Algebra di Boole: minimizzazione di funzioni booleane
|
|
|
- Rosalia Colli
- 9 anni fa
- Visualizzazioni
Transcript
1 Corso di Calcolatori Elettronici I A.A Algebra di Boole: minimizzazione di funzioni booleane Lezione 8 Università degli Studi di Napoli Federico II Facoltà di Ingegneria
2 Forme Ridotte p Vantaggi di una forma ridotta n Maggiore compattezza dal punto di vista dell algebra della logica n Realizzazione più economica dal punto di vista dei circuiti
3 Funzioni di costo Costo di letterali (CL): numero delle variabili indipendenti della funzione, contate sul numero di volte in cui esse compaiono nella forma. Equivale, per reti bilaterali, al numero di contatti adoperati. Costo di funzioni o di porte (CP): numero delle funzioni elementari f i che la compongono. Equivale, per le reti unilaterali, al numero complessivo di porte adoperate. Costo di ingressi (CI): numero delle funzioni f i che la compongono, ciascuna moltiplicata per le variabili (dipendenti o indipendenti) di cui è funzione. Equivale, per le reti unilaterali, al numero complessivo di porte adoperate, ciascuna "pesata" per il numero di ingressi che possiede.
4 Funzioni di costo: esempio f = bc( ad b c) c( d a)( b c) Costo di letterali (CL) Costo di funzioni o di porte (CP) 7 Costo di ingressi (CI) 7
5 Costo Forma Minima: esempio ƒ = bc (a d b c) c (d a ) (b c) CL=; CP=7; CI=7 ƒ = b ( a c d) CL=4; CP=2; CI=5
6 Minimizzazione Non esistono metodi matematici che consentano di risolvere il problema della minimizzazione nella sua generalità Un vincolo fondamentale che in genere si pone alla base è il numero di livelli Gli algoritmi che vedremo forniscono una soluzione chiusa per reti a due livelli In alcuni casi, imporre una rete a due livelli non porta a soluzioni adeguate e tale vincolo sarà rimosso
7 Alcuni presupposti teorici (/3) Una funzione y = ƒ(, 2,..., n ) può essere espressa come una somma contenente soltanto i suoi implicanti primi (forma PI) Infatti, un implicante non primo A i presente in una forma somma-di-prodotti della f può essere sempre eliminato osservando che si può aggiungere alla f un implicante primo P i a sua volta implicato da A i senza alterare la f A i è poi assorbito da P i
8 Dimostrazione Una funzione y = ƒ(, 2,..., n ) può essere espressa come somma di soli suoi primi implicanti (o - per brevità - in forma PI). Dimostrazione Se la funzione in forma elementare ha allora Ak Pj y con P j primo implicante; P j può essere aggiunto alla y e si ottiene k j essendo Ak Pj = Pj, k y = A contiene un termine A k non PI si i y = A P ; A può essere eliminato dalla forma di y, dove viene sostituito da P j. Il ragionamento va ripetuto per tutte le clausole non PI.
9 Alcuni presupposti teorici (2/3) Una forma elementare che minimizzi i valori dei costi CL e CI è una forma PI Fra le forme minime a 2 livelli che minimizzano CP ne esiste almeno una PI Sotto il vincolo di rete a 2 livelli, la forma minima va allora cercata tra le forme PI DIM.: Fra tutte le forme elementari non PI, si scelga quella minima; se questa viene trasformata in una forma PI nella quale P j sostituisce A k, poiché P j è una clausola di ordine inferiore ad A k, diminuisce CL (diminuendo i letterali) e diminuisce CI (diminuendo il numero di variabili indipendenti della funzione componente) mentre CP non aumenta (diminuisce se era già nella sommatoria, resta inalterato altrimenti).
