I RADICALI QUADRATICI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I RADICALI QUADRATICI"

Transcript

1 I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che, elevato al quadrato, dà come risultato a. In simboli: x = a x = a, x 0 e a 0 Per esempio esistono due numeri reali che elevati al quadrato danno come risultato 9, e sono + e -; solo + può dirsi radice quadrata di 9 perché solo + è positivo, come richiesto dalla definizione di radice quadrata; quindi: 9=+ Non esiste invece la radice quadrata di -9 perché nessun numero reale elevato al quadrato dà come risultato un numero negativo. Quindi: Più in generale, quindi: Esistenza delle radici quadrate in R: 9= non esiste, è un operazione impossibile in R Ogni numero reale positivo o nullo ha esattamente una radice quadrata in R. Ogni numero reale negativo non ammette radice quadrata in R. Si indicano con il termine di radicale quadratico non solo le espressioni del tipo a, dove a è un numero reale non negativo, ma anche le espressioni della stessa forma, dove l argomento della radice (detto radicando) è un espressione letterale. In questi casi è necessario determinare le condizioni di esistenza del radicale (dette in questo caso condizioni di realtà: C.R.), cioè per quali valori delle variabili il radicando è non negativo. L insieme dei valori della variabili per i quali un radicando è non negativo si chiama dominio, o insieme di definizione o insieme di esistenza del radicale. Quando un radicale è definito assume sempre valori positivi o nulli. Quindi: Esistenza e segno del radicale P(x). Il radicale P(x) è definito in corrispondenza dei valori reali per i quali ii radicando risulta non negativo, cioè risulta: e assume per tali valori, valore positivo o nullo: P(x) 0. P(x) 0 (condizione di realtà, C.R.). Le radici quadrate come potenze ad esponente razionale Vedremo ora come le radici quadrate possono essere viste come un estensione del concetto di potenza che già conosciamo. Potenze ad esponente naturale : a n, con n N La potenza ad esponente naturale viene dalla definizione stessa di potenza : a n = a a a (è uguale al prodotto di n fattori uguali alla base, se l esponente è diverso da zero). Se l esponente è zero e la base è diversa da zero, allora a 0 = 1 (dimostrazione: a 0 = a n : a n = 1 n = 1) Se l esponente è zero e la base è zero, allora 0 0 = indeterminata (dimostrazione: 0 0 = 0 n : 0 n = 0: 0 = indeterminata)

2 Potenze ad esponente intero relativo : a n, con n Z Se l esponente è un numero relativo ( per es. ) la definizione di potenza perde significato. Si ricorre alle proprietà delle potenze per dare significato a potenze con esponente negativo, ampliando così il concetto di potenza. Vogliamo dare un significato alla scrittura, in modo che continuino ad essere valide le proprietà delle potenze. Allora se per il numero (che per ora, per noi, non ha alcun significato dato che il suo esponente non è naturale) devono ancora valere le proprietà delle potenze, dovrà essere: = 0 = 1. Quindi è quel numero che moltiplicato per dà come risultato 1, quindi è il reciproco di. Pertanto: = 1: ( ) = ( 1 ) Quindi in generale se l esponente è un numero intero negativo e la base è un numero diverso da zero la potenza si esegue utilizzando come base il reciproco della base iniziale e cambiando segno all esponente, che quindi diventerà positivo: ( ) 5 = ( )5 ; () = ( 1 )5 ; (1) 4 = (1) 4 = 1 ; ( 4 5 ) 1 = ( 5 4 )1 = 5 4 Mentre se la base è zero 0 = operazione impossibile perché il reciproco dello zero (cioè 1:0) non esiste. Abbiamo visto quindi come la potenza con esponente intero negativo non sia una conseguenza della definizione stessa di potenza, ma come sia invece una conseguenza dell applicazione delle proprietà delle potenze. Potenze ad esponente razionale: a n, con n Q Vediamo ora come le radici quadrate possono essere scritte come potenze con esponente razionale. Vogliamo dare un significato alla scrittura 7 1, in modo che continuino ad essere valide le proprietà delle potenze. Allora se per il numero 7 1 (che per ora, per noi, non ha alcun significato dato che il suo esponente non è naturale né intero) devono ancora valere le proprietà delle potenze, dovrà essere: (7 1 ) = 7 1 = 7 1 = 7 Quindi 7 1 è quel numero che elevato al quadrato dà 7, e quindi (per definizione di radice quadrata), 7 1 è proprio la radice quadrata di 7, cioè: 7 1 = 7

3 . Radicali e funzioni La funzione y = x è definita per x 0 ed è sempre positiva o nulla in base alla definizione di radice quadrata. Tracciamone il grafico per punti: x y = x ,4 1, , 6 6,4 4. Semplificazione di un radicale quadratico I radicali godono della proprietà invariantiva, della quale vedremo per ora una parte che serve a semplificare i radicali quadratici: PROPRIETA INVARIANTIVA APPLICATA ALLA SEMPLIFICAZIONE DEI RADICALI QUADRATICI : La radice quadrata può essere semplificata dividendo per l esponente del radicando. Quindi se il radicando ha un esponente pari, l esponente può essere semplificato con l indice () del radicale quadratico, cioè: Dimostrazione: a n = a n a n = (a n ) 1 = a n 1 a n (per la proprietà: potenza di potenza) Bisogna però porre attenzione alla concordanza del segno tra il radicale iniziale (positivo per definizione di radice quadrata) e il risultato dell operazione della semplificazione. ESEMPI: 81 = 4 = 144= 1 = 1 ( ) 4 = ( ) = +4 (in questo caso il risultato è positivo, e quindi concorda correttamente nel segno con il radicale iniziale) ( ) = (questa semplificazione è sbagliata perché il risultato è negativo, e quindi NON concorda nel segno con il radicale iniziale) ( ) = = + (questa semplificazione è giusta perché così il risultato è positivo, e quindi concorda correttamente nel segno con il radicale iniziale)

4 ( ) = (+) = + (anche questa semplificazione è giusta perché il cambio di segno in potenza con esponente pari ha risolto il problema della concordanza del segno) ( ) 6 = ( ) = 8 = +8 (questa semplificazione è giusta) Se l argomento della radice è variale, bisogna porre particolare attenzione quando si incontrano radicali del tipo x : questo radicale per la C.R. è definito per x R, ma non è giusto scrivere che x = x. Infatti x è per definizione di radicale quadratico un numero non negativo, mentre x può essere positivo o negativo; i due membri dell uguaglianza (non corretta) x = x, cioè non concordano nel segno. Infatti: x = x + + o Facciamo degli esempi: se x=4, allora 4 = 16 = 4, quindi in questo caso x = x. se x=-4, allora ( 4) = 16 = 4, quindi in questo caso x = x. Pertanto il ragionamento corretto è il seguente: : se x 0, allora x = x se x < 0, allora x = x Cioè, ricordando la definizione di valore assoluto: x = x, per ogni x R 5. Prodotto e quoziente di radicali quadratici PRODOTTO E QUOZIENTE DI RADICALI QUADRATICI: Nell ipotesi in cui siano verificate le condizioni di esistenza dei radicali quadratici a e b (condizioni di realtà C.R.), valgono le seguenti proprietà: a: a b = a b (cioè il prodotto di due radicali quadratici è uguale alla radice del prodotto) b: a b = a b (se b 0) (cioè il quoziente di due radicali quadratici è uguale alla radice del quoziente) Dimostrazione: PRODOTTO: a b = a 1 b 1 = (a b) 1 = a b (per la proprietà: prodotto di potenze con lo stesso esponente) QUOZIENTE: a b = a 1 b 1 = (a b) 1 = a: b (per la proprietà: quoziente di potenze con lo stesso esponente) ESEMPI: 18 = 18 = 6 = 6 0: = 0: = : = 1 8 : = = 1 16 = 1 4

5 6. Potenza di radicali quadratici POTENZA DI RADICALI QUADRATICI: Nell ipotesi in cui siano verificate le condizioni di esistenza del radicale quadratico a (condizioni di realtà C.R.), vale le seguente proprietà: ( a) n = a n (cioè la potenza di un radicale quadratico è uguale alla radice della potenza) Dimostrazione: ( a) n = (a 1 n ) = (a n ) 1 = a n ESEMPI: ( +) = (+) = + ( ) = (+) = +8 ( (+5) 7 ) = [(+5) 7 ] = (+5) 1 7. Trasporto sotto il segno di radice quadrata Consideriamo un espressione formata da un numero moltiplicato per una radice:. Possiamo scrivere la seguente catena di uguaglianze: = perchè = 4 4 = prodotto di radicali 4 = 8 Si dice che si è portato il fattore sotto il segno di radice. Possiamo anche lavorare sull esponente del fattore da trasportare: Si deve quindi moltiplicare per due l esponente di tale fattore. 1 = ( 1 ) = 1 9 = 1 Bisogna fare attenzione però al segno del fattore da trasportare, affinché sia sempre verificata la concordanza tra il segno iniziale e il segno finale dell espressione con cui si opera. Per esempio sarebbe errato scrivere: numero negativo = ( ) = ( ) = 8 numero positivo concordanza del segno tra il primo e l ultimo passaggio. perché non è rispettata la E invece corretto lasciare il segno negativo fuori dalla radice quadrata e trasportare solo il numero positivo sotto radice: numero negativo = (+) = (+) = 8 numero negativo Vale quindi la seguente regola: Trasporto di un fattore sotto il segno di radice quadrata: per trasportare un fattore POSITIVO sotto la radice quadrata bisogna moltiplicare il suo esponente per ; se il fattore fuori radice è NEGATIVO si lascia il segno negativo fuori dalla radice e si trasporta solo il valore assoluto del numero, per rispettare la condizione di concordanza del segno. Vediamo il trasporto sotto il segno di radice anche tramite la forma esponenziale della radice: = 1 = ( ) 1 1 = ( ) 1 = FATTORE NEGATIVO: = 1 = ( ) 1 1 = ( ) 1 =

6 8. Trasporto fuori dal segno di radice quadrata A volte è utile effettuare l operazione inversa, cioè portare un fattore fuori dal segno di radice. Per esempio: 18 = 9 9 è un quadrato perfetto = 9 =. Si dice che il fattore è stato trasportato fuori dal segno di radice. Anche in questo caso si può lavorare sugli esponenti: 19 = 6 = 6 = = 8 In questo caso è quindi necessario dividere per due l esponente del fattore da trasportare fuori radice, facendo sempre attenzione alla concordanza del segno. Vale quindi la seguente regola: Trasporto di un fattore fuori dal segno di radice quadrata: per trasportare un fattore POSITIVO fuori dalla radice quadrata bisogna dividere il suo esponente per se il fattore da trasportare è NEGATIVO si deve rispettare la concordanza del segno. Vediamo il trasporto fuori radice anche tramite la forma esponenziale della radice: = ( ) 1 = 1 1 = 1 = 9. Addizioni e sottrazioni di radicali Per le somme e differenze di radice quadrate non valgono la proprietà che valgono per i prodotti e i quozienti; infatti: a + b a + b e a b a b Per esempio vediamo che ; infatti = + 4 = 7, mentre = 5 = 5. Vediamo anche che ; infatti 5 9 = 5 =, mentre 5 9 = 16 = 4. Tuttavia è possibile semplificare espressioni che contengono somme o differenze di radici quadrate (eventualmente moltiplicate per un coefficiente), a condizione che siano simili, cioè abbiano lo stesso radicando (in modo analogo alle somme tra monomi nel calcolo letterale). La proprietà che ci permette di sommare i radicali simili è sempre quella distributiva. ESEMPI: = ( + ) 5 = 5 5 (per la proprietà distributiva della moltiplicazione rispetto all addizione) Invece + non è semplificabile perché e non sono simili; + è un binomio irrazionale. Anche 5 + è un binomio irrazionale, somma di un numero razionale e di un numero irrazionale. A volte per evidenziare in un espressione la presenza di radicali simili è necessario semplificare le radici che vi compaiono e/o trasportare tutti i termini possibili fuori dal segno di radice. Per esempio: + 1 = + = + = Vediamo la somma di due radici anche tramite la forma esponenziale della radice: Se i due radicali sono simili: = = ( + 4) 5 1 = Non è invece possibile sommare radicali non simili: = (9 + 16) 1

7 10. Espressioni irrazionali Le espressioni algebriche in cui sono presenti dei radicali si dicono espressioni irrazionali. Le operazioni tra radicali godono delle stesse proprietà di cui godono le operazioni tra numeri razionali; inoltre si dovranno utilizzare le regole di calcolo con i radicali studiate e le ordinarie proprietà di calcolo: proprietà distributiva, prodotti notevoli, ecc. 11. Razionalizzazioni A volte può capitare di incontrare frazioni che contengano radici quadrate al denominatore, come: 1, 5, 7, 9 +, Per effettuare i calcoli è spesso utile trasformare queste frazioni in altre frazioni equivalenti (quindi frazioni che rappresentano la stessa quantità), ma prive di radici al denominatore. Questo procedimento viene detto razionalizzazione del denominatore di una frazione. Dal punto di vista operativo la razionalizzazione del denominatore si effettua applicando la proprietà invariantiva della divisione, come hai già imparato a fare per riportare più frazioni allo stesso denominatore (per effettuare la somma algebrica tra frazioni con diverso denominatore). Ricordiamo quindi la proprietà invariantiva: Proprietà invariantiva della divisione: moltiplicando o dividendo dividendo e divisore per uno stesso numero diverso da zero il quoziente non cambia; quindi moltiplicando o dividendo numeratore e denominatore di una frazione per uno stesso numero diverso da zero si ottiene una frazione equivalente a quella data. In generale l operazione di razionalizzare il denominatore di una frazione è piuttosto complessa, poiché il fattore per cui moltiplicare la frazione dipende dal numero di radici presenti nel denominatore da razionalizzare. Esamineremo quindi i casi più comuni, che corrispondono ai primi quattro degli esempi fatti all inizio (monomio irrazionale e binomio irrazionale). 1 CASO: il denominatore contiene una radice quadrata (monomio irrazionale): Per esempio: ; bisogna allora moltiplicare numeratore e denominatore per. Infatti: = = 4 4 è un quadrato perfetto = La frazione iniziale e la frazione finale sono equivalenti e rappresentano quindi la stessa quantità, anche se sono scritte in modo diverso. In particolare nella prima frazione il denominatore è un numero irrazionale, mentre nell ultima è un intero. Come puoi verificare utilizzando la calcolatrice:,11044,11044 Vediamo un altro esempio: 6 = 6 = è un quadrato perfetto = 6 = In questo caso la razionalizzazione del denominatore ha anche portato alla semplificazione finale.

8 Si utilizza lo stesso metodo anche quando il denominatore è formato da una radice quadrata con un coefficiente diverso da uno: 5 = 5 = 5 4 = 5 CASO: il denominatore contiene la somma o la differenza di due radici quadrate, o di una radice quadrata e di un intero (binomi irrazionali): In questo caso il procedimento di razionalizzazione si basa, oltre che sulla proprietà invariantiva, sul prodotto notevole somma per differenza : ESEMPI: (A + B) (A B) = A B 6 7 = 6 ( 7 + ) ( 7 ) ( 7 + ) = 6( 7 + ) 6 ( 7 + ) ( 7) = ( ) 7 = = 6 ( 7 + ) 4 = ( 7 + ) 4 = 4 ( 1) = +1 ( +1) ( 1) 4( 1) ( ) (1) = 4 ( 1) 1 = 4( 1) = ( -1)

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Radicali. 2.1 Radici. Il simbolo

Radicali. 2.1 Radici. Il simbolo Radicali. Radici.. Radici quadrate Ricordiamo che il quadrato di un numero reale a è il numero che si ottiene moltiplicando a per se stesso. Il quadrato di un numero è sempre un numero non negativo; numeri

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25 RADICALI Termini x y a x = indice della radice y = esponente del radicando 25 = 5 perché 5 = 25 5 indica la radice quadrata di 5, non è un numero intero, è decimale, illimitato e non periodico. 16 = 2

Dettagli

Il calcolo letterale

Il calcolo letterale Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: 5ab 4a b 3 + b 5a 1 ab 3

Dettagli

Il calcolo letterale

Il calcolo letterale Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: OSS: QUANDO non c è nessuna

Dettagli

Le operazioni fondamentali in R L ADDIZIONE

Le operazioni fondamentali in R L ADDIZIONE Le operazioni fondamentali in R REGOLA DEI SEGNI + per + dà + per dà + + per dà per + dà (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3) = 5 + 3 = 2 L ADDIZIONE

Dettagli

I radicali questi sconosciuti

I radicali questi sconosciuti I radicali questi sconosciuti Luciano Seta 25 ottobre 2016 Introduzione Estrarre una radice: radicali aritmetici Estensione a tutti i numeri reali: radicali algebrici Proprietà dei radicali aritmetici

Dettagli

1 Le espressioni algebriche letterali

1 Le espressioni algebriche letterali 1 Le espressioni algebriche letterali DEFINIZIONE. Chiamiamo espressione algebrica letterale un insieme di numeri, rappresentati anche da lettere, legati uno all altro da segni di operazione. ESEMPI 2a

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo).

DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo). 1 I numeri relativi DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo). ESEMPI +1 4 +317 + 3 4 + 1 410 Numeri interi relativi 3,716

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme

Dettagli

3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche

3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 100 Per l esercitazioni on-line visita le pagine : www.chihapauradellamatematica.org

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

Equazioni di primo grado ad un incognita

Equazioni di primo grado ad un incognita Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. è un identità. Verificare un identità

Dettagli

Le equazioni di I grado

Le equazioni di I grado Le equazioni di I grado ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Le equazioni abbiamo una uguaglianza tra due quantità (espressioni algebriche, perché nei due termini ci possono essere

Dettagli

Le espressioni letterali

Le espressioni letterali Calcolo letterale Le espressioni letterali Sono espressioni contenenti numeri reali e lettere. A=(B+b)h/2 A=2(b+h) Le lettere rappresentano numeri reali. La stessa lettera assume sempre lo stesso valore.

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

Insiemi numerici. Alcune definizioni. La retta dei numeri

Insiemi numerici. Alcune definizioni. La retta dei numeri Insiemi numerici Q Z N 0 1 1 1 4 4 N = 0,1,,,4, = insieme dei numeri naturali Z = insieme dei numeri interi (formato dall unione dei numeri naturali e dei numeri interi negativi) Q = insieme dei numeri

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Le disequazioni di primo grado

Le disequazioni di primo grado Le disequazioni di primo grado Cos è una disequazione? Una disequazione è una disuguaglianza tra due espressioni algebriche (una delle quali deve contenere un incognita) che può essere vera o falsa a seconda

Dettagli

TORINO, FEBBRAIO 2012 COMPENDIO ALGEBRA. di BART VEGLIA

TORINO, FEBBRAIO 2012 COMPENDIO ALGEBRA. di BART VEGLIA TORINO, FEBBRAIO 2012 COMPENDIO DI ALGEBRA di BART VEGLIA 1 2 1.1 I NUMERI E LE OPERAZIONI CON ESSI Comprendono i numeri assoluti, i frazionari, i relativi, i razionali, gli irrazionali, i reali, gli immaginari,

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

L insieme dei numeri razionali Q Prof. Walter Pugliese

L insieme dei numeri razionali Q Prof. Walter Pugliese L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà

Dettagli

Le quattro operazioni

Le quattro operazioni Le quattro operazioni 1. Addizione a + b = c addendi somma Proprietà commutativa Cambiando l ordine degli addendi, la somma non cambia. a + b = b + a Proprietà associativa La somma di tre numeri non cambia,

Dettagli

OPERAZIONI CON LE FRAZIONI

OPERAZIONI CON LE FRAZIONI OPERAZIONI CON LE FRAZIONI a) FRAZIONI CON LO STESSO DENOMINATORE 9 + 9 = 7 9 Regola: La SOMMA di due o più frazioni che hanno lo stesso denominatore è la frazione che ha: per numeratore la SOMMA dei numeratori

Dettagli

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni INSIEME Q L'insieme dei numeri razionali (Q) è un'estensione dell'insieme dei numeri interi Z. Ai numeri positivi e negativi interi si aggiungono, così, anche i numeri decimali. Tale estensione, però,

Dettagli

LEZIONE 1. del 10 ottobre 2011

LEZIONE 1. del 10 ottobre 2011 LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente

Dettagli

Le frazioni algebriche

Le frazioni algebriche Le frazioni algebriche Le frazioni algebriche, a differenza delle frazioni numeriche, sono frazioni che prevedono al denominatore espressioni polinomiali. Le seguenti, ad esempio, sono frazioni algebriche

Dettagli

SCHEDA DI RECUPERO SULLE FRAZIONI

SCHEDA DI RECUPERO SULLE FRAZIONI SCHEDA DI RECUPERO SULLE FRAZIONI FRAZIONI EQUIVALENTI a DEFINIZIONE data una frazione si dice che x è equivalente ad a se e solo se a y x (uguaglianza dei y prodotti in croce ). è equivalente a, infatti

Dettagli

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI

Dettagli

UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI

UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI N. ore previste 35 Periodo di realizzazione SETTEMBRE OTTOBRE 2017 in termini di competenze, abilità e conoscenze Monomi Polinomi Prodotti

Dettagli

PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta

PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta Lo studio dei numeri decimali, se non si limita all utilizzo non ragionato di formule, ci può condurre molto lontano e ci

Dettagli

Dott. Marta Ruspa 0321/ /

Dott. Marta Ruspa 0321/ / FISICA APPLICATA Dott. Marta Ruspa ruspa@med.unipmn.it 0321/660669 011/6707310 Lezione I 1 CORSO INTEGRATO DI SCIENZE FISICHE e STATISTICHE Discipline: FISICA APPLICATA STATISTICA INFORMATICA Lezione I

Dettagli

è impossibile (*) per x = -25 e per x = -5

è impossibile (*) per x = -25 e per x = -5 Calcolo letterale Calcolo letterale (UbiMath) - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto a un restrittivo esempio numerico

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Equazioni di I e II grado

Equazioni di I e II grado Corso di Laurea: Biologia Tutor: Marta Floris, Max Artizzu PRECORSI DI MATEMATICA Equazioni di I e II grado 1 Introduzione ai polinomi Un incognita è un simbolo letterale che sta a simboleggiare un valore

Dettagli

I monomi. Prof.ssa Maddalena Dominijanni

I monomi. Prof.ssa Maddalena Dominijanni I monomi a 3m Espressioni letterali Il calcolo letterale è quella parte della matematica che generalizza il calcolo algebrico usando lettere per indicare numeri. Es. Sommare al cubo di un dato numero il

Dettagli

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA

Dettagli

( 5) 2 = = = +1

( 5) 2 = = = +1 1 IDENTITA ED EQUAZIONI Consideriamo la seguente uguaglianza: ( 2x + 3) 2 = 4x 2 +12x + 9 Diamo alcuni valori arbitrari all incognita x e vediamo se l uguaglianza risulta vera. Per x = 1 si avrà: ( 2 1+

Dettagli

NUMERI INTERI E POTENZE

NUMERI INTERI E POTENZE Saper operare con le potenze di numeri interi - Prof. Di Caprio 1 Obiettivo NUMERI INTERI E POTENZE In questa lezione richiameremo alcune proprietà dei numeri interi, e impareremo a operare con le potenze.

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3.

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3. UNITÀ. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI. Generalità e definizioni sulle diquazioni.. I principi di equivalenza delle diquazioni.. Diquazioni di primo grado.. Diquazioni con più fattori di primo grado..

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

1.2 MONOMI E OPERAZIONI CON I MONOMI

1.2 MONOMI E OPERAZIONI CON I MONOMI Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in

Dettagli

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini Divisione di polinomi, teorema del resto e teorema di Ruffini Teorema (della divisione con resto tra due polinomi in una variabile). Dati due polinomi A x e B x, con B x 0, esistono sempre, e sono unici,

Dettagli

Gabriele Ferrari

Gabriele Ferrari Gabriele Ferrari 31-01-2018 1 Dalla Gazzetta Ufficiale del 12-12-2017 2 3 ESPRESSIONE ALGEBRICA: si chiama «espressione algebrica» un insieme qualunque di numeri relativi legati fra loro da segni di operazioni.

Dettagli

Polinomi Definizioni fondamentali

Polinomi Definizioni fondamentali Polinomi. Definizioni fondamentali Definizione.. Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi. Esempio.. Sono polinomi: 6a + b, 5a b + 3b, 6x 5y x, 7ab

Dettagli

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA CALCOLO LETTERALE Dr. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può

Dettagli

Equazioni di primo grado ad un incognita

Equazioni di primo grado ad un incognita Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2 = 2 è un identità =3 2 3=2 3

Dettagli

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio: Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico

Dettagli

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 Classe 1A MODULO 1: I NUMERI NATURALI 1. Le operazioni definite nell insieme dei numeri

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico

Dettagli

APPUNTI DI MATEMATICA LE EQUAZIONI DI SECONDO GRADO

APPUNTI DI MATEMATICA LE EQUAZIONI DI SECONDO GRADO APPUNTI DI MATEMATICA I radicali LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado ALESSANDRO BOCCONI Indice 1 I radicali 1.1 Introduzione......................................... 1. Definizione

Dettagli

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA

Dettagli

Le equazioni lineari

Le equazioni lineari Perchè bisogna saper risolvere delle equazioni? Perché le equazioni servono a risolvere dei problemi! Le equazioni lineari Un problema è una proposizione che richiede di determinare i valori di alcune

Dettagli

Numeri e operazioni su di essi

Numeri e operazioni su di essi Numeri e operazioni su di essi Paolo Montanari Appunti di Matematica Numeri 1 Classificazione dei numeri Il primo obiettivo che ci si pone è quello di classificare i numeri, cioè conoscere i differenti

Dettagli

Scuola Secondaria di Primo Grado COLOGNA VENETA CLASSE 3 / A

Scuola Secondaria di Primo Grado COLOGNA VENETA CLASSE 3 / A Scuola Secondaria di Primo Grado COLOGNA VENETA CLASSE / A APPUNTI DI CALCOLO LETTERALE. MONOMI. DEFINIZIONE DI MONOMIO: Diremo monomio il prodotto di fattori numerici e letterali, con questi ultimi elevati

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

Esercizi sulle radici

Esercizi sulle radici Esercizi sulle radici Semplificazione Per semplificare una radice utilizzando, quando necessario, i valori assoluti, dobbiamo ricordare che se una radice ha indice pari, il suo radicando (il numero che

Dettagli

Polinomi. Def: Es: Def: Regola: Es: Def: Es: Def: Es: Si dice POLINOMIO la somma algebrica di più monomi, detti TERMINI del polinomio.

Polinomi. Def: Es: Def: Regola: Es: Def: Es: Def: Es: Si dice POLINOMIO la somma algebrica di più monomi, detti TERMINI del polinomio. Polinomi Si dice POLINOMIO la somma algebrica di più monomi, detti TERMINI del polinomio. 2 +3 +5 5 2 3 Un polinomio si dice RIDOTTO A FORMA NORMALE se in esso non compaiono termini simili e se tutti i

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

Matematica Lezione 2

Matematica Lezione 2 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 2 Sonia Cannas 12/10/2018 Avviso Le lezioni di martedì dalle 9:00 alle 11:00 sono spostate in aula DELTA. Insieme complementare Definizione

Dettagli

DISEQUAZIONI DI PRIMO GRADO. Prof.ssa Maddalena Dominijanni

DISEQUAZIONI DI PRIMO GRADO. Prof.ssa Maddalena Dominijanni DISEQUAZIONI DI PRIMO GRADO Disuguaglianze Due espressioni numeriche, di diverso valore, separate da un segno di disuguaglianza, formano una disuguaglianza numerica Esempi di disuguaglianze 6 6 Simboli

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a RADICALI E PROPRIETÀ DEI RADICALI I radicali in Matematica sono numeri definiti mediante radici con indice intero. I radicali possono essere espressi sotto forma di potenze con esponente fratto mediante

Dettagli

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze)

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze) Scegli il completamento corretto. L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze). L insieme dei numeri reali R si indica con : a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Introduzione alla Matematica per le Scienze Sociali - parte I

Introduzione alla Matematica per le Scienze Sociali - parte I Introduzione alla Matematica per le Scienze Sociali - parte I Lucrezia Fanti Istituto Nazionale per l Analisi delle Politiche Pubbliche (INAPP) lucrezia.fanti@uniroma1.it Lucrezia Fanti Intro Matematica

Dettagli

Il monomio è un espressione algebrica letterale che non contiene né addizioni né sottrazioni.

Il monomio è un espressione algebrica letterale che non contiene né addizioni né sottrazioni. Monomi Calcolo letterale Abbiamo usato spesso le lettere al posto dei numeri quando dovevamo enunciare delle proprietà o delle regole generali. Le lettere sono dunque comode perché ci permettono di svolgere

Dettagli

Radicale Intero Decimo Centesimo Millesimo ,2e Cosa ottengo se ad un numero razionale aggiungo o tolgo un numero irrazionale?

Radicale Intero Decimo Centesimo Millesimo ,2e Cosa ottengo se ad un numero razionale aggiungo o tolgo un numero irrazionale? ) I Numeri Irrazionali. I BM pag. 6. Es. pag. 7-7 Un numero è detto irrazionale quando è non possibile definirlo sotto forma di frazione, non ammette dunque una rappresentazione decimale finita o periodica.

Dettagli

1) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni.

1) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni. Il calcolo letterale. BM 2; NLM 57 ) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni. a + a = a + b = a a = a b = a. a = a. b = a : a = a : b = a. a. a = a -n = a -n.

Dettagli

1.5 DIVISIONE TRA DUE POLINOMI

1.5 DIVISIONE TRA DUE POLINOMI Matematica C Algebra. Le basi del calcolo letterale.5 Divisione tra due polinomi..5 DIVISIONE TRA DUE POLINOMI Introduzione Ricordiamo la divisione tra due numeri, per esempio 47:4. Si tratta di trovare

Dettagli

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Disequazioni 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Date due espressioni algebriche A e B contenenti numeri e lettere

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche.

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Equazioni Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Nelle espressioni compare una lettera, chiamata incognita. Possiamo attribuire un valore a questa incognita, e vedere

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del

Dettagli

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene... Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Il monomio è un espressione algebrica letterale che non contiene né addizioni né sottrazioni. COEFFICIENTE

Il monomio è un espressione algebrica letterale che non contiene né addizioni né sottrazioni. COEFFICIENTE I Monomi Il monomio è un espressione algebrica letterale che non contiene né addizioni né sottrazioni. Es: +3 b c COEFFICIENTE Un monomio può essere : PARTE LETTERALE FRATTO se in esso compaiono lettere

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni

Dettagli

U.D. N 04 I polinomi

U.D. N 04 I polinomi Unità Didattica N 0 I polinomi U.D. N 0 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) Prodotto di due i più monomi 0) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune

Dettagli

Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali.

Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali. Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF3 / PS-MF3 I Lezione SIMBOLOGIA E INSIEMI NUMERICI Dr. E. Modica erasmo@galois.it SIMBOLI MATEMATICI Poiché in queste pagine verranno

Dettagli

Equazioni. Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof.

Equazioni. Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Equazioni Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Un equazione è un uguaglianza tra due espressioni

Dettagli