Stabilità e risposte di sistemi elementari
|
|
|
- Lazzaro Papa
- 9 anni fa
- Visualizzazioni
Transcript
1 Parte 4 Aggiornamento: Settembre 2010 Parte 4, 1 Stabilità e risposte di sistemi elementari Prof. Lorenzo Marconi DEIS-Università di Bologna Tel [email protected] URL: www-lar.deis.unibo.it/~lmarconi
2 Stabilità (esterna) Parte 4, 2 Nozione che cattura la proprietà di come l uscita di sistema dinamico reagisce a fronte di perturbazioni sull ingresso Perturbazione Sistema
3 Stabilità (esterna) Parte 4, 3 Dalla proprietà di sovrapposizione degli effetti (sistemi lineari) si può pensare anche in termini di perturbazione di un moto nominale Perturbazione (disturbo) + Sistema traiettorie nominali traiettorie perturbate
4 Parte 4, 4 Quindi la stabilità esterna si riduce ad analizzare la risposta di un sistema a fronte di un ingresso impulsivo Dalle regole di antitrasformazione è quindi facile mettere in relazione la stabilità esterna di un sistema con il segno della parte reale dei poli della funzione di trasferimento:
5 Risultato: il sistema lineare con fdt e esternamente Asintoticamente stabile se tutti i poli di hanno parte reale negativa; Semplicemente stabile se tutti i poli di hanno parte reale non positiva ed eventuali poli a parte reale nulla hanno molteplicità singola; Instabile se esiste almeno un polo a parte reale positiva o a parte reale nulla e molteplicità maggiore di 1. Parte 4, 5 Sempre dalle proprietà di antitrasformazione di Laplace e in particolare dallo sviluppo in fratti semplici, è semplice dedurre il risultato che ogni sistema esternamente asintoticamente stabile risponde con uscite limitate a fronte di ingressi limitati non necessariamente impulsivi (stabilità BIBO). Tale proprietà non è garantita nel caso di stabilità esterna semplice (risonanza tra ingresso e polo della fdt)
6 Parte 4, 6 Risposte temporali di sistemi elementari Come evidenziato nella parte 3, la risposta forzata di un sistema dinamico con fdt arbitrariamente complessa può essere ottenuta sommando le risposte di sistemi elementari del primo e secondo ordine. Ha quindi senso analizzare l andamento temporale di sistemi elementari a fronte di ingressi tipici (gradino) e identificare la relazione esistente tra i parametri della fdt e l andamento temporale della risposta. Sistemi del primo ordine Sistemi del secondo ordine Luoghi a sovraelongazione e tempo di assestamento costante Effetto degli zeri
7 Sistemi del primo ordine Parte 4, 7 costante di tempo guadagno statico Valore di regime Derivata iniziale Tempo di assestamento all
8 Sistemi del secondo ordine Parte 4, 8 coefficiente di smorzamento ( ) pulsazione naturale ( ) Dalle regole di antitrasformazione:
9 Parte 4, 9 Tempo di assestamento all
10 Osservazioni: La sovraelongazione percentuale dipende univocamente dal coefficiente di smorzamento. In particolare l andamento e monotono decrescente. Parte 4, 10 Il tempo di assestamento è proporzionale al prodotto tra il coeff. di smorzamento e la pulsazione naturale (parte reale dei poli)
11 Parte 4, 11 Altra quantità di interesse: Tempo di salita. Tempo occorrente affinché l uscita passi dal 10% al 90% del valore finale Punto di flesso approssimazione Tempo di salita ( )
12 Parte 4, 12 Il tempo di salita dipende in maniera congiunta (non linearmente) sia da che da. Fissato il tempo di assestamento decresce all aumentare di. Fissato il tempo di assestamento decresce al calare di.
13 Parte 4, 13 Luoghi a tempo di assestamento e sovraelongazione costante Problema: caratterizzare tutte le fdt del secondo ordine che a fronte di un ingresso a gradino presentano: 1) lo stesso tempo di assestamento; 2) la stessa sovraelongazione. Stessa sovraelongazione Stesso tempo assestamento
14 Luoghi a tempo di assestamento costante Parte 4, 14 Dalla relazione e ricordando che reale dei poli cc risulta essere il modulo della parte Tutte le coppie di poli cc con parte reale costante generano riposte al gradino con lo stesso tempo di assestamento cresce se la parte reale decresce
15 Parte 4, 15
16 Parte 4, 16 Luoghi a sovraelongazione costante Dalla relazione e ricordando che risulta essere l angolo che il segmento congiungente il polo con l origine forma con l asse reale negativo Tutte le coppie di poli cc che giacciono su semirette uscenti dall origine hanno la stessa sovraelongazione nella risposta al gradino cresce se l angolo aumenta
17 Parte 4, 17
18 Parte 4, 18 Luoghi dei poli cc che caratterizzano tutte le fdt con un tempo di assestamento (5%) e sovraelongazione
19 Esempio sistema meccanico Parte 4, 19 Ingresso: forza motrice Uscita: posizione del carrello Parametri fisici: rigidezza molla attrito viscoso massa sovraelongazione guadagno statico tempo di assestamento
20 Parte 4, 20
21 Sistema del secondo ordine con poli reali (Polo dominante) Parte 4, 21 Antitrasformando si ottiene: Valore asintotico Valore iniziale Rapidità iniziale
22 Parte 4, 22 In molti casi di interesse pratico i due poli hanno costanti di tempo molto diverse ( ovvero ) Quindi il termine associato al polo con costante di tempo maggiore e caratterizzato da un residuo molto più grande e da un esponenziale molto più lento ad estinguersi La risposta del sistema tende a quella di un sistema del primo ordine governato dal polo dominante
23 Parte 4, 23
24 Effetto degli zeri nella risposta di sistemi elementari Sistema del primo ordine con uno zero reale Grado relativo 0 collegamento algebrico ingresso uscita Parte 4, 24 Antitrasformando si ottiene: Valore asintotico Valore iniziale
25 Parte 4, 25 Sistema del primo ordine con uno zero nell origine Antitrasformando si ottiene: Valore asintotico (proprietà bloccante degli zeri) Valore iniziale
26 Parte 4, 26 Risposta sistema del secondo ordine, poli reali + zero reale Antitrasformando si ottiene: Proprietà per e : L analisi della risposta temporale, e in particolare il valore dei residui associati ai poli, dipende fortemente dalla posizione dello zero.
27 Caso sistemi a fase non minima: ( ) Parte 4, 27 Essendo si ha che la risposta parte con una sottoelongazione ( )
28 Parte 4, 28 Caso sistemi a fase minima: Termine >0 che tende a 0 lentamente Termine <0 che tende a zero velocemente Inoltre: Derivata nel caso non ci sia lo zero
29 Parte 4, 29 La risposta presenta una sovraelongazione tanto più marcata quanto più lo zero tende verso l origine Risposta non oscillatoria Risposta molto più brusca dell equivalente sistema privo di zero
30 Parte 4, 30 Caso sistemi a fase minima con quasi cancellazione : Termine <0 che tende a zero velocemente Il residuo associato e molto piccolo e >0 se <0 se Inoltre l esponenziale tende a zero lentamente.
31 Parte 4, 31 L esponenziale lento genera un contributo piccolo che non e evidente nei primi istanti del transitorio (in quanto sovrastato dal contributo dell esponenziale veloce ) ma che appare asintoticamente. Tale contributo e positivo se e negativo altrimenti.
32 Parte 4, 32 L andamento di e quindi inizialmente analogo a quello di un sistema del primo ordine (governato dal polo veloce con costante di tempo ). Al passare del tempo emerge un contributo subdolo che si esaurisce lentamente con una velocità che dipende dalla costante di tempo associata allo zero) Tipica risposta con due dinamiche temporali. Coda di assestamento dovuta alla quasi cancellazione polo/zero.
33 Risposta sistema del secondo ordine, poli cc + zero reale Notare che Parte 4, 33 con Quindi, dalle proprietà delle trasformate di Laplace, dove rappresenta la risposta al gradino del sistema senza zero.