10 Alcuni presupposti teorici (3/3) Un implicante primo E i di una funzione f è detto essenziale se è l'unico ad essere implicato da un mintermine di f In altri termini, E i è l unico a coprire un determinato mintermine della funzione Il nucleo N della funzione è la somma dei suoi implicanti primi essenziali k N = E i= i w Ogni forma minima di f è del tipo f = NR con N ed R eventualmente nulli
11 Funzioni cicliche (N=0) C 00 0 E F G D N = 0 0 H A B
12 Procedura per la minimizzazione. Ricerca di tutti gli implicanti primi della funzione f da minimizzare; 2. Selezione degli implicanti primi essenziali, per individuare il nucleo N; 3. Copertura della funzione, cioè determinazione della forma minima di R, da aggiungere ad N per minimizzare f I passi ) e 2) possono essere svolti con l ausilio delle mappe di Karnaugh per funzioni fino a 5 variabili
13 Ricerca PI sulle mappe di Karnaugh ƒ = abcd a bcd a b cd a b c d ab c d abc d ab c d Gli implicanti primi sono individuati graficamente come sottocubi di area massima sulla mappa di Karnaugh Implicanti primi bcd, a cd, a b d, ab
14 Individuazione del nucleo sulle mappe di Karnaugh Sono essenziali gli implicanti primi che da soli ricoprono un "" COPERTO SOLO DA a b d a b c d COPERTO SOLO DA ab
15 Matrice di Copertura e Copertura minima Individuati gli implicanti primi, occorre scegliere tra di essi un insieme minimo che consenta di coprire tutta la funzione
16 Copertura minima Un modo generale per definire il problema della copertura è il seguente: data una matrice di N righe e M colonne, i cui elementi siano a ij = oppure a ij = 0, si dice che una riga i copre una colonna j se a ij =. Si selezioni il numero minimo di righe che coprono tutte le colonne. Il problema della copertura è di interesse generale in molti settori differenti ad esempio, in problemi di testing
17 Individuazione del nucleo sulla matrice di copertura Sulla matrice di copertura corrispondono alle righe che coprono le colonne con un unico Nell esempio N = A D ESSENZIALE ESSENZIALE
18 Metodi di copertura minima Trovare la copertura minima vuol dire trovare la forma minima di R, cioè quegli implicanti che, pur non essendo essenziali, devono essere eventualmente aggiunti al nucleo per trovare una forma che "copra" tutti i mintermini Per funzioni di poche variabili, la scelta dei PI di R da aggiungere a quelli essenziali di N può essere fatta direttamente sulla mappe di Karnaugh, valutando ad occhio le varie (poche) alternative possibili Un metodo tabellare: righe/colonne dominanti
19 Righe/Colonne dominanti Chiamiamo linea indifferentemente una riga o una colonna Una linea L domina la linea K se la include, ovvero se contiene tutti i suoi La colonna di destra domina quella di sinistra La riga in alto domina l altra
20 Righe/Colonne dominanti Se si eliminano le righe dominate e le colonne dominanti, da una matrice di copertura, se ne trae una equivalente che rappresenta, cioè, il medesimo problema di copertura
21 Righe/Colonne dominanti Il metodo tabellare per righe/colonne dominanti procede allora come segue:. Si ricercano gli implicanti primi (PI) e si individuano quelli essenziali; 2. Si includono nella forma minima i PI essenziali, eliminandoli dalla matrice, unitamente con i mintermini ricoperti; 3. Si eliminano le righe dominate e le colonne dominanti; 4. Si individuano i PI essenziali secondari della matrice così ridotta; 5. Si ripetono i passi 2, 3, 4 finché è possibile.
22 Esempio (/6) = = = ) (0,,2,8,9,5,7,2,24,25,27,28,3 ),,,, ( f
23 Esempio (2/6) Implicanti Mintermini coperti A = -00-8,9,24,25 B = --00,9,7,25 C = ,,8,9 D = - 27,3 E = - 5,3 F = 0-25,27 G = 0-0 7,2 H = ,28 J = ,2
24 Esempio (3/6) P 0 P P 2 P 8 P 9 P 5 P 7 P 2 P 24 P 25 P 27 P 28 P 3 A B C D E F G H J Primi implicanti essenziali: N (nucleo) = J, E, G, H
25 Esempio (4/6) P 0 P P 2 P 8 P 9 P 5 P 7 P 2 P 24 P 25 P 27 P 28 P 3 A B C D E F G H J Gli implicanti primi essenziali J,E,G,H coprono i mintermini: 0, 2, 5, 7, 2, 24, 28, 3
26 Esempio (5/6) P P 8 P 9 P 25 P 27 A P P 8 P 25 P 27 B A P P 8 C B A D C B F F C riga D dominata dalla F Colonna P 9 dominante F implicante primo essenziale secondario: copre P 25 e P 27 Righe A e B dominate dalla C
27 Esempio (6/6) ) (0,,2,8,9,5,7,2,24,25,27,28,3 ),,,, ( C F J H G E f = = = = = = =
28 Un altro esempio: funzione ciclica D C A B E F G H P 3 P 6 P 7 P 8 P 9 P 0 P 3 P 4 A B C D E F G H Il metodo delle righe e colonne dominanti non aiuta Si sceglie a caso un PI e gli altri vengono scelti di conseguenza Due coperture equivalenti: ACEG oppure BDFH
Minimizzazione di funzioni booleane:
Corso di Calcolatori Elettronici I A.A. 202-203 Minimizzazione di funzioni booleane: espansione e copertura Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria
Corso di Calcolatori Elettronici I
Corso di Calcolatori Elettronici I Algebra di Boole: minimizzazione di funzioni booleane Roberto Canonico Università degli Studi di Napoli Federico II A.A. 2014-2015 Roberto Canonico Corso di Calcolatori
Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR
Corso di Calcolatori Elettronici I A.A. 2010-2011 Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR Lezione 7 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Funzioni Equivalenza
Algebra di Boole: mappe di Karnaugh
Corso di Calcolatori Elettronici I Algebra di Boole: mappe di Karnaugh Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione
Algebra di Boole: mappe di Karnaugh
Corso di Calcolatori Elettronici I A.A. 2012-2013 Algebra di Boole: mappe di Karnaugh Pro. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie
Metodo di Quine- McCluskey
Metodo di Quine- McCluskey Maurizio Palesi Maurizio Palesi 1 Definizioni Date due funzioni f(x 1,x 2,,x n ) e g(x 1,x 2,,x n ) si dice che f copre g (oppure g implica f) e si scrive f g se f(x 1,x 2,,x
Metodo di Quine- McCluskey
Metodo di Quine- McCluskey Maurizio Palesi Maurizio Palesi Definizioni Date due funzioni f(x,x 2,,x n ) e g(x,x 2,,x n ) si dice che f copre g (oppure g implica f) e si scrive f g se f(x,x 2,,x n )= quando
Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche
Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche Ing. Gestionale e delle Telecomunicazioni A.A. 27/8 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali digitali vs. segnali analogici
Sintesi di Reti Combinatorie
Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Quine-McCluskey per reti a più uscite Mariagiovanna Sami Corso di Reti Logiche B 08 Sintesi a due livelli Reti
Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Algoritmo QMC
Reti Logiche Prof. B. Buttarazzi A.A. 2009/200 Algoritmo QMC Sommario Metodo algoritmico di Quine e Mc-Cluskey Implicanti primi Riga essenziale Riga dominata Esempi Riepilogo ALGORITMO DI KARNAUGH () MONOMIO:
Esercitazioni su circuiti combinatori
Esercitazioni su circuiti combinatori Salvatore Orlando & Marta Simeoni Arch. Elab. - S. Orlando - 1 Algebra Booleana: funzioni logiche di base OR (somma): l uscita è 1 se almeno uno degli ingressi è 1
Reti Logiche Combinatorie
Testo di riferimento: [Congiu] - 2.4 (pagg. 37 57) Reti Logiche Combinatorie 00.b Analisi Minimizzazione booleana Sintesi Rete logica combinatoria: definizione 2 Una rete logica combinatoria èuna rete
A.A. 2003/2004 Esercizi di Reti Logiche A
A.A. 2003/2004 Esercizi di Reti Logiche A A cura di F. Ferrandi, C. Silvano Ultimo aggiornamento, 11 novembre 2003 Questi appunti sono stati possibili anche per il lavoro fatto da alcuni studenti del corso
Metodo di Quine e MC-Cluskey 2/2 Prof. Mario Cannataro Università degli Studi Magna Graecia di Catanzaro
Fondamenti di Informatica II Ingegneria Informatica e Biomedica I anno, II semestre A.A. 2005/2006 Metodo di Quine e MC-Cluskey 2/2 Prof. Mario Cannataro Università degli Studi Magna Graecia di Catanzaro
Maurizio Palesi. Maurizio Palesi 1
Mappe di Karnaugh Maurizio Palesi Maurizio Palesi 1 Obiettivi Trovare una espressione in forma SP o PS minima rispetto a certi criteri di costo Nella ottimizzazione delle espressioni SP (PS) a due livelli
Costruzione di. circuiti combinatori
Costruzione di circuiti combinatori Algebra Booleana: funzioni logiche di base OR (somma): l uscita è 1 se almeno uno degli ingressi è 1 A B (A + B) 0 0 0 0 1 1 1 0 1 1 1 1 AND (prodotto): l uscita è 1
Metodo di Quine-McCluskey. Algoritmo. Sommario. Sommario. M. Favalli
Sommario Metodo di Quine-McCluskey M. Favalli Engineering Department in Ferrara 2 3 Sommario Analisi e sintesi dei sistemi digitali / Algoritmo Analisi e sintesi dei sistemi digitali 2 / 2 3 Metodo esatto
Richiami di Algebra di Commutazione
LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n Prof. Rosario Cerbone [email protected] http://digilander.libero.it/rosario.cerbone a.a. 6-7 Richiami di Algebra di Commutazione In questa
Fondamenti dell Informatica Algebra di Boole. Prof.ssa Enrica Gentile
Fondamenti dell Informatica Algebra di Boole Prof.ssa Enrica Gentile Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!) Gli operandi possono avere solo due valori: Vero () Falso
LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 5
LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 5 Prof. Rosario Cerbone [email protected] a.a. 2005-2006 Ottimizzazione di circuiti combinatori In questa lezione vengono riassunti i concetti
Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!
Fondamenti di Informatica Algebra di Boole Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2-22 Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR () NOT (!) Gli operandi
Esercitazioni di Reti Logiche. Lezione 3
Esercitazioni di Reti Logiche Lezione 3 Semplificazione & Porte NAND/NOR Zeynep KIZILTAN [email protected] Argomenti Semplificazione con l uso delle mappe di Karnaugh a 3 variabili a 4 variabili
Procedimento di sintesi. Dalla tavola della verità si ricavano tante funzioni di commutazione quante sono le variabili di uscita
CIRCUITI LOGICI COMBINATORI. Generalità Si parla di circuito logico combinatorio quando il valore dell uscita dipende in ogni istante soltanto dalla combinazione dei valori d ingresso. In logica combinatoria
Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)
Algebra di Boole Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole L algebra di Boole o della commutazione è lo strumento
Funzioni booleane. Vitoantonio Bevilacqua.
Funzioni booleane Vitoantonio Bevilacqua [email protected] Sommario. Il presente paragrafo si riferisce alle lezioni del corso di Fondamenti di Informatica e Laboratorio di Informatica dei giorni 9
I circuiti digitali: dalle funzioni logiche ai circuiti
Architettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi
Algebra di commutazione
Algebra di commutazione E un caso particolare di algebra booleana. B = Dominio Op1 = AND Vale 1 solo se entrambi gli operandi sono 1 Op2 = OR Vale 0 se entrambi I termini sono zero, altrimenti 1 Op3 =
Reti logiche: introduzione
Corso di Calcolatori Elettronici I Reti logiche: introduzione ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Circuiti e porte logiche Esempio di rete di commutazione: Circuiti e porte
Semplificazione delle funzioni logiche mediante le mappe K
Semplificazione delle funzioni logiche mediante le mappe K Le mappe di Karnaugh Le mappe di Karnaugh (o mappe K) servono a minimizzare una funzione booleana nel modo più semplice e soprattutto in modo
Esercitazioni di Reti Logiche
Esercitazioni di Reti Logiche Sintesi di Reti Combinatorie & Complementi sulle Reti Combinatorie Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico
Macchine sequenziali: minimizzazione degli stati
Corso di Calcolatori Elettronici I Macchine sequenziali: minimizzazione degli stati Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie
Semplificazione delle funzioni logiche mediante il metodo delle mappe di Karnaugh
Semplificazione delle funzioni logiche mediante il metodo delle mappe di Karnaugh (26-2-3) Stefano Porcarelli ISTI-NR, 5634 Pisa, Italy, [email protected] http://bonda.cnuce.cnr.it Le
Algebra di Boole X Y Z V. Algebra di Boole
L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole che
COMPITO A Esercizio 1 (13 punti) Dato il seguente automa:
COMPITO A Esercizio 1 (13 punti) Dato il seguente automa: 1/0 q8 1/0 q3 q1 1/0 q4 1/0 q7 1/1 q2 1/1 q6 1/1 1/1 q5 - minimizzare l automa usando la tabella triangolare - disegnare l automa minimo - progettare
Algebra di Boole Cenni all Algebra di Boole
Algebra di Boole Cenni all Algebra di Boole Introduzione Rappresentazione di una funzione combinatoria Proprietà dell algebra di commutazione Forme canoniche Teorema di espansione di Shannon Versione del
Esercitazioni di Reti Logiche. Lezione 4
Esercitazioni di Reti Logiche Lezione 4 Progettazione dei circuiti logici combinatori Zeynep KIZILTAN [email protected] Argomenti Procedura di analisi dei circuiti combinatori. Procedura di sintesi
Le mappe di Karnaugh
Le mappe di Karnaugh Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto più pratico di semplificazione che quello
Mappe di Karnaugh G. MARSELLA UNIVERSITÀ DEL SALENTO
Mappe di Karnaugh 1 G. MARSELLA UNIVERSITÀ DEL SALENTO Introduzione Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto
Dalla tabella alla funzione canonica
Dalla tabella alla funzione canonica La funzione canonica è la funzione logica associata alla tabella di verità del circuito che si vuole progettare. Essa è costituita da una somma di MinTerm con variabili
Esercizi di sintesi - Soluzioni
Esercizi di sintesi - Soluzioni Rappresentazioni possibili per una funzione logica: circuito logico: A B Y forma tabellare (tabella lookup): formula algebrica: A B Y 0 0 0 0 1 1 1 0 1 1 1 0 Y= (NOT A)B
Algebra di Boole Algebra di Boole
1 L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole
