la funzione di trasferimento G(s) = K + st + sτ. Si dimostri che, qualunque siano i valori dei parametri reali K, T e τ, il relativo diagramma di Nyquist è una circonferenza. Si
STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist
I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : [email protected] INTRODUZIONE STABILITÀ DEI SISTEMI Metodo
SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. RETI CORRETTRICI
SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html RETI CORRETTRICI Ing. Luigi Biagiotti e-mail: [email protected] http://www.dii.unimore.it/~lbiagiotti
10 = 100s. s10. Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no.1. Esercizio no.2. Esercizio no.
Edutecnica Diagrammi di Bode Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no. soluzione a pag. + Esercizio no. soluzione a pag.3 0 + Esercizio no.3
Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione
0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi
Risposta al gradino di un sistema del primo ordine
0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di
Analisi dei sistemi in retroazione
Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: [email protected]
Diagrammi di Bode. delle
.. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.
Scomposizione in fratti semplici
0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta
Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1
Lezione 19. Stabilità robusta F. Previdi - Fondamenti di Automatica - Lez. 19 1 Schema 1. Stabilità & incertezza 2. Indicatori di stabilità robusta 3. Margine di guadagno 4. Margine di fase 5. Criterio
Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola
Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h Cognome Nome Matricola Esercizio 3: Si determini, motivando brevemente, la corrispondenza
5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =
Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni
Fondamenti di Controlli Automatici
Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono
Matematica e Statistica per Scienze Ambientali
per Scienze Ambientali Applicazioni delle derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013 Esercizio Un area rettangolare deve essere recintata usando
Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza
Esperienza n. 10 Partitore resistivo e sua compensazione in c.a. Partitore resistivo-capacitivo Partitore resistivo: abbiamo visto che in regime di corrente continua il rapporto di partizione è costante:
Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona
Corso di laurea in Informatica Regolatori Marta Capiluppi [email protected] Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase
SISTEMI DIGITALI DI CONTROLLO
Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza [email protected] Lucidi tratti dal libro C. Bonivento,
Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura.
Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni 2001 Il candidato scelga e sviluppi una tra
CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema
CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u
Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE
Brevi appunti di Fondamenti di Automatica 1 prof. Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE 2 ROMA TRE UNIVERSITÀ DEGLI STUDI 4 marzo 215 1 Rev..2 INDICE Indice 1 Esercizi
rapporto tra ingresso e uscita all equilibrio.
Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.
ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Federica
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e
Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist
Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s
Esercizio riassuntivo di sintesi in frequenza
Esercizio riassuntivo di sintesi in frequenza Sia dato il sistema di controllo a retroazione unitaria di Fig. 1 r G(s) P (s) + + d + y Figura 1: Il sistema di controllo assegnato in cui il processo ha
SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE. ESERCIZI SUL CRITERIO DI BODE Completamente svolti
SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE ESERCIZI SUL CRITERIO DI BODE Completamente svolti A cura del prof. Michele ZIMOTTI 1 Esercizi sulla stabilità
Come disegnare un diagramma di Bode
Definizioni Teoriche Come disegnare un diagramma di Bode La risposta armonica è una funzione complessa a variabile reale che restituisce il rapporto tra i moduli e la differenza tra le fasi (cioè lo sfasamento).
FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno
POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Anno Accademico 2014/15 Seconda Prova in Itinere 12/02/2015 COGNOME... NOME... MATRICOLA... FIRMA.... Verificare che il fascicolo
12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq
Appunti di ELETTONIA lassi QUINTE Integratori e Derivatori attivi:.d.t., diagrammi di Bode, risposte nel tempo A.S. 999-000 - martedì 7 dicembre 999 Pagina n. 53..d.T. con uno EO nell'origine ed un POLO
Tecniche di progetto di controllori
Tecniche di progetto di controllori (ver..2) In questo capitolo sarà descritta una tecnica di progetto classica di controllori denominata sintesi per tentativi. Abbiamo visto precedentemente come calcolare
Soluzione del tema di: SISTEMI, AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE anno scolastico LAYOUT DI MACCHINA
Soluzione del tema di: SISTEMI, AUTOMAZIONE E ORANIZZAZIONE DELLA PRODUZIONE anno scolastico 2000 2001 a cura di: V. Savi P. Nasuti. Tanzi Soluzione 1 quesito LAYOUT DI MACCHINA SCHEMA DI POTENZA UNIFILARE
Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1
ezione 15. Stabilità di sistemi retroazionati F. Previdi Automatia ez. 15 1 Shema 1. Stabilità di sistemi retroazionati 2. Stabilità & inertezza 3. Margine di guadagno 4. Margine di fase 5. Criterio di
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase
Graficazione qualitativa del luogo delle radici
.. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa
F I L T R I. filtri PASSIVI passa alto passa basso passa banda. filtri ATTIVI passa alto passa basso passa banda
F I L T R I Un filtro è un dispositivo che elabora il segnale posto al suo ingresso; tipicamente elimina (o attenua) determinate (bande di) frequenze mentre lascia passare tutte le altre (eventualmente
Esercizi sul luogo delle radici
FA Esercizi 6, 1 Esercizi sul luogo delle radici Analisi di prestazioni a ciclo chiuso, progetto di regolatori facendo uso del luogo delle radici. Analisi di prestazioni FA Esercizi 6, 2 Consideriamo il
Esercizi- Risposta in frequenza
esercizi 6, 1 Esercizi- Risposta in frequenza Diagrammi di Nyquist Data una funzione di trasferimento: Vogliamo ottenere la sua rappresentazione nel piano complesso al variare della frequenza. curva parametrizzata
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento
Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza
Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16
Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log
Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano
Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L
Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: [email protected] URL: www-lar.deis.unibo.it/~crossi Schema a blocchi
Il criterio di Nyquist
0.0. 4.5 1 Il criterio di Nyquist IlcriteriodiNyquistconsentedistabilireseunsistema,delqualesiconosce la risposta armonica ad anello aperto, sia stabile o meno una volta chiuso in retroazione: r(t) e(t)
Trasformazioni Logaritmiche
Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log
Il luogo delle radici. G(s) - H(s)
Il luogo delle radici r + e D(s) u - H(s) G(s) Esempio: controllo proporzionale: u(t)=ke(t) Strumenti per analizzare la stabilita` del sistema a catena chiusa al variare di K (criteri di Routh e Nyquist)
PROGETTO DI UN FILTRO PASSA BASSO
orso di elettronica per telecomunicazioni - esercitazione POGETTO DI UN FILTO PASSA BASSO Docente del corso: prof. Giovanni Busatto Galletti iccardo Matr. 65 relazione elettronica per telecomunicazioni
Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali)
Compito di Fondamenti di Automatica - 1 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) C v in 2 vout é richiesto di calcolare la funzione di trasferimento G(s) tra v
3. Segni della funzione (positività e negatività)
. Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della
Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC
23. Guadagno di un quadripolo Filtri passivi isposta in frequenza dei circuiti C-L-LC In un quadripolo generico (fig. ) si definisce guadagno G il rapporto tra il valore d uscita e quello d ingresso della
Sistemi vibranti ad 1 gdl
Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio
PROGRAMMA DI MATEMATICA APPLICATA
PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra
Stabilità e retroazione
0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile
CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
Reti nel dominio del tempo. Lezione 7 1
Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli
Fondamenti di Automatica
Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: [email protected] pag. Analisi
Sintesi per tentativi nel dominio della frequenza
Sintesi per tentativi nel dominio della frequenza Viene utilizzata per sistemi a fase minima affinchè sia valido il criterio di Bode e le relazioni approssimate tra le specifiche siano sufficientemente
Le funzioni reali di una variabile reale
Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B
Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)
Sintesi diretta (Complementi di Controlli Automatici: prof. Giuseppe Fusco) La tecnica di progetto denominata sintesi diretta ha come obiettivo il progetto di un controllore C(s) il quale assicuri che
Elettronica I Risposta in frequenza e guadagno in decibel
Elettronica I isposta in frequenza e guadagno in decibel Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email: [email protected] http://www.dti.unimi.it/
Controlli Automatici T. Analisi del sistema in retro e Funzioni di sensitività. Parte 8 Aggiornamento: Settembre Prof. L.
Parte 8 Aggiornamento: Settembre 2010 Parte 8, 1 Analisi del sistema in retro e Funzioni di sensitività Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL:
3 Equazioni e disequazioni.
3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti
06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti
Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching
Fondamenti di Infrastrutture Viarie
Politecnico di Torino Fondamenti di Infrastrutture Viarie Relazione esercitazioni. Anno Accademico 2011/2012 Corso di Fondamenti di Infrastrutture Viarie Professore: Marco Bassani Esercitatore: Pier Paolo
Luogo delle Radici. Università degli Studi di Firenze. L. Chisci, P. Falugi
Università degli Studi di Firenze Luogo delle Radici L. Chisci, P. Falugi Corso di Fondamenti di Automatica per CdL Ing. dell Informazione e Ing. dell Ambiente e delle Risorse Anno Accademico 005/06 Fondamenti
Funzione di trasferimento
Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: [email protected] URL: www-lar.deis.unibo.it/~crossi Definizione
Prova scritta di Controlli Automatici e sistemi elettrici lineari
Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 202 203 7 Luglio 203 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta
Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario
Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella
Impiego dell oscilloscopio e del generatore di funzioni
Esercitazioni Lab - Impiego dell oscilloscopio e del generatore di funzioni 1 Impiego dell oscilloscopio e del generatore di funzioni Esercitazioni Lab - Impiego dell oscilloscopio e del generatore di
