Segnali e Sistemi (Ingegneria Informatica)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Segnali e Sistemi (Ingegneria Informatica)"

Transcript

1 Segnali e Sistemi (Ingegneria Informatica) Lezione 3 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1

2 SIMMETRIE DEI SEGNALI - Simmetria pari (Definizioni analoghe nel caso discreto) Segnale pari Segnale dispari x(t) = x( t) x(t) = x( t) Parte pari Parte dispari Ricostruzione del segnale x e (t) = x(t)+x( t) 2 x(t) x( t) x o (t) = 2 x(t) =x e (t)+x o (t) x( t) =x e (t) x o (t) La decomposizione è unica (vedi lezione) 2

3 Simmetria reale Il segnale x(t) è reale sse immaginario sse x(t) = x(t) x(t) = x(t) (sse = se e solo se) Dimostrazione: vedi lezione Risultato identico nel caso discreto 3

4 Simmetria hermitiana Definizioni x(t) èhermitianose x(t) èantihermitianose x(t) =x( t) x(t) = x( t) Sia x(t) =Rex(t)+j Im x(t) = x(t) e j arg x(t). Se x(t) è hermitiano allora (vedi lezione) Re x(t) e x(t) sono pari, Im x(t) e argx(t) sono dispari. Se x(t) è antihermitiano cosa si può dire? Tutto analogo per i segnali discreti. 4

5 SEGNALI PERIODICI x : R R è periodico di periodo T 0se x(t) =x(t + T ) t R La restrizione t R è essenziale (vedi lezione). Se T èunperiododix(t) allora anche kt, k Z è un periodo. T 0 indicherà il minimo periodo positivo di un segnale periodico o periodo fondamentale. Se il segnale non è costante T 0 =min{t >0 x(t) =x(t + T ), t R} Per i segnali discreti definizioni analoghe. Indicheremo con N il periodo e con N 0 il periodo fondamentale. 5

6 Funzioni periodiche di segnali periodici Lemma: Siano x 1 (t) ex 2 (t) periodici di periodi T 1 e T 2. Il segnale x(t) =x 1 (t)+x 2 (t) è periodico se T 1 = m, per qualche m, n Z. T 2 n Un periodo di x(t) è T = nt 1 = mt 2. Lo stesso risultato vale, più in generale, per ogni f(x 1 (t),x 2 (t)). Dim: (vedi lezione). Attenzione: Per i segnali periodici discreti la condizione è sempre soddisfatta! 6

7 Energia e potenza in un periodo di segnali periodici Energia in un periodo [T ] := s+t s E [T ] = [T ] x(t) 2 dt l integrale su un periodo, non dipende da s (lezione). Potenza (media) in un periodo P [T ] = 1 T [T ] x(t) 2 dt Analoghe definizioni per i segnali discreti. 7

8 Energia e potenza di segnali periodici Se x(t) è periodico non triviale, allora E =, P = P [T ]. vedi lezione Conclusione: L 2 ed l 2 non contengono segnali periodici! 8

9 Ripetizione periodica di un segnale Si può costruire una versione periodica, di periodo assegnato T p, di qualunque x(t): x p (t) = k= x(t kt p ) (vedi lezione per esempi con x(t) a supporto limitato o illimitato). Vale lo stesso per i segnali discreti. Attenzione: non è una simmetria, non esiste una parte periodica e una parte aperiodica! 9

10 SEGNALI NOTEVOLI A TEMPO CONTINUO Segnali sinusoidali Terminologia ed unità usuali x(t) =A cos(ω 0 t + φ), ω 0 > 0 A ampiezza unità del segnale t tempo secondi φ fase iniziale radianti ω 0 pulsazione rad/sec f 0 = ω 0 2π frequenza cicli/secondo (Hz) T 0 = 2π = 1 ω 0 f 0 periodo secondi Esercizio: Calcolare Energia e Potenza in un periodo. 10

11 Esponenziali immaginari x(t) =Ce jω 0t C, ω 0 R, ω 0 0 Dalla formula di Eulero x(t) =Ce jω0t = C(cos ω 0 t + j sin ω 0 t). Sinotilasimmetriahermitiana x( t) =x(t), ed infatti la parte reale è pari e quella immaginaria dispari. x(t) è periodico (perché?) con periodo T 0 = 2π ω 0 11

12 Esponenziali immaginari energia e potenza E [T0 ] = T0 0 Cejω 0t 2 dt = C 2 T 0 P [T0 ] = P = 1 T 0 T0 0 Cejω 0t 2 dt = C 2 12

13 Esponenziali immaginari in relazione armonica Definizione: φ k (t) =e jkω 0t, ω 0 > 0 L insieme { φ k (t) k Z } è costituito di esponenziali con periodo comune T 0 = 2π ω 0. Attenzione: T 0 è il periodo fondamentale di φ 1. φ k ha periodo fondamentale T 0 k per k 0,mentreφ 0 =1. 13

14 Esponenziali immaginari e sinusoidi A cos(ω 0 t + φ) =A Re e j(ω 0t+φ), A R dalla formula di Eulero 14

15 Esponenziali caso generale x(t) =Ce at, C,a C Sia C = ρe jφ e a = α + jω 0, allora x(t) =Ce at = ρe jφ e (α+jω 0)t ovvero x(t) =ρe αt e j(ω0t+φ) = ρe αt [cos(ω 0 t + φ)+jsin(ω 0 t + φ)] Grafici! vedi figura 1.23 per la parte reale ed immaginaria. Il caso C, a R è noto da Matematica A 15

16 SEGNALI NOTEVOLI A TEMPO DISCRETO Segnali sinusoidali x(n) =A cos(ω 0 n + φ) Attenzione: questo segnale non è necessariamente periodico! Condizioni su ω 0 per la periodicità N èunperiodosex(n) =x(n + N), n Z ovvero A cos(ω 0 n + φ) =A cos(ω 0 (n + N)+φ) =A cos(ω 0 n + φ + ω 0 N) La condizione di periodicità è ω 0 N =2πk, per qualche k Z. Il periodo fondamentale è N 0 se per qualche h N dove ω 0 2π = h N 0 h N 0 è una frazione ridotta ai minimi termini. Domanda: cos(3n) è periodico? cos(100πn +0.25) è periodico? 16

17 Esponenziali immaginari discreti Sono i segnali x(n) =Ce jω 0n Sia C = ρe jφ. Per la formula di Eulero x(n) =ρ[cos(ω 0 n + φ)+jsin(ω 0 n + φ)] Essendo somma di due sinusoidi di pulsazione comune, vale la condizione di periodicità già vista per le sinusoidi discrete. Il periodo fondamentale è N 0 se per qualche h N ω 0 2π = h N 0 dove h N 0 è una frazione ridotta ai minimi termini. 17

18 Esponenziali immaginari discreti energia e potenza Esercizio svolto x(n) =Ce jω 0n, C 0 E = n= x(n) 2 = n= C 2 = 1 P = lim n 2N +1 N n= N C 2 = C 2 18

19 Esponenziali immaginari discreti - Periodicità in ω Per gli esponenziali immaginari continui: (a) e jω 0t è periodico ω 0. (b) La frequenza di oscillazione cresce indefinitamente con ω 0. Per gli esponenziali immaginari discreti non vale né (a) né (b). Nel discreto ω 0 ed ω 0 +2kπ, k Z producono lo stesso segnale x(n) =e jω 0n = e j(ω 0+2kπ)n Il segnale è periodico se ω 0 /2π Q e la frequenza di oscillazione cresce 0 ω 0 <π decresce π<ω 0 < 2π Per ω 0 = π il segnale è x(n) =( 1) n : il periodo è N 0 =2il minimo possibile, la frequenza di oscillazione è massima. Per altri esempi vedi figura 1.27 nel libro. 19

20 Esponenziali immaginari discreti in relazione armonica Gli esponenziali complessi φ k (n) =e jk2π N n sono periodici di comune periodo N e costituiscono l insieme finito in relazione armonica { φ k (n) k [0, 1,...,N 1] } Per quanto visto prima φ k = φ k+hn, h Z 20

21 Esponenziali discreti caso generale Il caso generale è x(n) =Ca n, C,a C Nel caso discreto è usuale la notazione a n in luogo di e bn. Sia C = ρe jφ ed a = a e jω 0 (ω 0 =arga), allora x(n) =ρe jφ ( a e jω 0) n = ρ a n [cos(ω 0 n + φ)+j sin(ω 0 n + φ)] Grafici: vedi figura 1.26 per parti reali e immaginarie. 21

22 ESERCIZI VARI Esercizio 1 Sia x(t) nullo per t<3. Determinare i valori di t per cui è sicuramente nullo ciascuno dei seguenti segnali x(1 t)+x(2 t), x(1 t)x(2 t), x( t 3 ) Esercizio 2 Determinare se i seguenti segnali sono periodici (se si determinarne il periodo) x(t) =je j10t, x(t) =e ( 1+j)t Esercizio 3 Determinare il periodo fondamentale degli eventuali segnali periodici x(n) =cos( 8πn 31 ), x(n) =ej7πn, x(n) =1+e j 4 7 πn e j 2 5 πn 22