34 Parte 4, 34 L effetto dello zero e analogo al caso di sistemi con poli reali sottoelongazione per, accentuazione delle sovraelongazioni sfasamento in ritardo per e in anticipo per
SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: [email protected]
Controlli Automatici T. Analisi Armonica. Parte 5 Aggiornamento: Settembre Prof. L. Marconi
Parte 5 Aggiornamento: Settembre 2010 Parte 5, 1 Analisi Armonica Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL: www-lar.deis.unibo.it/~lmarconi Analisi
Funzione di trasferimento
Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: [email protected] URL: www-lar.deis.unibo.it/~crossi Definizione
Controlli Automatici T Regolatori PID
Parte 10bis Aggiornamento: Settembre 2010 Parte 3, 1 Regolatori PID Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL: www-lar.deis.unibo.it/~lmarconi
Risposta temporale: esempi
...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:
ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.
Risposta al gradino di un sistema del primo ordine
0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di
s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;
1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema
rapporto tra ingresso e uscita all equilibrio.
Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase
Scomposizione in fratti semplici
0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta
Controlli Automatici T. Analisi del sistema in retro e Funzioni di sensitività. Parte 8 Aggiornamento: Settembre Prof. L.
Parte 8 Aggiornamento: Settembre 2010 Parte 8, 1 Analisi del sistema in retro e Funzioni di sensitività Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL:
Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)
Sintesi diretta (Complementi di Controlli Automatici: prof. Giuseppe Fusco) La tecnica di progetto denominata sintesi diretta ha come obiettivo il progetto di un controllore C(s) il quale assicuri che
SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. RETI CORRETTRICI
SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html RETI CORRETTRICI Ing. Luigi Biagiotti e-mail: [email protected] http://www.dii.unimore.it/~lbiagiotti
Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola
Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h Cognome Nome Matricola Esercizio 3: Si determini, motivando brevemente, la corrispondenza
SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE. ESERCIZI SUL CRITERIO DI BODE Completamente svolti
SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE ESERCIZI SUL CRITERIO DI BODE Completamente svolti A cura del prof. Michele ZIMOTTI 1 Esercizi sulla stabilità
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e
Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità
Capitolo 7 Stabilità dei sistemi di controllo 8.1 Generalità 8. Criterio generale di stabilità 8.3 Esercizi - Criterio generale di stabilità 8.4 Criterio di stabilità di Nyquist 8.5 Esercizi - Criterio
Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE
Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima
CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
Progetto del controllore
Parte 10, 1 - Problema di progetto Parte 10, 2 Progetto del controllore Il caso dei sistemi LTI a tempo continuo Determinare in modo che il sistema soddisfi alcuni requisiti - Principali requisiti e diagrammi
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase
Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L
Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: [email protected] URL: www-lar.deis.unibo.it/~crossi Schema a blocchi
Esercizi per il corso di Fondamenti di Automatica I
Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 Febbraio 2009 Exercise. Si determini la trasformata di Laplace dei segnali: x (t) = cos(ωt
Banda passante e sviluppo in serie di Fourier
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: [email protected]
Esercizi sul luogo delle radici
FA Esercizi 6, 1 Esercizi sul luogo delle radici Analisi di prestazioni a ciclo chiuso, progetto di regolatori facendo uso del luogo delle radici. Analisi di prestazioni FA Esercizi 6, 2 Consideriamo il
ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Federica
a.a. 2015/2016 Docente: Stefano Bifaretti
a.a. 2015/2016 Docente: Stefano Bifaretti email: [email protected] Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in
CORSO di AUTOMAZIONE INDUSTRIALE
CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469-21029) APPELLO del 07 Settembre 2011 Prof. Andrea Cataldo Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Logico Spiegare la principale differenza nell'elaborazione
CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema
CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u
Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s
.. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:
Reti nel dominio delle frequenze. Lezione 10 2
Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio
STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist
I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : [email protected] INTRODUZIONE STABILITÀ DEI SISTEMI Metodo
PIANO DI LAVORO DEI DOCENTI
Pag. 1 di 5 Docente: Materia insegnamento: SISTEMI ELETTRONICI AUTOMATICI Dipartimento: ELETTRONICA Classe Anno scolastico: 1 Livello di partenza (test di ingresso, livelli rilevati) Per il modulo di automazione
Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.
Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL:
06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti
Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching
5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =
Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni
Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona
Corso di laurea in Informatica Regolatori Marta Capiluppi [email protected] Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione
e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.
8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza
Fondamenti di Controlli Automatici
Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono
ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1
Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell
Stabilità e retroazione
0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile
Indice Prefazione Problemi e sistemi di controllo Sistemi dinamici a tempo continuo
Indice Prefazione XI 1 Problemi e sistemi di controllo 1 1.1 Introduzione 1 1.2 Problemi di controllo 2 1.2.1 Definizioni ed elementi costitutivi 2 1.2.2 Alcuni esempi 3 1.3 Sistemi di controllo 4 1.3.1
Analisi dei sistemi in retroazione
Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: [email protected]
Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario
Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: [email protected] http://www-lar.deis.unibo.it/~lbiagiotti
CONTROLLO NEL DOMINIO DELLA FREQUENZA
SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Relazione tra specifiche e proprietà di L(s) Nell analisi dei sistemi in retroazione
4 Analisi nel dominio del tempo delle rappresentazioni in
Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................
COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE
COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE Un sistema risponde ad una sinusoide in ingresso con una sinusoide in uscita della stessa pulsazione. In generale la sinusoide d uscita ha una diversa
Esercizi di Controlli Automatici
Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e
Esercizi per il corso di Fondamenti di Automatica I
Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 novembre 2009 Parte I Exercise. Si determini la trasformata di Laplace dei segnali: x (t) =
Lezione 8. Stabilità dei sistemi di controllo
Lezione 8 Stabilità dei sistemi di controllo Poli di un sistema di controllo Riprendiamo lo schema a blocchi di un sistema di controllo in retroazione: d y + + + y L(s) + + n Fig. 1 : Sistema di controllo
REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica
REGOLATORI PID Modello dei regolatori PID Metodi di taratura automatica Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 MODELLO DEI REGOLATORI PID Larga diffusione in ambito
REGOLATORI STANDARD PID + _ +
CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm Regolatori standard Regolatore Proporzionale, Integrale, Derivativo PID tre
Capitolo 12. Moto oscillatorio
Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre
RICHIAMI MATEMATICI. x( t)
0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri
1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione
a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,
Graficazione qualitativa del luogo delle radici
.. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa
REGOLATORI PID. Modello dei regolatori PID. Realizzazione dei regolatori PID. Metodi di taratura automatica
REGOLATORI PID Modello dei regolatori PID Realizzazione dei regolatori PID Metodi di taratura automatica Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 MODELLO DEI REGOLATORI
Controlli Automatici T Introduzione al progetto nel dominio della frequenza
Parte 9 Aggiornamento: Settembre 2010 Parte 9, 1 Introduzione al progetto nel dominio della frequenza Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL:
Fondamenti di Automatica
Fondamenti di Automatica Esempi applicativi Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: [email protected] pag. 1 Esempi applicativi TESTINA
Fisica per scienze ed ingegneria
Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,
Consideriamo un sistema dinamico tempo-invariante descritto da:
IL PROBLEMA DELLA STABILITA Il problema della stabilità può essere affrontato in vari modi. Quella adottata qui, per la sua riconosciuta generalità ed efficacia, è l impostazione classica dovuta a M. A.
ANALISI DEI SISTEMI IN RETROAZIONE E FUNZIONI DI SENSITIVITA
SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html ANALISI DEI SISTEMI IN RETROAZIONE E FUNZIONI DI SENSITIVITA Schema di riferimento
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: [email protected] http://www-lar.deis.unibo.it/~lbiagiotti Regolatori
Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db
Esercizio 1 2 G(s) 28 (s 1) (s.5)(s 1) Poli: p1 = -.5 p2 = -1 zeri: z1 = 1 (dx) Tipo: g= Guadagno: G() = 56 = 2log1(56) ~ 35 db Bode del Modulo 3 Scala 4 6 5 4 3 Magnitude (db) 2 1-1 -2 1.1.2.3 1 1 Piazzamento
OSCILLAZIONI SMORZATE E FORZATE
OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione
Controlli Automatici T Schemi di controllo avanzati
Parte 11 Aggiornamento: Settembre 2010 Parte 4, 1 Schemi di controllo avanzati Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL: www-lar.deis.unibo.it/~lmarconi
Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.
Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale
Il motore in corrente continua è utilizzato nei più svariati tipi di azionamenti, con potenze che variano da qualche decina di W ad alcuni MW.
Il motore in corrente continua è utilizzato nei più svariati tipi di azionamenti, con potenze che variano da qualche decina di W ad alcuni MW. Nel campo delle medie e alte potenze si impiegano sempre motori
CONTROLLI AUTOMATICI Ingegneria Gestionale LUOGO DELLE RADICI
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm LUOGO DELLE RADICI Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO
Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Prof. SILVIA STRADA Esercitatore ANDREA G. BIANCHESSI ESERCIZIO 1 1. Scrivere
Programma svolto di Elettrotecnica e Laboratorio. Modulo n 1/ Argomento: Studio di reti in corrente continua. Modulo n 2/ Argomento: Elettrostatica
Programma svolto di Elettrotecnica e Laboratorio Classe III sez. A Istituto Tecnico dei Trasporti e Logistica Colombo di Camogli tensione. Generatore di corrente. Diagramma tensione-corrente. Resistività.
1 Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli R 2. v out R 1
Prova scritta di fine corso di Meccanica Applicata alle Macchine, modulo da 5CFU Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli motori DC Il circuito mostrato in figura è uno
Oggetto del Corso. Sistema di controllo. Fondamenti di Automatica
Parte 1, 1 Parte 1, 2 ESAMI Solo prova scritta Prove parziali (facoltative ma consigliate ) Iscrizione elettronica (http://studenti.units.it) CORSI A MONTE Analisi I e II Geometria DEEI-Università di Trieste
Diagrammi di Nyquist o polari
0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1
SECONDO METODO DI LYAPUNOV
SECONDO METODO DI LYAPUNOV Il Secondo Metodo di Lyapunov permette di studiare la stabilità degli equilibri di un sistema dinamico non lineare, senza ricorrere alla linearizzazione delle equazioni del sistema.
Applicazioni delle leggi della meccanica: moto armnico
Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di
SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo
SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html it/~lbiagiotti/sistemicontrollo html REGOLATORI STANDARD PID Ing. e-mail:
Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist
Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s
Il criterio di Nyquist
0.0. 4.5 1 Il criterio di Nyquist IlcriteriodiNyquistconsentedistabilireseunsistema,delqualesiconosce la risposta armonica ad anello aperto, sia stabile o meno una volta chiuso in retroazione: r(t) e(t)
Prova scritta di Controlli Automatici e sistemi elettrici lineari
Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 202 203 7 Luglio 203 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta
Controlli automatici L-A
Controlli automatici L-A Compendio delle dispense del prof. Paolo Castaldi Marco Alessandrini Università degli Studi di Bologna (Sede di Cesena) Quest opera è stata rilasciata sotto la licenza Creative
Valutazione della capacità dissipativa di un sistema strutturale
Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Valutazione della capacità dissipativa di un sistema strutturale Prof. Ing. Felice Carlo PONZO - Ing.
Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali)
Compito di Fondamenti di Automatica - 1 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) C v in 2 vout é richiesto di calcolare la funzione di trasferimento G(s) tra v
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CRITERIO DI ROUTH-HURWITZ
Progetto del Controllo di Azionamenti a Motore DC
Laboratorio di Automazione Progetto del Controllo di Azionamenti a Motore DC Prof. Claudio Bonivento DEIS - Università degli Studi di Bologna E-Mail: [email protected] Sommario Definizione delle
SISTEMI DIGITALI DI CONTROLLO
Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza [email protected] Lucidi tratti dal libro C. Bonivento,
Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014
Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro
