Elementi di Economia I

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi di Economia I"

Transcript

1 Elementi di Economia I 10. Teoria dei giochi e oligopolio Giuseppe Vittucci Marzetti 1 Corso di laurea in Sociologia Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A Dipartimento di Sociologia e Ricerca Sociale, Università degli Studi di Milano-Bicocca, Via Bicocca degli Arcimboldi 8, 20126, Milano, [email protected] Giuseppe Vittucci Marzetti Elementi di Economia I 1/23

2 Layout Teoria dei giochi 1 Teoria dei giochi 2 3 Duopolio di Cournot Duopolio di Bertrand Giuseppe Vittucci Marzetti Elementi di Economia I 2/23

3 Cos è la teoria dei giochi Teoria dei giochi Branca dell economia che studia le scelte di soggetti razionali in contesti strategici Soggetto razionale è un agente in grado di: valutare le conseguenze di ogni propria azione; esprimere un sistema coerente di preferenze su tali conseguenze; selezionare la scelta cui è associata la conseguenza preferita. Un contesto di scelta è strategico quando le conseguenze di un azione per un soggetto dipendono, oltre che dalle sue scelte, ma anche dalle scelte compiute da altri soggetti razionali. Nascita della moderna teoria dei giochi comunemente fatta risalire al 1944, anno di pubblicazione del libro Theory of Games and Economic Behavior di John von Neumann e Oskar Morgenstern. Giuseppe Vittucci Marzetti Elementi di Economia I 3/23

4 Definizione di gioco Teoria dei giochi Per caratterizzare un gioco necessario definire gli elementi del gioco: giocatori (players); strategie (strategies), ovvero possibili azioni di ogni giocatore; guadagni/perdite (payoffs) di ogni giocatore in ogni combinazione possibile di strategie (strategy profile). In termini formali, un gioco generico Γ in forma normale è definito come: Γ = N,{S 1,S 2,...,S N },{u 1,u 2,...,u N } dove N = {1,2,...,N} è l insieme dei giocatori; S i (i N) è l insieme delle strategie del giocatore i; u i(.) (i N) è la payoff function del giocatore i, ovvero la funzione che associa ad ogni possibile combinazione strategica (strategy profile) il payoff del giocatore i, cioè un numero che misura il guadagno del giocatore. Giuseppe Vittucci Marzetti Elementi di Economia I 4/23

5 Un classico esempio: il dilemma del prigioniero Due giocatori: N = {A,B}; Strategie: S A = S B = {D,C}; Funzioni dei payoff: u A (D,D) = 5, u A (D,C) = 0, u A (C,D) = 7, u A (C,C) = 1; u B (D,D) = 5, u B (D,C) = 7, u B (C,D) = 0, u B (C,C) = 1; A B D C D 5, 5 0, 7 C 7, 0 1, 1 Tabella: Matrice dei payoff Giuseppe Vittucci Marzetti Elementi di Economia I 5/23

6 Funzione di risposta ottima Risposta ottima (best reply, o best response) di un giocatore: strategia che massimizza il payoff del giocatore, date e costanti le strategie degli altri giocatori. Es.: la risposta ottima di A quando B non rispetta i patti (s B = D) è non rispettare i patti (s A = D); Di fatto, in questo caso D è strategia dominante: la risposta ottima del giocatore qualunque sia la strategia dell altro giocatore; Funzione di risposta ottima (best reply function) del giocatore i: funzione che, ad ogni combinazione strategica degli altri giocatori, associa la risposta ottima di i: b i (s i ) = argmax s i S i u i (s i,s i ) dove s i indica le strategie giocate da tutti i giocatori escluso i; Es.: la funzione di risposta ottima di A è b A (C) = b A (D) = D. Giuseppe Vittucci Marzetti Elementi di Economia I 6/23

7 Equilibrio di Nash Teoria dei giochi Equilibrio di Nash: profilo strategico (s) tale che la strategia di ogni giocatore è una risposta ottima alle strategie degli altri: s i b i (s i), i N Definizione equivalente: u i (s i,s i) u i (s i,s i), s i S i, i N John Forbes Nash Jr. ( ) In un equilibrio di Nash nessun giocatore ha incentivo a deviare; Nel dilemma del prigioniero l unico equilibrio di Nash è s = (D,D). Nobel Memorial Prize in Economics 1994 Nel 1994 Nobel per le Scienze Economiche assegnato a J. Harsanyi, J. Nash e R. Selten per l analisi pionieristica degli equilibri nella teoria dei giochi non cooperativi. Giuseppe Vittucci Marzetti Elementi di Economia I 7/23

8 Giochi in forma estesa Nei giochi in forma normale (strategic form) i giocatori agiscono simultaneamente; Nei giochi dinamici le scelte sono effettuate in un determinato ordine temporale; La rappresentazione dei giochi dinamici in forma estesa (extensive form) utilizza una struttura ad albero: ciascun vertice rappresenta un punto di decisione per un giocatore; le ramificazioni sono le azioni che il giocatore può compiere; a ciascun vertice finale è associato un vettore di payoff. P 1 a 1 1 a 1 2 a 1 3 a 2 P 2 1 a2 2 a 2 P 2 3 a4 2 P 1 a4 1 a5 1 6 P 1 a 1 (.,.) (.,.) (.,.) (.,.) (.,.) Giuseppe Vittucci Marzetti Elementi di Economia I 8/23 (.,.)

9 Equilibri di Nash e minacce non credibili E La nozione di equilibrio di Nash non riesce ad escludere i casi di minacce non credibili (non credible threats). Esempio: un impresa (E) deve decidere se entrare (IN) o non entrare (OUT) in un mercato; l incumbent (I) deve decidere se ingaggiare una guerra dei prezzi (F) o non ingaggiarla (A); due equilibri di Nash: (OUT,F) e (IN,A); (OUT,F) contiene tuttavia una minaccia non credibile: una volta che E è entrato ad I non conviene guerreggiare. E I F A IN OUT I IN -1,-1 1,1 F A (0,2) OUT 0,2 0,2 (-1,-1) (1,1) Giuseppe Vittucci Marzetti Elementi di Economia I 9/23

10 Equilibri di Nash perfetti nei sottogiochi In base al principio di razionalità sequenziale, la strategia di un giocatore dovrebbe specificare risposte ottime ad ogni nodo dell albero. Secondo la definizione di Selten, un equilibrio di Nash è perfetto nei sottogiochi (Subgame Perfect Nash equilibrium, SPNE) se le strategie di equilibrio costituiscono un equilibrio di Nash in ciascun sottogioco; Sottogioco (subgame): parte del gioco in forma estesa che inizia in un nodo (contenuto in un insieme di informazione di cui è l unico elemento) e contiene tutti i nodi che seguono. Reinhard Selten (1930) Nobel Memorial Prize in Economics 1994 Giuseppe Vittucci Marzetti Elementi di Economia I 10/23

11 Per eliminare gli equilibri di Nash non perfetti nei sottogiochi possibile usare l induzione a ritroso (backward induction): 1 vai agli ultimi nodi di decisione e seleziona le risposte ottime dei giocatori cui spetta muovere in ciascuno di quei nodi; 2 vai in ciascuno dei nodi precedenti e seleziona la risposta ottima sulla base delle strategie individuate nel passaggio 1; 3 continua il processo fino a giungere al nodo iniziale. F I IN A E OUT (0,2) (-1,-1) (1,1) Figura: Equilibrio di Nash perfetto nei sottogiochi nel gioco di entrata Giuseppe Vittucci Marzetti Elementi di Economia I 11/23

12 Giochi e supergiochi Teoria dei giochi Supergioco Sequenza di giochi giocati da uno stesso insieme di giocatori. Supergiochi con dipendenza temporale Supergioco in cui i payoff di ogni gioco costituente (stage game) in una fase t dipendono dalla successione delle strategie giocate dai giocatori nelle fasi precedenti. Giochi ripetuti Supergiochi in cui il gioco costituente è lo stesso in ogni fase. Giuseppe Vittucci Marzetti Elementi di Economia I 12/23

13 Dilemma del prigioniero ripetuto In ciascuno di T periodi due giocatori (A e B) giocano un dilemma del prigioniero come quello in tabella; Giocatori impazienti scontano i payoff futuri ad un tasso δ (0 < δ < 1); Payoff di ogni giocatore dato dal flusso scontato dei payoff generati in ciascun gioco costituente: G i = u i (s 1,0,s 2,0 )+δu i (s 1,1,s 2,1 )+...+δ T u i (s 1,T,s 2,T ) T = δ t u i (s 1,t,s 2,t ) t=0 A D C D B C d,d w,l l,w c,c Tabella: Matrice dei payoff (l < d < c < w) Giuseppe Vittucci Marzetti Elementi di Economia I 13/23

14 Trigger strategy ed equilibri di Nash Pareto-ottimali Passare dal dilemma del prigioniero semplice a quello ripetuto fa emergere possibili equilibri cooperativi (C, C) nel gioco costituente; Trigger strategy (strategia del grilletto) (Friedman, 1971): ogni giocatore i N S inizia giocando C; continua a giocare C fino a quando l altro gioca C; gioca D per sempre in caso contrario. La strategia del grilletto sostiene un equilibrio di Nash se, per ciascun giocatore, i guadagni della cooperazione ( t=0 δt c) sono maggiori di quelli della defezione e conseguente punizione da parte dell altro (w + t=1 δt d), cioè se: ( ) δ t c w + δ t d t=0 t=1 δ w c w d = c δd w 1 δ 1 δ 0 Giuseppe Vittucci Marzetti Elementi di Economia I 14/23

15 Folk theorem Teoria dei giochi In base ad una popolare versione debole del folk theorem, nei giochi ripetuti, se gli agenti non sono troppo impazienti esistono sempre profili strategici che in equilibrio supportano miglioramenti paretiani rispetto ad equilibri di Nash statici, cioè relativi al gioco costituente, subottimali; Folk theorem (Friedman, 1971) Sia s un equilibrio statico con payoff u. Per ogni vettore di payoff u tale che u i u i per tutti i giocatori i, esiste un δ < 1 tale che, per ogni δ > δ, c è un equilibrio perfetto nei sottogiochi con payoff u. Intuizione: con giocatori pazienti e gioco ripetuto per un numero infinito di volte, qualsiasi guadagno finito di un periodo annullato da una anche piccola perdita di utilità in ciascun periodo futuro. Giuseppe Vittucci Marzetti Elementi di Economia I 15/23

16 Giochi ripetuti un numero finito di volte e paradosso della catena di vendita In caso di dilemma del prigioniero ripetuto un numero finito di volte, unico equilibrio di Nash quello di non cooperazione (dimostrazione via backward induction): Nell ultimo periodo non ci sarà nessun vantaggio a non deviare dall equilibrio cooperativo; Allora neanche nel periodo precedente potrà esserci qualche vantaggio a non deviare;... Nel primo periodo non ci sarà nessun incentivo a deviare... Proposizione dimostrata da Selten (1978) e anche nota come paradosso della catena di vendita (chain store paradox). Giuseppe Vittucci Marzetti Elementi di Economia I 16/23

17 I mercati oligopolistici sono mercati in cui opera un numero limitato di imprese che interagiscono tra loro in modo strategico; Diversamente da quanto avviene per la concorrenza perfetta e il monopolio, non esiste un unico modello di oligopolio; I modelli di oligopolio si differenziano per: modalità di interazione strategica tra le imprese: competizione sulle quantità vs. competizione sui prezzi; concorrenza simultanea vs. sequenziale. omogeneità/eterogeneità dei beni offerti; omogeneità/eterogeneità delle imprese presenti sul mercato. Il duopolio è un oligopolio con due sole imprese. Giuseppe Vittucci Marzetti Elementi di Economia I 17/23

18 Duopolio di Cournot Duopolio di Bertrand Modelli di oligopolio statico più noti: modello di Cournot: competizione sulle quantità (quantity competition); modello di Bertrand: competizione sui prezzi (price competition). Antoine Augustin Cournot ( ) Joseph Louis François Bertrand ( ) Giuseppe Vittucci Marzetti Elementi di Economia I 18/23

19 Duopolio di Cournot Teoria dei giochi Duopolio di Cournot Duopolio di Bertrand Due imprese (i = {1,2}) competono per lo stesso mercato; Funzione di domanda inversa lineare: p(q) = a bq = a b(q 1 +q 2 ) con a e b parametri positivi. Ciascuna impresa ha costi unitari costanti (c) e sceglie la quantità da produrre (q i ) per massimizzare i profitti: ( ) π i (q i,q j ) = (p(q) c) q i = a b(q i +q j ) c Condizioni del primo ordine: π i (q i,q j ) q i = a c bq j 2bq i = 0 Funzione di risposta ottima (o di reazione) dell impresa i: qi = a c 2b q j 2 Giuseppe Vittucci Marzetti Elementi di Economia I 19/23 q i

20 Duopolio di Cournot Duopolio di Bertrand Equilibrio nel duopolio di Cournot: soluzione algebrica Equilibrio di Nash: Quantità di equilibrio: Output totale: Prezzo di equilibrio: { q1 q2 = a c 2b q 2 2 = a c 2b q 1 2 q 1 = q 2 = a c 3b Q = q 1 +q 2 = 2(a c) 3b p = a bq = a b 2(a c) 3b > a c 2b = q m = a+2c 3 < a+c 2 = p m Giuseppe Vittucci Marzetti Elementi di Economia I 20/23

21 Duopolio di Cournot Duopolio di Bertrand Equilibrio nel duopolio di Cournot: soluzione grafica q 2 a c b Curva di reazione dell impresa 1 a c 2b E Curva di reazione dell impresa 2 a c 2b a c b q 1 Giuseppe Vittucci Marzetti Elementi di Economia I 21/23

22 Duopolio di Bertrand Teoria dei giochi Duopolio di Cournot Duopolio di Bertrand Due imprese (i = {1, 2}) competono nello stesso mercato; Ciascuna impresa i fissa il suo prezzo (p i ) e ha costi medi unitari costanti c; Funzione di domanda lineare: con A e B parametri positivi. Q = A B min(p 1,p 2 ) Payoff dell impresa i: 0 se p i > p j π i (p i,p j ) = (p i c) Q 2 = (p i c) A Bpi 2 se p i = p j (p i c)q = (p i c)(a Bp i ) se p i < p j Giuseppe Vittucci Marzetti Elementi di Economia I 22/23

23 Duopolio di Cournot Duopolio di Bertrand Equilibrio nel duopolio di Bertrand Funzione di risposta ottima dell impresa i: pi = p m se p j > p m pi = p j ǫ se c < p j p m pi p j se c = p j pi > p j se c > p j dove p m = A+Bc 2B è il prezzo di monopolio. Unico equilibrio di Nash: p 1 = p 2 = c Quando le imprese competono sul prezzo e i beni sono perfettamente omogenei, l equilibrio nel duopolio coincide con quello di concorrenza perfetta. Giuseppe Vittucci Marzetti Elementi di Economia I 23/23

Economia Politica I. 10. Teoria dei giochi e oligopolio. Giuseppe Vittucci Marzetti 1

Economia Politica I. 10. Teoria dei giochi e oligopolio. Giuseppe Vittucci Marzetti 1 Economia Politica I 10. Teoria dei giochi e oligopolio Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di

Dettagli

Principi di Economia I

Principi di Economia I Principi di Economia I 11. Teoria dei giochi e oligopolio Giuseppe Vittucci Marzetti 1 Corso di laurea in Sociologia Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca

Dettagli

Imprese e reti d impresa

Imprese e reti d impresa Imprese e reti d impresa 6. Elementi di teoria dei giochi non cooperativi Giuseppe Vittucci Marzetti 1 Corso di laurea triennale in Scienze dell Organizzazione Facoltà di Sociologia Università degli Studi

Dettagli

INTRODUZIONE ALLA TEORIA DEI GIOCHI

INTRODUZIONE ALLA TEORIA DEI GIOCHI Corso di Identificazione dei Modelli e Controllo Ottimo Prof. Franco Garofalo INTRODUZIONE ALLA TEORIA DEI GIOCHI A cura di Elena Napoletano [email protected] Teoria dei Giochi Disciplina che studia

Dettagli

La Teoria dei Giochi. (Game Theory)

La Teoria dei Giochi. (Game Theory) La Teoria dei Giochi. (Game Theory) Giochi simultanei, Giochi sequenziali, Giochi cooperativi. Mario Sportelli Dipartimento di Matematica Università degli Studi di Bari Via E. Orabona, 4 I-70125 Bari (Italy)

Dettagli

Capitolo 13 Concorrenza imperfetta: un approccio basato sulla teoria dei giochi

Capitolo 13 Concorrenza imperfetta: un approccio basato sulla teoria dei giochi Capitolo 13 Concorrenza imperfetta: un approccio basato sulla teoria dei giochi INTRODUZIONE ALLA TEORIA DEI GIOCHI Gli elementi caratterizzanti un gioco sono: i giocatori partecipanti al gioco le strategie

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 4 aprile 2017 email: [email protected] sito web del corso:www-dimat.unipv.it/atorre/borromeo2017.html Giochi ripetuti GIOCHI RIPETUTI: COLLUSIONE Sorgere

Dettagli

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: [email protected] 1 GIOCHI

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 16 marzo 2010 email: [email protected] sito web del corso:www-dimat.unipv.it/atorre/borromeo2010.html GIOCHI RIPETUTI: COLLUSIONE GIOCHI RIPETUTI:

Dettagli

ESERCITAZIONE 6: CONCORRENZA MONOPOLISTICA E OLIGOPOLIO

ESERCITAZIONE 6: CONCORRENZA MONOPOLISTICA E OLIGOPOLIO MICROECONOMIA CLEA A.A. 003-004 ESERCITAZIONE 6: CONCORRENZA MONOPOLISTICA E OLIGOPOLIO Esercizio : Concorrenza monopolistica Si consideri un impresa che opera in un mercato di concorrenza monopolistica

Dettagli

Esercizi per seconda prova parziale: impresa, oligopolio, monopolio, giochi

Esercizi per seconda prova parziale: impresa, oligopolio, monopolio, giochi Esercizi per seconda prova parziale: impresa, oligopolio, monopolio, giochi 1b. Un impresa concorrenziale ha una tecnologia con rendimenti di scala costanti. Ciò implica che il costo medio (AC) e marginale

Dettagli

Concorrenza imperfetta: un approccio basato sulla teoria dei giochi (Frank, Capitolo 13)

Concorrenza imperfetta: un approccio basato sulla teoria dei giochi (Frank, Capitolo 13) Concorrenza imperfetta: un approccio basato sulla teoria dei giochi (Frank, Capitolo 13) INTRODUZIONE ALLA TEORIA DEI GIOCHI Gli elementi caratterizzanti un gioco sono: i giocatori partecipanti al gioco

Dettagli

Giochi statici e concorrenza alla Cournot. Capitolo 8: Giochi statici e concorrenza alla Cournot

Giochi statici e concorrenza alla Cournot. Capitolo 8: Giochi statici e concorrenza alla Cournot Giochi statici e concorrenza alla Cournot 1 Introduzione Nella maggioranza dei mercati le imprese interagiscono con pochi concorrenti mercato oligopolistico Ogni impresa deve considerare le azioni delle

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 6

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 6 Teoria dei Giochi Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 011/01 Handout 6 I Giochi Dinamici In questa dispensa analizzeremo i giochi

Dettagli

Cos è la teoria dei giochi

Cos è la teoria dei giochi Cos è la teoria dei giochi Teoria matematica che intende descrivere la scelta razionale dei giocatori (individui, famiglie, imprese, ) in situazioni di interazione strategica, cioè in situazioni in cui

Dettagli

PRICE FIXING E GIOCHI RIPETUTI

PRICE FIXING E GIOCHI RIPETUTI PRICE FIXING E GIOCHI RIPETUTI Economia industriale A.A. 2010/2011 Docente : Gianmaria Martini Alessandro Motta 1012958 Ilaria Maspero 1013101 Marco Pilis 1012965 Paolo Pellegrinelli 44580 FISSAZIONE DEL

Dettagli

Economia Industriale

Economia Industriale Università del Piemonte Orientale Amedeo Avogadro Facoltà di Economia A.A. 2005/2006 Economia Industriale Dott. Massimiliano Piacenza Lezione 2 L impresa come rapporto principale-agente (cenni, Cabral

Dettagli

CONCORRENZA OLIGOPOLISTICA COURNOT Prof. Fabrizio Pompei Dipartimento di Economia

CONCORRENZA OLIGOPOLISTICA COURNOT Prof. Fabrizio Pompei Dipartimento di Economia Università degli Studi di Perugia A.A. 2016-2017 ECONOMIA INDUSTRIALE CONCORRENZA OLIGOPOLISTICA COURNOT Prof. Fabrizio Pompei ([email protected]) Dipartimento di Economia Argomenti Trattati Competizione

Dettagli

Lezione 5 - Giochi Ripetuti

Lezione 5 - Giochi Ripetuti Lezione 5 - Giochi Ripetuti Simone D Alessandro Università di Pisa Università di Pisa Pisa, 6 marzo 2013 Matching Pennies Matching pennies è famoso perché mostra che in strategie pure anche in un gioco

Dettagli

Esercitazione 10 maggio 2016 (Viki Nellas)

Esercitazione 10 maggio 2016 (Viki Nellas) Esercitazione 10 maggio 2016 (Viki Nellas) Esercizio 1 Si consideri un duopolio in cui le imprese sono caratterizzate dalla seguente funzione di costo totale (identica per entrambe) Esse offrono un prodotto

Dettagli

Teoria dei giochi https://www.youtube.com/watch?v=kofiw8y8kee Gioco Interdipendenza strategica

Teoria dei giochi https://www.youtube.com/watch?v=kofiw8y8kee Gioco Interdipendenza strategica Teoria dei giochi https://www.youtube.com/watch?v=kofiw8y8kee Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende

Dettagli

La concorrenza monopolistica e l oligopolio

La concorrenza monopolistica e l oligopolio Capitolo 12 La concorrenza monopolistica e l oligopolio A.A. 2010-2011 Microeconomia - Cap. 12-1 Argomenti di discussione Concorrenza Monopolistica Oligopolio La concorrenza basata sul prezzo Concorrenza

Dettagli

Capitolo 18. Il modello di Bertrand. Il modello di Bertrand 02/05/2011. L oligopolio e la teoria dei giochi

Capitolo 18. Il modello di Bertrand. Il modello di Bertrand 02/05/2011. L oligopolio e la teoria dei giochi L oligopolio e la teoria dei giochi Capitolo 18 Oligopolio Uso della teoria dei giochi per analisi dell oligopolio Individuare i prezzi o le quantità scelte da ciascuna impresa, date le decisioni su prezzi

Dettagli

Economia Applicata. Lezione 14 Giochi- Bertrand- Cournot- Stackelberg

Economia Applicata. Lezione 14 Giochi- Bertrand- Cournot- Stackelberg Economia Applicata Lezione 4 Giochi- Bertrand- Cournot- Stackelberg Prof. Giorgia Giovannetti [email protected] Giorgia Giovannetti w martedi 8 Intro giovedi Intro, elasticitá w martedi 7 Il

Dettagli

Giochi ripetuti. Gianmaria Martini

Giochi ripetuti. Gianmaria Martini Giochi ripetuti Gianmaria Martini INTRODUZIONE In molte situazioni strategiche l elemento temporale ha un ruolo rilevante, nel senso che le scelte vengono ripetute nel tempo. I giochi ripetuti studiano

Dettagli

ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia.

ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia. ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia. La prova scritta consta di dodici domande, formulate come test a risposta multipla. Una sola delle cinque risposte fornite

Dettagli

Teoria Dei Giochi: Esercizi

Teoria Dei Giochi: Esercizi Teoria Dei Giochi: Esercizi Sergio Vergalli Università di Brescia March 2, 2015 1 Dominanza iterata Problem 1 Si trovi la soluzione per dominanza iterata del gioco fra tre persone in forma strategica:

Dettagli

Il Dilemma del Prigioniero

Il Dilemma del Prigioniero TEORIA DEI GIOCHI La teoria dei giochi studia come gli individui si comportano in situazioni strategiche. Le decisioni strategiche implicano il tenere conto di come il comportamento degli altri possa influire

Dettagli

CONCORRENZA OLIGOPOLISTICA INTRODUZIONE E MODELLO DI BERTRAND Prof. Fabrizio Pompei Dipartimento di Economia

CONCORRENZA OLIGOPOLISTICA INTRODUZIONE E MODELLO DI BERTRAND Prof. Fabrizio Pompei Dipartimento di Economia Università degli Studi di Perugia A.A. 2016-2017 ECONOMIA INDUSTRIALE CONCORRENZA OLIGOPOLISTICA INTRODUZIONE E MODELLO DI BERTRAND Prof. Fabrizio Pompei ([email protected]) Dipartimento di Economia

Dettagli

Concetti di soluzione in giochi dinamici a informazione perfetta in strategie pure (LEZIONE 4)

Concetti di soluzione in giochi dinamici a informazione perfetta in strategie pure (LEZIONE 4) Economia Industriale (teoria dei giochi) Concetti di soluzione in giochi dinamici a informazione perfetta in strategie pure (LEZIONE 4) Valerio Sterzi Università di Bergamo Facoltà di ingegneria 1 Cosa

Dettagli

Oligopolio e applicazioni della teoria dei giochi. G. Pignataro Microeconomia SPOSI

Oligopolio e applicazioni della teoria dei giochi. G. Pignataro Microeconomia SPOSI Oligopolio e applicazioni della teoria dei giochi 1 Oligopolio Ciò che conta è che poche imprese sono titolari della maggior parte o della totalità della produzione. Nei mercati oligopolistici i prodotti

Dettagli

a 10,10 3,9 b 9,3 6,6

a 10,10 3,9 b 9,3 6,6 ESERCIZI Teoria dei Giochi 1. Si consideri l interazione tra due giocatori descritta nella seguente forma normale: a 10,10 3,9 b 9,3 6,6 a) Cosa succede nel gioco precedente se i giocatori scelgono simultaneamente?

Dettagli

Introduzione teoria dei giochi pt. 2. Corso di Scienza Politica 10/11 Luca Pinto

Introduzione teoria dei giochi pt. 2. Corso di Scienza Politica 10/11 Luca Pinto Introduzione teoria dei giochi pt. 2 Corso di Scienza Politica 10/11 Luca Pinto Soluzioni es. 1 (2, 1), (B, A) Soluzioni es. 2 1, (A, A), (sx, dx) Es. 3: ordinamento preferenze Terroristi: violenza 3 negoziazione,

Dettagli

Microeconomia - Problem set 6 - soluzione

Microeconomia - Problem set 6 - soluzione Microeconomia - Problem set 6 - soluzione (Prof. Paolo Giordani - TA: Pierluigi Murro) 14 Maggio 015 Esercizio 1. Si consideri la seguente matrice dei payoffs: S D 1 A 18, 1 30, 70 B 70, 30 4, 8 Quale

Dettagli

Strutture/forme di mercato. Concorrenza perfetta Monopolio Oligopolio à la Cournot Stackelberg Bertrand - Collusione

Strutture/forme di mercato. Concorrenza perfetta Monopolio Oligopolio à la Cournot Stackelberg Bertrand - Collusione trutture/forme di mercato oncorrenza perfetta Monopolio Oligopolio à la ournot tackelberg Bertrand - ollusione 1 truttura di mercato 2 (Nash) Equilibrio nell oligopolio Un mkt oligopolistico è in equilibrio

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

CONCORRENZA DINAMICA E COLLUSIONE. ECONOMIA DELL INNOVAZIONE UNIVERSITA Liuc

CONCORRENZA DINAMICA E COLLUSIONE. ECONOMIA DELL INNOVAZIONE UNIVERSITA Liuc NRRENZA INAMICA E LLUSIONE ENOMIA ELL INNOVAZIONE UNIVERSITA Liuc Christian Garavaglia - Ottobre 004 Contesto e concetti Una delle ipotesi che portano al paradosso di Bertrand è che la competizione di

Dettagli

Corso di MICROECONOMIA (A.A ) Prof.ssa Carla Massidda Tutor dott.ssa Tiziana Medda IX ESERCITAZIONE 20 Maggio 2015

Corso di MICROECONOMIA (A.A ) Prof.ssa Carla Massidda Tutor dott.ssa Tiziana Medda IX ESERCITAZIONE 20 Maggio 2015 Corso di MICROECONOMIA (A.A.2014-2015) Prof.ssa Carla Massidda Tutor dott.ssa Tiziana Medda IX ESERCITAZIONE 20 Maggio 2015 TEORIA DEI GIOCHI E OLIGOPOLIO A. Definizioni Si definiscano sinteticamente i

Dettagli

Indice. Microeconomia e mercati 1. La scelta del consumatore 49. Prefazione alla terza edizione. pag. Capitolo 1

Indice. Microeconomia e mercati 1. La scelta del consumatore 49. Prefazione alla terza edizione. pag. Capitolo 1 Prefazione alla terza edizione XI Capitolo 1 Microeconomia e mercati 1 1. Introduzione 1 1.1. Perché scegliere 1 1.2. La scelta nei regimi di mercato 6 1.3. Cosa avviene in un regime di mercato 14 2. La

Dettagli

Fissazione del prezzo e giochi ripetuti. Capitolo 13: Fissazione del Prezzo e Giochi Ripetuti

Fissazione del prezzo e giochi ripetuti. Capitolo 13: Fissazione del Prezzo e Giochi Ripetuti Fissazione del prezzo e giochi ripetuti 1 Collusione e cartelli Che cos è un cartello? tentativo di imporre disciplina al mercato e di ridurre la competizione tra un gruppo di produttori i membri del cartello

Dettagli

Lezione 19: Il duopolio di Cournot ed equilibrio di Nash

Lezione 19: Il duopolio di Cournot ed equilibrio di Nash Corso di Economia Politica prof. S. Papa Lezione 19: Il duopolio di Cournot ed equilibrio di Nash Facoltà di Economia Università di Roma La Sapienza Il duopolio di Cournot 202 Le imprese della lezione

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 10: Introduzione alla Teoria dei Giochi David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) [email protected] (email) http://utenti.dea.univpm.it/politica

Dettagli

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: [email protected] GIOCHI

Dettagli

Capitolo 31: Duopolio

Capitolo 31: Duopolio Capitolo 31: Duopolio 31.1: Introduzione Applichiamo gli elementi di teoria dei giochi, del capitolo precedente, all analisi del mercato di duopolio, questo è una forma di mercato intermedia tra la concorrenza

Dettagli

Prerequisiti: regole base di derivazione; funzioni a più variabili; derivate parziali; nozione di integrale

Prerequisiti: regole base di derivazione; funzioni a più variabili; derivate parziali; nozione di integrale Microeconomia Economia e Finanza Prerequisiti: regole base di derivazione; funzioni a più variabili; derivate parziali; nozione di integrale Introduzione. L oggetto dell economia politica; l oggetto della

Dettagli

La concorrenza monopolistica e l oligopolio

La concorrenza monopolistica e l oligopolio 09/05/009 Capitolo La concorrenza monopolistica e l oligopolio A.A. 008-009 Microeconomia - Cap. Questo file (con nome cap_.pdf) può essere scaricato da www.klips.it siti e file Provvisoriamente anche

Dettagli

Economia della Concorrenza e dei Mercati Lezione 11

Economia della Concorrenza e dei Mercati Lezione 11 Economia della Concorrenza e dei Mercati Lezione 11 Corso di laurea Consulente del Lavoro e Giurista d'impresa UNIBS, a.a. 2014-2015 Prof.ssa Chiara Dalle Nogare Il modello di Cournot: ipotesi. 1.Due imprese,

Dettagli

Elementi di Economia I - Microeconomia Esame

Elementi di Economia I - Microeconomia Esame Elementi di Economia I - Microeconomia Esame Giuseppe Vittucci Marzetti Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca Corso di Laurea in Sociologia 16 Gennaio 2018

Dettagli