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 5 last update Oct 22, 2004 c 2004 Finesso, Pavon, Pinzoni 1 MODELLO MATEMATICO DEI SISTEMI (da lezione 2) Un sistema è una mappa Σ:X Y x( ) y( ) =Σ[x(

Dettagli

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro La serie di Fourier Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione. Notazione............................. Analisi spettrale

Dettagli

Audio Digitale. Cenni sulle onde. Multimedia 1

Audio Digitale. Cenni sulle onde. Multimedia 1 Audio Digitale Cenni sulle onde 1 Suono e Audio Il suono è un insieme di onde meccaniche longitudinali. L oggetto che origina il suono produce una vibrazione che si propaga attraverso un mezzo modificando

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 4 last update Oct 22, 2004 c 2004 Finesso, Pavon, Pinzoni 1 GRADINO UNITARIO A TEMPO CONTINUO Èilsegnale u(t) = 1 se t 0, 0 se t

Dettagli

I Segnali nella comunicazione

I Segnali nella comunicazione I Segnali nella comunicazione Nella lingua italiana il termine segnale indica una convenzione, la cui unzione è quella di comunicare qualcosa ( segnale di Partenza, segnale di aiuto, segnale stradale ecc.).

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

Comunicazione Elettriche L-A Identità ed equazioni

Comunicazione Elettriche L-A Identità ed equazioni Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla

Dettagli

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st Esercizio. Si consideri la funzione di trasferimento G(s) = K + st + sτ. Si dimostri che, qualunque siano i valori dei parametri reali K, T e τ, il relativo diagramma di Nyquist è una circonferenza. Si

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica ) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: [email protected], [email protected] http://www.automazione.ingre.unimore.it

Dettagli

Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase

Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase Ascoltare Fourier Jean Baptiste Joseph Fourier 1768 Auxerre 1830 Parigi Matematico francese, partecipò alla rivoluzione francese e seguì Napoleone in Egitto come membro della spedizione scientifica. Studiò

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1 Lezione 19. Stabilità robusta F. Previdi - Fondamenti di Automatica - Lez. 19 1 Schema 1. Stabilità & incertezza 2. Indicatori di stabilità robusta 3. Margine di guadagno 4. Margine di fase 5. Criterio

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Elettrotecnica Esercizi di riepilogo

Elettrotecnica Esercizi di riepilogo Elettrotecnica Esercizi di riepilogo Esercizio 1 I 1 V R 1 3 V 2 = 1 kω, = 1 kω, R 3 = 2 kω, V 1 = 5 V, V 2 = 4 V, I 1 = 1 m. la potenza P R2 e P R3 dissipata, rispettivamente, sulle resistenze e R 3 ;

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

Scopi del corso. lezione 1 2

Scopi del corso. lezione 1 2 lezione 1 1 Scopi del corso Lo studente saprà analizzare circuiti elettrici dinamici per determinare il loro comportamento nel dominio del tempo e per ricavare le proprietà essenziali nel dominio della

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

Esperimenti computazionali con Mathematica: la trasformata di Fourier

Esperimenti computazionali con Mathematica: la trasformata di Fourier Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected]

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Motivazione. Teoria dei Circuiti Prof. Luca Perregrini Sinusoidi e fasori, pag. 1

Motivazione. Teoria dei Circuiti Prof. Luca Perregrini Sinusoidi e fasori, pag. 1 Motivazione La distribuzione dell energia elettrica avviene utilizzando tensioni e correnti che variano con legge sinusoidale. Grazie all analisi di Fourier, qualunque segnale variabile nel tempo può essere

Dettagli

Sviluppo in Serie di Fourier

Sviluppo in Serie di Fourier Capitolo Sviluppo in Serie di Fourier. Proprietà della Serie di Fourier Un segnale reale tempo continuo e periodico di periodo, per il quale sono valide le condizioni di Dirichlet vedi pag. 4 [], può essere

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

ANALISI ARMONICA FUNZIONE DI RISPOSTA ARMONICA

ANALISI ARMONICA FUNZIONE DI RISPOSTA ARMONICA ANALISI ARMONICA I procedimenti per la soluzione delle equazioni differenziali lineari e tempoinvarianti, basati in particolare sulla trasformazione di Laplace, hanno come obiettivo la deduzione della

