SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003
|
|
|
- Achille Coppola
- 9 anni fa
- Visualizzazioni
Transcript
1 SECONDO COMPIINO DI SEGNALI E SISEMI 3 Dicembre 003 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: vk) con a parametro reale. Per a =: a + a) vk ) + a vk ) = uk ), k Z +, i) si determini l espressione dell evoluzione libera del sistema a partire dalle condizioni iniziali v ) = v ) = ; ii) si determini la risposta impulsiva del sistema, hk). Per a =0: iii) iv) si determini, operando nel dominio del tempo, la risposta forzata) del sistema al segnale di ingresso uk) =δk ) δ k); si determini operando nel dominio delle trasformate, la risposta forzata) del sistema al segnale di ingresso uk) =δk ) 3 )k δ k ). Esercizio. Si consideri il segnale, periodico di periodo, che in, ) vale ut) = + t + τ, τ <t 0, τ t τ, 0 <t<τ, 0, altrove, con τ<. i) Si calcoli lo sviluppo in serie di Fourier esponenziale di ut). SUGGERIMENO: si disegni preliminarmente il segnale ut) inunperiodo e lo si esprima come somma di due segnali noti. Si ricorra, poi, alla trasformata di Fourier di tale segnale generatore]. ii) Si calcoli la trasformata di Fourier del segnale ut).
2 iii) Si determini l uscita del filtro passa-basso ideale di risposta in frequenza ) f H LP F f) =Π, f L con <f L <, sollecitato dal segnale ut) dicui sopra. Esercizio 3. Determinare e disegnare la trasformata di Fourier del segnale ) ) t / t + / vt) =sinc + sinc, t R. eoria. Dato un sistema LI a tempo discreto, descritto da un modello ARMA, si derivi la descrizione di evoluzione libera ed evoluzione forzata del sistema nel dominio delle trasformate zeta. Si definisca il concetto di stabilità BIBO del sistema e la si caratterizzi con riferimento al dominio delle trasformate.
3 SOLUZIONI Esercizio. i) punti] Per a = l equazione caratteristica del sistema è 0 = z z + = z + j )] z j )] = z )z ejπ/ ) e jπ/. Essa ha due radici complesse coniugate di molteplicità λ, = e±jπ/. Pertanto il sistema ha i due modi complessi distinti ) k e jkπ/, ) k e jkπ/, k Z, o, equivalentemente, due modi reali ) k cos k π ), ) k sin k π ), k Z. L evoluzione libera del sistema ha, pertanto, la seguente espressione k v l k) =c cos k ) π ) k + c sin k ) π ), k. Imponendo il soddisfacimento delle condizioni iniziali = v l ) = c cos π = c c ) = v l ) = c cos = c, ) +c sin π ) π ) +c sin π ) si trova c =ec =, ovvero v l k) = k cos k ) π ) sin k π )], k. ii) 3 punti] Poiché n = > m =,l espressione della risposta impulsiva è del seguente tipo: k hk) = d cos k ) π ) k + d sin k ) π ) ] δ k). 3
4 Dal modello ARMA si ricavano i valori della risposta impulsiva per k =0eperk =, grazie ai quali èpossibile identificare il valore dei parametri d e d.sitrova infatti da cui segue h0) = 0, h) =, 0 = h0) = d, = h) = d ) π cos + d ) π sin = d + d, hk) = k sin k π ) ] δ k). iii) punti] Per a = 0,l equazione caratteristica del sistema è Essa ha una radice reale di molteplicità 0=z. λ =. Pertanto il sistema ha il solo modo ) k.poiché n = m =,l espressione della risposta impulsiva è del seguente tipo: hk) =h0) + d ) k δ k ). Dal modello ARMA si ricavano i valori della risposta impulsiva per k =0eperk =, grazie ai quali èpossibile identificare il valore dei parametri h0) e d. Si trova facilmente ) k hk) = δ k ). Per valutare la risposta forzata al segnale d ingresso assegnato nel dominio del tempo, possiamo sfruttare la linearità del prodotto di convoluzione e calcolare separatamente h u ]k) eh u ]k), dove u k) =δk ) u k) =δ k). Notiamo, preliminarmente, che h u ]k) =hk ). Inoltre, poiché laconvoluzione discreta di ) k h k) = δ k)
5 e u k) fornisce 0 se k<0, h u ]k) = ki=0 k+, per k 0, = i ne consegue che h u ]k) =h u ]k ) = k δ k ). Pertanto k vk) =h u]k) = δ k ) ) k δ k ). iv) 3 punti] Il calcolo della trasformata zeta della successione d ingresso è immediato eporta a Uz) =z 3 z z z + = z zz +). Dall equazione alle differenze del sistema che, per a = 0, diventa vk) vk ) = uk ), è immediato ricavare la funzione di trasferimento del sistema: Si trova, allora, Hz) = z = z z. V z) =V f z) =Hz)Uz) = Lo sviluppo in fratti semplici di V z)/z porta a zz +). e quindi la cui antitrasformata zeta è V z) z = z + z + z + V z) = + z + z z +, vk) = δk)+δk ) + ) k δ k). ) Esercizio. i) 5 punti] Il grafico del segnale ut) nell intervallo, è quello riportato nella figura che segue. 5
6 ut) / τ +τ +/ t La funzione ut) è una funzione continua e derivabile con derivata continua e limitata) su tutto R all infuori dei punti del tipo ±τ + k, k Z, pertanto ammette sviluppo in serie di Fourier e tale sviluppo restituisce puntualmente ad eccezione dei punti del tipo ±τ + k, k Z) lafunzione ut). Lo sviluppo in serie esponenziale di ut) è ut) = + k= u k e j π kt. Al fine di calcolare i coefficienti dello sviluppo in serie si può utilizzare la formula u k = Fu gt)] f= k, dove u g t) denota un opportuno generatore. In particolare si può ricorrere alla restrizione al periodo ed osservare che Di conseguenza, u g t) =Π U g f) =Fu g t)] = τ ) ) t t +Λ. τ τ ] sincfτ)+sinc fτ). Quindi u k = τ sinc ) kτ )] kτ + sinc. ii) punti] La trasformata di Fourier del segnale ut) è data da Uf) = + k= u k δ f k ). iii) punti] È immediato verificare che la trasformata di Fourier del segnale vt) in uscita al filtro passa-basso ideale H LP F f) è data da V f) =H LP F f)uf) =u δ f + ) + u 0 δf)+u δ f ). 6
7 Quindi l espressione del segnale vt) nel dominio del tempo è π j vt) = u e t + u 0 + u e j π = 3τ + τ sinc τ t ) + sinc τ )] ) π cos t, t R. Esercizio 3. punti] Ricordando che )] t F sinc = Πf), ed utilizzando la proprietà del ritardo temporale della trasformata di Fourier, si ottiene immediatamente V f) = Πf) e jπf + e jπf) =Πf) cosπf). Il suo grafico è riportato, per =,nella figura che segue. Grafico di vt) per = vt) f eoria. 5 punti] Si veda il libro di testo, capitolo 7, pagine -7 e pagine
COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004
COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]
Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra
Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...
s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;
1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema
Scomposizione in fratti semplici
0.0. 2.2 Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiede l antitrasformazione di una funzione razionale fratta
Scomposizione in fratti semplici
0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta
ESERCIZI DI TEORIA DEI SEGNALI
ESERCIZI DI EORIA DEI SEGNALI EX. 1 Si determini lo sviluppo in serie di Fourier del segnale cos[ m(t)] dove m(t) = m(t) = m(t k ) [ π 2 2π ] ( ) t t rect. EX. 2 Si siderino due segnali x 1 (t) e x 2 (t)
Filtraggio Digitale. Alfredo Pironti. Ottobre Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20
Filtraggio Digitale Alfredo Pironti Ottobre 2012 Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20 Filtri Analogici (1) Un filtro analogico è un sistema lineare tempo-invariante (LTI)
Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti
4 Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti P-4.1: Dopo aver diviso per 0.5, cioè il coefficiente di, l equazione alle differenze finite data, si ottengono le strutture
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e
La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009
La trasformata Z (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2008/2009 La trasformata Z 1 / 33 Outline 1 La trasformata Z 2 Trasformazioni di
Reti nel dominio delle frequenze. Lezione 10 2
Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio
Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione
Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected]
Comunicazione Elettriche L-A Identità ed equazioni
Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla
Funzioni e grafici. prof. Andres Manzini
Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)
Metodi di progetto per filtri IIR: soluzione dei problemi proposti
7 Metodi di progetto per filtri IIR: soluzione dei problemi proposti P-7.: Usando il metodo dell invarianza all impulso, la funzione di trasferimento del filtro analogico viene trasformata in una funzione
ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.
Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier
Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria dei Segnali
Laboratorio II, modulo
Laboratorio II, modulo 2 206-207 Banda di un segnale e filtri (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_05.pdf
4 Analisi nel dominio del tempo delle rappresentazioni in
Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................
SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è
Funzione di trasferimento
Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: [email protected] URL: www-lar.deis.unibo.it/~crossi Definizione
Serie di Fourier di segnali PWM
Serie di Fourier di segnali PWM Ivan Furlan 1 14 settembre 2013 1 I. Furlan riceve il BSc in elettronica nel 2000 presso la SUPSI, ed il MSc in meccatronica nel 2009 presso il Politecnico di orino. Attualmente
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
Richiami sullo studio di funzione
Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o
Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta
Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria dei Segnali Quantizzazione;
Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni
Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i
Risposta temporale: esempi
...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:
Equazioni di 2 grado
Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però
Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.
UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel
Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico
Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Copyright The McGraw-Hill Companies srl A aliasing, 443 fenomeno dell, 424f AMI, codificatore, 315 analiticità
Comunicazioni Elettriche anno accademico Esercitazione 1
Comunicazioni Elettriche anno accademico 003-004 Esercitazione Esercizio Un processo aleatorio a tempo discreto X(n) è definito nel seguente modo: Viene lanciata una moneta. Se il risultato è testa X(n)=
Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).
Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.
Esercizi sul campionamento
Capitolo 5 Esercizi sul campionamento 5.1 Esercizio 1 Dato il segnale x(t) = s(t) cos (2π 0 t) con s(t) a banda limitata s e supponendo di introdurre il segnale x(t) come ingresso di un sistema non lineare
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
La trasformata di Laplace
La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di
Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier
Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1
COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005
Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per
a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.
1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia
Svolgimento degli esercizi del Capitolo 1
Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione
Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:
Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0
1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.
D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di
In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo
Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,
Corso di Geometria III - A.A. 2016/17 Esercizi
Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare
Esperimenti computazionali con Mathematica: la trasformata di Fourier
Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER
Graficazione qualitativa del luogo delle radici
.. 1.1 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s+1)(s +8s+5) y(t) Per una graficazione qualitativa
determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.
ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai
Metodo delle trasformate di Laplace. Lezione 12 1
Metodo delle trasformate di Laplace Lezione Fasi del metodo Trasformazione della rete dal dominio del tempo al dominio di Laplace Calcolo della rete in Laplace con metodi circuitali Calcolo delle antitrasformate
Serie di Fourier - Esercizi svolti
Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di
CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
Esercizi: circuiti dinamici con generatori costanti
ezione Esercizi: circuiti dinamici con generatori costanti ezione n. Esercizi: circuiti dinamici con generatori costanti. Esercizi con circuiti del I ordine in transitorio con generatori costanti. ircuiti..
Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.
Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..
1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:
Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w
5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =
Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni
Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1
5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore
Esame di Matematica Generale 7 Febbraio Soluzione Traccia E
Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.
06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti
Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching
RICHIAMI MATEMATICI. x( t)
0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
Dispense del corso di Elettronica L Prof. Guido Masetti
Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi
Controlli Automatici Compito del - Esercizi
Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del
ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte).
ESERCIZI SU FUNZIONI. 1) Disegnare il grafico della funzione f : R R così definita y = f(x)= x +1 se x 0 -x 2 +1 se x < 0. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile
Note sulle Catene di Markov
Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo
Equazioni differenziali lineari a coefficienti costanti
Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.
ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca
ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,
Elettronica I Risposta dei circuiti RC e RL nel dominio del tempo; derivatore e integratore p. 2
Elettronica I isposta dei circuiti e L nel dominio del tempo; derivatore e integratore Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 613 rema e-mail: [email protected]
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
Esercizi svolti di Teoria dei Segnali
Esercizi svolti di eoria dei Segnali Enrico Magli, Letizia Lo Presti, Gabriella Olmo, Gabriella Povero Versione. Prefazione A partire dall anno accademico 5/6 viene fornita agli studenti dei corsi di eoria
Formulario di Teoria dei Segnali 1
Formulario di eoria dei Segnali Parte : Segnali determinati his documentation was prepared with L A EX by Massimo Barbagallo formulario di teoria dei segnali Proprietà dei segnali determinati Energia,
Operazioni tra matrici e n-uple
CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,
RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI
RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale
Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Derivazione Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
