ESERCIZI IN PIÙ I NUMERI COMPLESSI
|
|
|
- Alfredo Basile
- 9 anni fa
- Visualizzazioni
Transcript
1 ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè 4i, le soluzioni precedenti possono essere riscritte come somma o differenza di un numero reale e di un numero immaginario, ossia x, 3 4i. Si chiama numero complesso la somma di un numero reale e di un numero immaginario: a bi, con a, b R. Il numero a si dice parte reale del numero complesso, mentre bi si dice parte immaginaria. L insieme dei numeri complessi è indicato con C. Se a 0, il numero complesso coincide con il numero immaginario bi; viceversa, se la parte immaginaria è nulla, il numero complesso coincide con il numero reale a. Perciò l insieme dei numeri reali R e l insieme dei numeri immaginari I possono essere considerati dei sottoinsiemi dell insieme dei numeri complessi C. Due numeri complessi si dicono coniugati se hanno la stessa parte reale e la parte immaginaria opposta. Per esempio, 3 i e 3 i sono coniugati. Nell insieme C le equazioni di secondo grado ammettono sempre due soluzioni distinte oppure coincidenti. Data l equazione ax bx c 0, si possono verificare i seguenti casi: 0: due soluzioni reali distinte; 0: due soluzioni reali coincidenti; 0 e b 0: due soluzioni immaginarie opposte, cioè del tipo ki; 0 e b 0: due soluzioni complesse coniugate, cioè del tipo h ki, con la stessa parte reale h e parte immaginaria opposta, ki e ki. Nell insieme C le operazioni di addizione e di moltiplicazione sono definite utilizzando regole analoghe a quelle dell addizione e moltiplicazione di binomi. Addizione e sottrazione (a bi ) (c di ) (a c) (b d)i. ( 3i) (3 4i) 7i. L addizione gode delle proprietà commutativa e associativa. Esiste l elemento neutro, lo zero, e per ogni elemento esiste l elemento opposto. La somma di due numeri complessi coniugati è un numero reale doppio della parte reale degli addendi. (4 3i) (4 3i) 8. L operazione di sottrazione è definita in modo analogo all addizione: (a bi ) (c di ) (a c) (b d)i. Moltiplicazione e divisione (abi)(cdi)(acbd)(adbc)i. ( 3i) (3 4i) 8i 9i i i () 8 i. Anche la moltiplicazione gode delle proprietà commutativa e associativa, ed esiste l elemento neutro,. Vale inoltre la proprietà distributiva della moltiplicazione rispetto all addizione. Il prodotto di due numeri complessi coniugati è un numero reale dato dalla somma del quadrato della parte reale e del quadrato del coefficiente della parte immaginaria. ( i) ( i) 4 9. Per definire la divisione, il quoziente di due numeri complessi può essere pensato come una frazione algebrica avente per numeratore il dividendo e per denominatore il divisore: (a bi ) (c di ) a bi. c di Eseguiamo la divisione moltiplicando numeratore e denominatore per c di (il coniugato del denominatore): a c bi di (a bi) (c di) (c di) (c di) ac bd (bc ad)i a c bd c b c ad i. c d d c d (3 i) (4 i) 3 i 4 i ( 3 i) ( ( 4 i) ( 4 i) 4 i) 0 i. 7 7 Copyright 00 Zanichelli editore SpA, Bologna [8 der]
2 I numeri complessi e le equazioni di secondo grado Calcola il valore dei seguenti radicali nell insieme dei numeri immaginari. 9; 3; b ; b. [ 3i; 3i; ib; ib ] 48; ; ; 3 9. [ 4i3; i; i ; i] Risolvi le seguenti equazioni di secondo grado in C. 3 x x 0 [ i ] 7 x 8x i 4 x 4 0 [ i ] 8 x 4x 7 0 [ 3i ] x 7 0 [ 7i ] 9 x 4x 0 [ i ] x 4x 0 0 [ 4i] 0 x 0ax 9a 0 [a ai ] L addizione e la sottrazione di numeri complessi Eseguiamo l addizione e la sottrazione fra i numeri complessi 4 3i e i. Addizione Scriviamo l addizione, mettendo i due numeri tra parentesi: (4 3i) ( i) Sommiamo tra loro le parti reali e le parti immaginarie: (4 ) (3i i) i. Più rapidamente: (4 3i) ( i) 4 3i i i. Sottrazione Scriviamo la sottrazione, mettendo i due numeri tra parentesi: (4 3i) ( i) Trasformiamo la sottrazione in un addizione, cambiando il segno del sottraendo: (4 3i) ( i) Procediamo come nel caso dell addizione: (4 ) (3i i) 9 i. Più rapidamente: (4 3i) ( i) 4 3i i 9 i. Esegui le seguenti addizioni e sottrazioni fra numeri complessi. (4 i) (4 i); ( 3i) ( 3i) i 3 i ; 3 i 3 i. ( 3i) 7 i ; 3 4 i 3 i. i i ; 3 i 3 i. Copyright 00 Zanichelli editore SpA, Bologna [8 der]
3 La moltiplicazione di numeri complessi Moltiplichiamo i seguenti numeri complessi: a) 3i e i; b) 3 i e 3 i. a) Scriviamo la moltiplicazione, mettendo i fattori tra parentesi: ( 3i)( i) Utilizziamo la regola di moltiplicazione di due binomi (senza dimenticare che i è un numero e i ): i 8i 3i 0i 3 9 0i. b) I numeri dati sono complessi coniugati. Il loro prodotto è un numero complesso reale: (3 i)(3 i) Poiché (a b)(a b) a b : 9 4i Esegui le seguenti moltiplicazioni fra numeri complessi. 7 8 ( i)( i); ( 3i)( 3i). 9 ( 3i)( i); ( 7 i)(7 i). ( i)( i); (8 i)( 4 i). 3 i ( 3i); 4 3 i 4 3 i. 0 La divisione di numeri complessi Eseguiamo la divisione fra i numeri complessi i e i. Scriviamo il quoziente sotto forma di frazione: i i Moltiplichiamo numeratore e denominatore per il complesso coniugato del denominatore, ossia i: i i i i Moltiplichiamo i due numeratori e, al denominatore, applichiamo il prodotto notevole (a b)(a b) a b : i i i i Sommiamo i termini simili e sostituiamo a i il valore (al denominatore otteniamo i ( ) ): 3i 3i Separiamo la parte reale dalla parte immaginaria. Il quoziente cercato è: 3 i. Copyright 00 Zanichelli editore SpA, Bologna [8 der] 3
4 Calcola i seguenti quozienti fra numeri complessi i ( i) i; i; (3 i). 4 ; ;. 8 3i 4 i 3 i 3 4i ; i ; 8 3i. i i 3 i 3 ; ;. i i i i 3i 3 i La potenza di numeri complessi Quadrato Calcoliamo il quadrato di i. ( i) Applichiamo la regola del quadrato del binomio (a b) a b ab: 4 i 4i Sostituiamo a i : 4 4i Eseguiamo la somma nella parte reale; il risultato è: 3 4i. Osservazione. Si ottiene lo stesso risultato se invece di calcolare ( i) si calcola ( i). Formalmente possiamo pensare ai seguenti passaggi algebrici: ( i) [ ( i)] ( i). Calcola il quadrato dei seguenti numeri complessi. 7 8 i; i; i. 9 i; 4 i; i. i; i; i i; 4 i; 3 3 i. Cubo 3 Calcoliamo il cubo di i. ( i) 3 Sviluppiamo il cubo del binomio, applicando la regola (a b) 3 a 3 3a b 3ab b 3 : 3 3( )(i)3()(i) (i) 3 0i 4i 8i 3 Teniamo presente che i e i 3 i: 0i 0 8i Sommiamo i termini reali e i termini immaginari, ottenendo il risultato: 4i. Calcola il cubo dei seguenti numeri complessi. 3 3 i ; i ; i i ; 4 i ; 3 i. 3i; 3 i; i. 3 i ; 3 i ; 3 4 i. Copyright 00 Zanichelli editore SpA, Bologna [8 der] 4
5 Espressioni con i numeri complessi Calcola il valore delle seguenti espressioni. i i ; i 40 i i 7 (3 i ) ( 3 i ); i 3 i 9 i. 3 i; i 3 8 [] i. [4 3 i; 4i] i i 3 3 i ; i 3 ; 3 i i. 3 i 3 3 i i; 0 3 7i ; i 3 i 3 i ; (3 i)( 3 i). ;0 i 4i ; 3 3i 3 ; i 3 i 3 i 3. i; 3 (3 i ); 3 i ( 3i) ; (3 4i) ; ( i). [ 7 i; i;3 0 i] 44 i ; 3 4 i ; 3 i. i ; 3 4 i; i ( i) 3 ; (3 3 i) 3 ; (3 i ) 3. [ i; 4 3 i;7i 3 3 ] 3 i 4 3 i i 4 3i (3 i)(3 i) ( 4i)3i ( i) [ (7 8i)] ( 3i) (4 3i) 3i i [0] i 39i 9 i 3i i i [ 9 i ] (i8 i 4 ) i 4 3 i 8i 8 7i 4i ( i i 3 i [4 3i] 3 ) (i 8 i 7 i0 0 ) i 3 9 i i 3 9 ( i ) i 8 3 i i 7 3 i ( i 3 ) i 3 (3 i) 3 i 7 ( i 3) i 3 4i 3 i Copyright 00 Zanichelli editore SpA, Bologna [8 der]
Monomi L insieme dei monomi
Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili
Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA
Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
Le quattro operazioni fondamentali
SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del
Le operazioni fondamentali con i numeri relativi
SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni
Le operazioni fondamentali in R
La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)
Monomi. 9.1 L insieme dei monomi
Monomi 9 9.1 L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in cui compare l operazione di moltiplicazione, tralasceremo il puntino fin qui usato per evidenziare l operazione.
Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.
Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo
1.2 MONOMI E OPERAZIONI CON I MONOMI
Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in
1 Le espressioni algebriche letterali
1 Le espressioni algebriche letterali DEFINIZIONE. Chiamiamo espressione algebrica letterale un insieme di numeri, rappresentati anche da lettere, legati uno all altro da segni di operazione. ESEMPI 2a
Le espressioni letterali
Calcolo letterale Le espressioni letterali Sono espressioni contenenti numeri reali e lettere. A=(B+b)h/2 A=2(b+h) Le lettere rappresentano numeri reali. La stessa lettera assume sempre lo stesso valore.
LEZIONE 1. del 10 ottobre 2011
LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente
1.3.POLINOMI ED OPERAZIONI CON ESSI
1POLINOMI ED OPERAZIONI CON ESSI 11 Definizioni fondamentali Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi Sono polinomi: 6a+ b; 5ab+ b ; 6x 5yx 1 ; 7ab
I RADICALI QUADRATICI
I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,
3.Polinomi ed operazioni con essi
MatematicaC Algebra1 1.Lebasidelcalcololetterale1.Polinomieoperazioniconessi....Polinomi ed operazioni con essi 1. Definizioni fondamentali Un polinomio è una somma algebrica di monomi, ciascuno dei quali
APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)
LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come
Il calcolo letterale
Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: 5ab 4a b 3 + b 5a 1 ab 3
Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.
Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz
x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.
EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati
Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...
Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,
( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =
1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.
Identità ed equazioni
Matematica e-learning - Identità ed equazioni Prof. [email protected] A.A. 2009/2010 1 Generalità sulle equazioni Si consideri un uguaglianza tra due espressioni algebriche A = B Se si sostituiscono al
3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche
3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 100 Per l esercitazioni on-line visita le pagine : www.chihapauradellamatematica.org
Polinomi Definizioni fondamentali
Polinomi. Definizioni fondamentali Definizione.. Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi. Esempio.. Sono polinomi: 6a + b, 5a b + 3b, 6x 5y x, 7ab
CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli
ALGEBRA IL CALCOLO LETTERALE PREREQUISITI l l l conoscere e operare con tutte le operazioni nell'insieme R conoscere e utilizzare le proprietaá delle operazioni conoscere e utilizzare le proprietaá delle
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella
U.D. N 04 I polinomi
Unità Didattica N 0 I polinomi U.D. N 0 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) Prodotto di due i più monomi 0) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune
espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:
Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico
ALGEBRA. Monomio: In un monomio distinguiamo parte numerica (o coefficiente) e parte letterale. Es.: -7 ax 2 b 3 y. Parte letterale.
ALGEBRA Monomio: un espressione algebrica dove non figurano operazioni (e non segni) di addizione (+) o sottrazione(-); figurano solo moltiplicazioni e potenze. In un monomio distinguiamo parte numerica
Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler
Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal
Numeri e operazioni su di essi
Numeri e operazioni su di essi Paolo Montanari Appunti di Matematica Numeri 1 Classificazione dei numeri Il primo obiettivo che ci si pone è quello di classificare i numeri, cioè conoscere i differenti
SCOMPOSIZIONE DI UN POLINOMIO IN FATTORI
SCOMPOSIZIONE DI UN POLINOMIO IN FATTORI BINOMIO RACCOGLIMENTO ax + bx = x ( a + b ) a 2 b 2 = ( a + b ) ( a b ) CUBI a 3 - b 3 = ( a - b ) ( a 2 + ab + b 2 ) SOMMA DI CUBI a 3 + b 3 = ( a + b ) ( a 2
Le quattro operazioni
Le quattro operazioni 1. Addizione a + b = c addendi somma Proprietà commutativa Cambiando l ordine degli addendi, la somma non cambia. a + b = b + a Proprietà associativa La somma di tre numeri non cambia,
Equazioni di primo grado ad un incognita
Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2a = 2a è un identità a = 3 2 3
NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)
NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA CALCOLO LETTERALE Dr. Erasmo Modica [email protected] MONOMI In una formula si dicono variabili le lettere alle quali può
Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler
Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
Radicali. 2.1 Radici. Il simbolo
Radicali. Radici.. Radici quadrate Ricordiamo che il quadrato di un numero reale a è il numero che si ottiene moltiplicando a per se stesso. Il quadrato di un numero è sempre un numero non negativo; numeri
Dopo aver ripassato la regola, esegui le addizioni applicando correttamente la proprietà commutativa =
LE PROPRIETÀ DELL ADDIZIONE Ricorda Le proprietà dell addizione sono: commutativa: cambiando l ordine degli addendi il risultato non cambia; associativa: sostituendo ad alcuni addendi la loro somma il
Anno 1. Frazioni algebriche: definizione e operazioni fondamentali
Anno Frazioni algebriche: definizione e operazioni fondamentali Introduzione In questa lezione introdurremo il concetto di frazione algebrica. Al termine di questa lezione sarai in grado di: definire il
UNITÀ DIDATTICA 11 POLINOMI
UNITÀ DIDATTICA 11 POLINOMI 11.1 Definizione di polinomio. Grado e ordine di polinomi. Operazioni con i polinomi Si chiama polinomio, un monomio o una somma algebrica di due o Definizione di polinomio
I sistemi di equazioni di primo grado
I sistemi di equazioni di primo grado RIPASSIAMO INSIEME SISTEMI DI EQUAZIONI DI PRIMO GRADO Un sistema di equazioni di primo grado in due (o più) incognite è l insieme di due (o più) equazioni di primo
Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.
CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo
I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili.
I POLINOMI Un polinomio è una somma algebrica tra monomi Sono polinomi le seguenti espressioni 2ab + 4bc -5a 2 b + 2ab - 5c 5x + 2y + 8x in esse infatti troviamo somme o differenze tra monomi La forma
U.D. N 04 I polinomi
8 U.D. N 04 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) prodotto di due i più monomi 04) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune divisore di due o più monomi
3. CALCOLO LETTERALE
www.matematicamente.it - Matematica C Algebra. Calcolo letterale MATEMATICA C - ALGEBRA. CALCOLO LETTERALE Indice Ernest! Photo by: Ssmallfry taken from: http://www.flickr.com/photos/ssmallfry/67489/ license:
Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler
Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.
Insiemi numerici. Alcune definizioni. La retta dei numeri
Insiemi numerici Q Z N 0 1 1 1 4 4 N = 0,1,,,4, = insieme dei numeri naturali Z = insieme dei numeri interi (formato dall unione dei numeri naturali e dei numeri interi negativi) Q = insieme dei numeri
Equazioni di secondo grado
Equazioni di secondo grado www.competenzamatematica.it E. Modica A.S. 018/019 1 Equazioni di secondo grado Definizione 1. Dicesi equazione di secondo grado, un equazione del tipo: ax + bx + c = 0 con a,
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica [email protected] MONOMI In una formula si dicono variabili le lettere alle quali può essere
Agli studenti delle classi prime
Agli studenti delle classi prime Ti consigliamo di svolgere durante il.periodo estivo i seguenti esercizi che hanno lo scopo di consolidare le conoscenze e i concetti fondamentali affrontati nella Scuola
Scomposizione in fattori di un polinomio. Prof. Walter Pugliese
Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado
3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.
1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4
IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico
IL CALCOLO LETTERALE La «traduzione» del linguaggio comune in linguaggio matematico BREVE STORIA DELL ALGEBRA Dall algebra sincopata all algebra simbolica L algebra è una disciplina antichissima ma il
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
Anno 1. Divisione fra polinomi
Anno 1 Divisione fra polinomi 1 Introduzione In questa lezione impareremo a eseguire la divisione fra polinomi. In questo modo completiamo il quadro delle 4 operazioni con i polinomi. Al termine di questa
2/2/2019 Documento senza titolo - Documenti Google
2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit 1/4 2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica [email protected] EQUAZIONI DI SECONDO GRADO Definizione: Dicesi
Sezione 9.9. Esercizi 189
Sezione 9.9. Esercizi 189 9.9 Esercizi 9.9.1 Esercizi dei singoli paragrafi 9.1 - L insieme dei monomi 9.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x
Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.
I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25
LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a
LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque
MONOMI. Donatella Candelo 13/11/2004 1
Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere
Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n
Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x
OPERAZIONI IN Q = + = = = =
OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione
1) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni.
Il calcolo letterale. BM 2; NLM 57 ) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni. a + a = a + b = a a = a b = a. a = a. b = a : a = a : b = a. a. a = a -n = a -n.
MATEMATICA SCOMPOSIZIONE E FRAZIONE ALGEBRICHE GSCATULLO
MATEMATICA SCOMPOSIZIONE E FRAZIONE ALGEBRICHE GSCATULLO 1 Scomposizione e frazioni algebriche Scomposizione in Fattori Scomporre in fattori un polinomio significa scriverlo sotto forma di un prodotto
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica [email protected] LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti
Le quattro operazioni fondamentali
1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
Un polinomio è un espressione algebrica data dalla somma di più monomi.
1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine
Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)
Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio
270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2.
70 Capitolo 10. Monomi 10.9 Esercizi 10.9.1 Esercizi dei singoli paragrafi 10.1 - L insieme dei monomi 10.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni.
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 2. MONOMIO 2a + b -3 due a più b meno tre 3x 2 x + 5 3 ics al quadrato ics + 5 MONOMI Si dice
NUMERI NATURALI OPERAZIONI TRA FRAZIONI. 1. (Da Medicina e Odontoiatria 2012) Determinare quale dei seguenti numeri non è un quadrato perfetto:
1 NUMERI NATURALI 1. (Da Medicina e Odontoiatria 2012) Determinare quale dei seguenti numeri non è un quadrato perfetto: a) 12 27 b) 800 c) 256 d) 10000 e) 11 44 2. (Da Medicina 2002) Siano a,b,c numeri
Prodotti notevoli Quadrato di un binomio
Prodotti notevoli Con l espressione prodotti notevoli si indicano alcune identità che si ottengono in seguito alla moltiplicazione di polinomi aventi caratteristiche particolari facili da ricordare.. Quadrato
Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y
Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio
Precorso di Matematica A. A. 2017/2018. Algebra
Precorso di Matematica A. A. 017/018 Algebra 1 Monomi Monomio: espressione algebrica ottenuta come prodotto di fattori sia numerici sia letterali. Grado di un monomio rispetto ad una sua lettera: esponente
GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni
GLI INSIEMI NUMERICI N Z Q R -C 3 2 Ampliamento degli insiemi numerici Chiusura rispetto alle operazioni L insieme N = {0; 1; 2; 3; 4; } dei numeri naturali è chiuso rispetto all addizione e alla moltiplicazione
Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA
RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci
RIPASSO DI MATEMATICA
RIPASSO DI MATEMATICA PER LA FISICA LA MATEMATICA È UNO STRUMENTO CHE PERMETTE LA FORMALIZZAZIONE DELLE SUE LEGGI (tramite le formule si può determinare l evoluzione del fenomeno) I NUMERI I NUMERI POSSONO
TORINO, FEBBRAIO 2012 COMPENDIO ALGEBRA. di BART VEGLIA
TORINO, FEBBRAIO 2012 COMPENDIO DI ALGEBRA di BART VEGLIA 1 2 1.1 I NUMERI E LE OPERAZIONI CON ESSI Comprendono i numeri assoluti, i frazionari, i relativi, i razionali, gli irrazionali, i reali, gli immaginari,