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Funzione seno. A partire dalla conoscenza del grafico di f(x) = sinx disegna il grafico delle seguenti funzioni g(x) = sin(x/3)

Funzione seno. A partire dalla conoscenza del grafico di f(x) = sinx disegna il grafico delle seguenti funzioni g(x) = sin(x/3) Funzione seno A partire dalla conoscenza del grafico di f(x) = sinx disegna il grafico delle seguenti funzioni g(x) =sin(x+π/4); g(x) = sin(x-π/3) g(x) =sin(2x); g(x) = sin(x/3) g(x) =1+sinx; g(x)= 3sinx

Dettagli

Sintesi di reti correttrici e progetto analitico di controllori PID

Sintesi di reti correttrici e progetto analitico di controllori PID Sintesi di reti correttrici e progetto analitico di controllori PID A. Ferrante January 4, 204 Il materiale esposto in questa nota è tratto da [] cui si rimanda per maggiori dettagli. Sintesi di Bode Si

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Compiti d Esame A.A. 2005/2006

Compiti d Esame A.A. 2005/2006 Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]

Dettagli

Funzioni Complesse di variabile complessa

Funzioni Complesse di variabile complessa Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

ESERCIZI DI TEORIA DEI SEGNALI

ESERCIZI DI TEORIA DEI SEGNALI ESERCIZI DI EORIA DEI SEGNALI EX. 1 Si determini lo sviluppo in serie di Fourier del segnale cos[ m(t)] dove m(t) = m(t) = m(t k ) [ π 2 2π ] ( ) t t rect. EX. 2 Si siderino due segnali x 1 (t) e x 2 (t)

Dettagli

Formulario di Teoria dei Segnali 1

Formulario di Teoria dei Segnali 1 Formulario di eoria dei Segnali Parte : Segnali determinati his documentation was prepared with L A EX by Massimo Barbagallo formulario di teoria dei segnali Proprietà dei segnali determinati Energia,

Dettagli

L ANALISI ARMONICA DI UN SEGNALE PERIODICO

L ANALISI ARMONICA DI UN SEGNALE PERIODICO L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Lo studio dell evoluzione libera nei sistemi dinamici

Lo studio dell evoluzione libera nei sistemi dinamici Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto

Dettagli

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist Capitolo 8 Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist 8. Proprietà generali del diagramma di Nyquist Il diagramma di Nyquist (o polare ) della funzione W (jω) è definito

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Cinematica: derivate e integrali che ci servono: appunti

Cinematica: derivate e integrali che ci servono: appunti 1. Cinematica: derivate e integrali che ci servono: appunti Primo esempio: moto uniforme Iniziamo con le derivate. Supponiamo una legge oraria del tipo: x(t) a+bt, dove a, b sono dei coefficienti costanti.

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

Segnali ad energia ed a potenza finita

Segnali ad energia ed a potenza finita Bozza Data 07/03/008 Segnali ad energia ed a potenza finita Energia e potenza di un segnale Definizioni di energia e potenza Dato un segnale (t), in generale complesso, si definisce potenza istantanea

Dettagli

Metodi Matematici per l Ingegneria (Prof. Ugo Gianazza) Esercizi in preparazione alla I prova in itinere

Metodi Matematici per l Ingegneria (Prof. Ugo Gianazza) Esercizi in preparazione alla I prova in itinere Metodi Matematici per l Ingegneria Prof. Ugo Gianazza Esercizi in preparazione alla I prova in itinere Dott. Antonio Marigonda Pavia, 9 Novembre 7 Integrali di funzioni trigonometriche Esercizio.. Calcolare

Dettagli

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma:

Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: Serie di Fourier Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: x( t) = = 0, A cos ( 2πf t + ϕ ) Cioè: ogni segnale periodico di periodo T si può scrivere come somma

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

Elementi di base delle vibrazioni meccaniche

Elementi di base delle vibrazioni meccaniche Elementi di base delle vibrazioni meccaniche Vibrazioni Le vibrazioni sono fenomeni dinamici che ci circondano costantemente. La luce, il suono, il calore sono i fenomeni vibratori a noi più evidenti.

Dettagli

La Trasformata di Fourier

La Trasformata di Fourier La Trasformata di Fourier Preliminari: Spazi di Hilbert Da Wikipedia In matematica uno spazio di Hilbert è uno spazio vettoriale che generalizza la nozione di spazio euclideo. Gli spazi di Hilbert sono

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria dei Segnali

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli