Le mappe di Karnaugh
|
|
|
- Cosimo Capone
- 9 anni fa
- Visualizzazioni
Transcript
1 Le mappe di Karnaugh Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto più pratico di semplificazione che quello costituito dalle mappe di Karnaugh. Tale metodo di facile applicazione per funzioni di poche variabili, in genere fino ad un massimo di quattro o cinque, risulta alquanto difficoltoso se le variabili diventano numerose. In Figura 1 sono riportate le mappe di Karnaugh (di forma quadra o rettangolare) per funzioni di due, tre o quattro variabili. Figura 1. Mappe di Karnough Ogni mappa contiene tante caselle quante sono 2 n combinazioni delle n variabili della funzione logica. Caselle che hanno un lato in comune sono dette adiacenti. Debbono essere considerate adiacenti anche le caselle all'estremità di una riga o di una colonna, come se la mappa fosse disegnata su una superficie chiusa su se stessa. Sono caselle adiacenti, ad esempio, le caselle 0 e 8, 10 e 8, 5 e 7; non lo sono invece le caselle 4 e 13, 1 e 13 etc. Le caselle inoltre sono disposte in modo tale che passando da una qualsiasi ad una adiacente sulla stessa riga o sulla stessa colonna cambia di valore una sola variabile. Per rappresentare una funzione Y sulla mappa basta scrivere 1 nelle caselle corrispondenti alle combinazioni per le quali la funzione vale 1. Ad esempio se partiamo dalla seguente tabella di verita : A B C Y Volendo ottenere la funzione logica scrivendo la 1 forma canonica avremo: Y = A B C + A B C + A B C + A B C La mappa di Karnaugh corrispondente e la seguente: APPUNTI DI ELETTRONICA - MAPPE DI KARNAUGH - rel. 01/06 Prof. Domenico Di Stefano pag. 11
2 Figura 2. A B Si considerino ora le due caselle comprese nel rettangolo tratteggiato; esse corrispondono alle combinazioni 010 e 011 delle variabili A, B, C e quindi nell'espressione algebrica della funzione alla somma del secondo e terzo termine che vale: A B C + A B C = A B ( C + C ) = A B Il prodotto AB così ottenuto è evidenziato nella Figura 2 dal rettangolino che racchiude i due 1 adiacenti. I due fattori che lo compongono sono dati da quelle variabili (A,B) che non cambiano di valore (0,1) nelle due caselle del rettangolino. [ Questo prodotto può essere scritto direttamente dall'osservazione della mappa, assumendo come fattori le variabili che mantengono il loro valore, negando quelle a valore 0 e lasciando inalterate quelle a valore uno. ] Le considerazioni precedenti possono essere estese, riferendosi ancora alla figura2, al raggruppamento delle quattro caselle contigue dell'ultima riga ottenendo come risultato dei quattro 1 adiacenti il solo termine C. Infatti lungo tutta la riga la sola variabile che resta costante è la C (che non va poi negata perchè vale 1). Poichè tutti gli uno della mappa sono stati inclusi nei rettangoli tratteggiati, la somma dei termini corrispondenti a detti rettangolini dà come risultato l'espressione minima della funzione: Y = A B + C Tale risultato può essere raggiunto, come può essere facilmente verificato, applicando i teoremi dell'algebra di Boole. In generale, per funzioni logiche di n variabili si può dire che: Due 1 adiacenti rappresentano un prodotto di n-1 variabili. Quattro 1 adiacenti rappresentano un prodotto di n-2 variabili. Otto 1 adiacenti rappresentano un prodotto di n-3 variabili. Sedici 1 adiacenti rappresentano un prodotto di n-4 variabili. Etc... APPUNTI DI ELETTRONICA - MAPPE DI KARNAUGH - rel. 01/06 Prof. Domenico Di Stefano pag. 12
3 In definitiva per minimizzare una funzione logica mediante il metodo delle mappe di Karnaugh si opera nel modo seguente: 1. Si rappresenta la mappa a partire dalla tabella di verita ; 2. Si localizzano sulla mappa i più grandi raggruppamenti possibili di 1 adiacenti che formano potenze del 2; 3. Si sceglie il numero minimo di raggruppamenti che copre tutti gli 1 della mappa tenendo conto che eventuali termini isolati debbono essere riportati integralmente. Esempio 1 Realizzare lo schema logico che soddisfa la seguente tabella di verità: Figura 3. La forma canonica della somma vale: A B C Y Y = A B C + A B C + A B C + A B C+ A B C e la rappresentazione della funzione sulla mappa di Karnaugh è la seguente: Figura 4. Dall'esame della Figura 4 si può notare che sono possibili due diversi raggruppamenti di 1 adiacenti (Figura 5 a,b) a cui corrispondono due diverse espressioni APPUNTI DI ELETTRONICA - MAPPE DI KARNAUGH - rel. 01/06 Prof. Domenico Di Stefano pag. 13
4 Figura 5. Y a = A B + A C + A B Y b = A B + A B + B C (Si potrebbe anche notare che A B + A B rappresenta la funzione XOR fra A e B) Alle due espressioni di Y a e Y b, entrambe minime, corrispondono gli schemi logici di Figura 6 e Figura 7, rispettivamente: APPUNTI DI ELETTRONICA - MAPPE DI KARNAUGH - rel. 01/06 Prof. Domenico Di Stefano pag. 14
5 Può essere facilmente verificato che i due circuiti precedenti soddisfano alla medesima tabella della verità e quindi realizzano la stessa funzione logica pur partendo da espressioni diverse. Esempio 2 Determinazione delle funzioni minime della mappa di Karnaugh di Figura 8 e realizzazione dello schema logico corrispondente: Figura 8. Figura 9. I raggruppamenti sono indicati in Figura 9. La funzione minima vale: Y = B C + C D + A B D + A B C D APPUNTI DI ELETTRONICA - MAPPE DI KARNAUGH - rel. 01/06 Prof. Domenico Di Stefano pag. 15
6 Lo schema che la realizza è quello di Figura 10. Figura 10. Mappe di Karnaugh per più di quattro variabili Le mappe di Karnaugh per più di quattro variabili binarie devono essere costruite sempre rispettando la regola che nel passaggio da una casella a quella adiacente sulla stessa riga o sulla stessa colonna deve cambiare una sola variabile. Per quanto riguarda la semplificazione di una funzione a cinque variabili essa può, essere fatta mediante due mappe di Karnaugh da 16. Le adiacenze possono essere ben localizzate pensando di sovrapporre le due mappe e considerando adiacenti le caselle che si corrispondono verticalmente. APPUNTI DI ELETTRONICA - MAPPE DI KARNAUGH - rel. 01/06 Prof. Domenico Di Stefano pag. 16
7 Figura 11. Esempio 3 una tabella di verita con 5 variabili di entrata ha portato alla seguente funzione rappresentante la 1 forma canonica: Y = ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE + ABCDE La mappa di Karnaugh corrispondente è rappresentata in Figura 12. Figura 12. Ne segue che: Y = A C E + B C E + A B C D APPUNTI DI ELETTRONICA - MAPPE DI KARNAUGH - rel. 01/06 Prof. Domenico Di Stefano pag. 17
8 Naturalmente all'aumentare del numero delle variabili della funzione da minimizzare aumenta il numero di caselle della mappa di Karnaugh corrispondente e di conseguenza anche la difficoltà dell'operatore nella ricerca di più ampi raggruppamenti possibili in ragione di 2 n. In realtà quando il numero delle variabili binarie risulta maggiore di cinque è preferibile passare ad altri sistemi di minimizzazione come per esempio quello di Quine Mc-Cluskey. Condizioni di indifferenza Accade, a volte, che il valore dell'uscita di un'assegnata tabella di verità non venga specificato per alcune combinazioni delle variabili d'ingresso, o perchè queste combinazioni non possono verificarsi oppure perchè più in generale, non interessa conoscere i valori dell'uscita corrispondenti a tali combinazioni. Si parla così di condizioni di indifferenza. In questa situazione l'uscita, che può assumere indifferentemente il valore 0 o 1, viene riportata sulla mappa di Karnaugh con il simbolo "-", simbolo quest'ultimo derivato dalla sovrapposizione di 0 e 1. Le condizioni di indiffernza possono essere sfruttate al fine di semplificare la funzione logica assegnando il valore 1 quando ciò è conveniente. Esempio 4 Determinazione della funzione minima e realizzazione dello schema logico corrispondente alla tabella della verità di Figura 13. Figura 13. A B C Y La mappa di Karnaugh relativa alla tabella data è la seguente: Figura 14. Assumendo la condizione di indifferenza localizzata nel raggruppamento come 1 e le altre come 0, la funzione minima vale: Y = B APPUNTI DI ELETTRONICA - MAPPE DI KARNAUGH - rel. 01/06 Prof. Domenico Di Stefano pag. 18
Mappe di Karnaugh G. MARSELLA UNIVERSITÀ DEL SALENTO
Mappe di Karnaugh 1 G. MARSELLA UNIVERSITÀ DEL SALENTO Introduzione Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto
Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!
Fondamenti di Informatica Algebra di Boole Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2-22 Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR () NOT (!) Gli operandi
Dalla tabella alla funzione canonica
Dalla tabella alla funzione canonica La funzione canonica è la funzione logica associata alla tabella di verità del circuito che si vuole progettare. Essa è costituita da una somma di MinTerm con variabili
PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1.
PORTE LOGICHE Premessa Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali dei
Algebra di Boole X Y Z V. Algebra di Boole
L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole che
Algebra Booleana, Funzioni Logiche e Circuiti Logici
Algebra Booleana, Funzioni Logiche e Circuiti Logici Esercizio 1 Si scriva, utilizzando gli operatori booleani AND, OR, NOT, la funzione booleana che riceve in ingresso un numero binario puro su 3 bit
Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)
Algebra di Boole Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole L algebra di Boole o della commutazione è lo strumento
Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche
Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche Ing. Gestionale e delle Telecomunicazioni A.A. 27/8 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali digitali vs. segnali analogici
Algebra di Boole Algebra di Boole
1 L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole
Sistemi Combinatori & Mappe di Karnaugh
Sistemi Combinatori & Mappe di Karnaugh AB E=0 F=0 E=1 F=0 00 01 11 10 AB 00 01 11 10 00 1 0 0 0 00 0 0 0 0 01 0 0 0 0 01 0 0 0 0 11 0 0 1 0 11 0 0 1 0 10 0 0 0 1 10 0 0 0 1 AB 00 01 11 10 AB 00 01 11
Funzioni booleane. Vitoantonio Bevilacqua.
Funzioni booleane Vitoantonio Bevilacqua [email protected] Sommario. Il presente paragrafo si riferisce alle lezioni del corso di Fondamenti di Informatica e Laboratorio di Informatica dei giorni 9
Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono:
Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: Connettivi logici True (vero identificato con 1) False (falso identificato con 0) Le variabili
Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole
Andrea Passerini [email protected] Informatica Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: True (vero identificato con 1) False (falso
Esercitazioni di Architettura degli Elaboratori - I (Espressioni Booleane / Circuiti Logici)
Esercitazioni di Architettura degli Elaboratori - I (Espressioni Booleane / ircuiti Logici) Giorgio Bacci A.A. 2010/2011 1 Espressioni Booleane Un espressione booleana (o formula booleana) φ su variabili
Corso di Calcolatori Elettronici I
Corso di Calcolatori Elettronici I Algebra di Boole: minimizzazione di funzioni booleane Roberto Canonico Università degli Studi di Napoli Federico II A.A. 2014-2015 Roberto Canonico Corso di Calcolatori
Reti Combinatorie: sintesi
Reti Combinatorie: sintesi Sintesi di reti combinatorie Una rete combinatoria realizza una funzione di commutazione Data una tabella di verità è possibile ricavare più espressioni equivalenti che la rappresentano.
Algebra di Boole: minimizzazione di funzioni booleane
Corso di Calcolatori Elettronici I A.A. 200-20 Algebra di Boole: minimizzazione di funzioni booleane Lezione 8 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Forme Ridotte p Vantaggi
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
ESERCIZI DEL CORSO DI INFORMATICA
ESERCIZI DEL CORSO DI INFORMTIC Questa breve raccolta di esercizi vuole mettere in luce alcuni aspetti della prima parte del corso e fornire qualche spunto di riflessione. Il contenuto del materiale seguente
Richiami di Algebra di Commutazione
LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n Prof. Rosario Cerbone [email protected] http://digilander.libero.it/rosario.cerbone a.a. 6-7 Richiami di Algebra di Commutazione In questa
Metodo di Quine- McCluskey
Metodo di Quine- McCluskey Maurizio Palesi Maurizio Palesi Definizioni Date due funzioni f(x,x 2,,x n ) e g(x,x 2,,x n ) si dice che f copre g (oppure g implica f) e si scrive f g se f(x,x 2,,x n )= quando
Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR
Corso di Calcolatori Elettronici I A.A. 2010-2011 Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR Lezione 7 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Funzioni Equivalenza
COMPITO A Esercizio 1 (13 punti) Dato il seguente automa:
COMPITO A Esercizio 1 (13 punti) Dato il seguente automa: 1/0 q8 1/0 q3 q1 1/0 q4 1/0 q7 1/1 q2 1/1 q6 1/1 1/1 q5 - minimizzare l automa usando la tabella triangolare - disegnare l automa minimo - progettare
Algebra di Boole e circuiti logici
lgebra di oole e circuiti logici Progetto Lauree Scientiiche 29 Dipartimento di Fisica Università di Genova Laboratorio di Fisica in collaborazione con il Liceo Scientiico Leonardo da Vinci Genova - 23
Corso E Docente: Siniscalchi. Algebra di Boole
Corso E Docente: Siniscalchi Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo scopo di descrivere
A.A. 2003/2004 Esercizi di Reti Logiche A
A.A. 2003/2004 Esercizi di Reti Logiche A A cura di F. Ferrandi, C. Silvano Ultimo aggiornamento, 11 novembre 2003 Questi appunti sono stati possibili anche per il lavoro fatto da alcuni studenti del corso
Sistemi di numerazione
Sistemi di numerazione Sistema di numerazione decimale Sapete già che il problema fondamentale della numerazione consiste nel rappresentare con un limitato numero di segni particolari, detti cifre, tutti
Calcolatori Elettronici
Calcolatori Elettronici Lezione 11 -- 19/1/2012 Reti Logiche: esercizi sulle le reti combinatorie Emiliano Casalicchio [email protected] Argomenti della lezione Reti combinatorie Decoder,
Algebra di Boole Elementi di Informatica - Algebra di Boole 1 A. Valenzano
Algebra di Boole Elementi di Informatica - Algebra di Boole 1 A. Valenano 1996-2002 Sommario Variabili e funioni booleane Tabelle di verità Operatori booleani Espressioni booleane Teoremi fondamentali
Sintesi di Espressioni Booleane
MIXAGGI POCO FLUIDIISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY Sintesi di Espressioni Booleane Prof. G. Ciaschetti. Definizioni preliminari Nella vita di tutti giorni, troviamo spesso le parole analisi e sintesi.
Esercizi svolti Y Z. 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari AND, OR, NOT.
Esercizi svolti 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari ND, OR, NOT. a) F= b) F= F= 2. Date le seguenti funzioni logiche ricavare le
Maurizio Palesi. Maurizio Palesi 1
Mappe di Karnaugh Maurizio Palesi Maurizio Palesi 1 Obiettivi Trovare una espressione in forma SP o PS minima rispetto a certi criteri di costo Nella ottimizzazione delle espressioni SP (PS) a due livelli
FUNZIONI BOOLEANE. Vero Falso
FUNZIONI BOOLEANE Le funzioni booleane prendono il nome da Boole, un matematico che introdusse un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono
Algebra di Boole Esercizi risolti
Esercizi risolti 1 Esercizio Verificare mediante i teoremi fondamentali dell algebra di Boole o mediante induzione completa se per l operatore XOR vale la proprietà distributiva: a (b + c) = (a b)+(a c)
Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA
Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori
Algebra di Boole: mappe di Karnaugh
Corso di Calcolatori Elettronici I A.A. 2012-2013 Algebra di Boole: mappe di Karnaugh Pro. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie
Algebra & Circuiti Elettronici. Algebra booleana e circuiti logici. Blocco logico. Tabelle di Verità e Algebra Booleana
lgebra & Circuiti Elettronici lgebra booleana e circuiti logici Salvatore Orlando I computer operano con segnali elettrici con valori di potenziale discreti sono considerati significativi soltanto due
Esercizi di Algebra di Boole (con Appendice)
Esercizi di Algebra di Boole (con Appendice) Esercizio Esprimere in forma simbolica la seguente proposizione logica: il passaggio di un astronauta da una nave di servizio ad un satellite artificiale è
Appunti dal corso di Tecnologia dei Sistemi di Controllo Algebra booleana
Percorsi Abilitanti Speciali A.A. 2013/2014 AUTOMAZIONE E CONTROLLO DI DISPOSITIVI BASATI SU MICROCONTROLLORE classe abilitazione C320 LABORATORIO MECCANICO TECNOLOGICO Appunti dal corso di Tecnologia
Fondamenti di Informatica
Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra
Tecniche di Progettazione Digitale. Reti combinatorie: Le mappe di Karnaugh
Tecniche di Progettazione Digitale Reti cominatorie: Le mappe di Karnaugh Valentino Lierali Mappe di Karnaugh (1) Una unzione ooleana di n it ha come dominio l insieme costituito da tutte le possiili n-ple
Elementi di informatica
Elementi di informatica Algebra di Boole Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo
Lezione 5. Sommario. La logica booleana. I principi della logica booleana Gli operatori logici
Lezione 5 La logica booleana Sommario I principi della logica booleana Gli operatori logici 1 Variabili Booleane Variabile booleana=quantità che può assumere solo due valori I due valori hanno il significato
Prova d esame di Reti Logiche T 10 Giugno 2016
Prova d esame di Reti Logiche T 10 Giugno 2016 COGNOME:.. NOME:.. MATRICOLA: Si ricorda il divieto di utilizzare qualsiasi dispositivo elettronico (computer, tablet, smartphone,..) eccetto la calcolatrice,
Esercitazioni di Reti Logiche
Esercitazioni di Reti Logiche Sintesi di Reti Sequenziali Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico 2007/2008 Sintesi dei circuiti sequenziali
Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi
Codice BCD Prima di passare alla rappresentazione dei numeri relativi in binario vediamo un tipo di codifica che ha una certa rilevanza in alcune applicazioni: il codice BCD (Binary Coded Decimal). È un
I.3 Porte Logiche. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica
I.3 Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti 1 2 3 Elaboratore Hardware È il mezzo con il quale l informazione è elaborata. Software
Esercitazioni di Reti Logiche. Lezione 4
Esercitazioni di Reti Logiche Lezione 4 Progettazione dei circuiti logici combinatori Zeynep KIZILTAN [email protected] Argomenti Procedura di analisi dei circuiti combinatori. Procedura di sintesi
Porte logiche A=0 A=1
Porte logiche Le Porte logiche sono circuiti combinatori che svolgono funzioni elementari e costituiscono i blocchi fondamentali su cui si basa l Elettronica digitale. Le principali porte sono la ND, la
Circuiti di commutazione, codifica e decodifica
Circuiti di commutazione, codifica e decodifica Vediamo ora i più comuni circuiti per la codifica, decodifica e commutazione di informazioni rappresentate sotto forma binaria. Tali circuiti costituiscono
PROGETTO E VERIFICA DI CIRCUITI LOGICI COMBINATORI IMPLEMENTATI CON SOLE PORTE NAND.
PROGETTO E VERIFICA DI CIRCUITI LOGICI COMBINATORI IMPLEMENTATI CON SOLE PORTE NAND. I CIRCUITO Si vuole realizzare il circuito logico della funzione logica rappresentata nella tabella di verità di seguito
Analisi delle corrispondenze
Capitolo 11 Analisi delle corrispondenze L obiettivo dell analisi delle corrispondenze, i cui primi sviluppi risalgono alla metà degli anni 60 in Francia ad opera di JP Benzécri e la sua equipe, è quello
Algebra di commutazione
Algebra di commutazione E un caso particolare di algebra booleana. B = Dominio Op1 = AND Vale 1 solo se entrambi gli operandi sono 1 Op2 = OR Vale 0 se entrambi I termini sono zero, altrimenti 1 Op3 =
LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE. (Prof. Daniele Baldissin)
LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE (Prof. Daniele Baldissin) L'uomo usa normalmente il sistema di numerazione decimale, probabilmente perché ha dieci dita. Il sistema decimale è collegato direttamente
Architettura degli Elaboratori
Algebra booleana e circuiti logici slide a cura di Salvatore Orlando, Andrea Torsello, Marta Simeoni Algebra & Circuiti Elettronici I computer operano con segnali elettrici con valori di potenziale discreti!
LATCH E FLIP-FLOP PREMESSA
LATCH E FLIP-FLOP PREMESSA I latch e i flip flop sono circuiti digitali sequenziali che hanno il compito di memorizzare un bit. Un circuito digitale si dice sequenziale se l'uscita dipende dagli ingressi
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
TETR RAPYRAMIS. di Alberto Fabris. organizza il. 3 CAMPIONATOO STUDENTESCO DI GIOCHII LOGICI per l anno scolastico
TETR RAPYRAMIS di Alberto Fabris organizza il CAMPIONATOO STUDENTESCO DI GIOCHII LOGICI per l anno scolastico 015-16 Regolamento delle gare individuali A ciascun concorrente verrà consegnato un testo cartaceo
TETRAPYRAMIS. di Alberto Fabris. organizza il 3 CAMPIONATOO STUDENTESCO DI GIOCHII LOGICI. per l anno scolastico
TETRAPYRAMIS di Alberto Fabris organizza il 3 CAMPIONATOO STUDENTESCO DI GIOCHII LOGICI per l anno scolastico 2015-16 Regolamento delle gare a squadre Biancaneve e i sette nani Ad ogni squadra verrà consegnata
Esercitazioni di Reti Logiche. Algebra Booleana e Porte Logiche
Esercitazioni di Reti Logiche Algebra Booleana e Porte Logiche Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico 2007/2008 Notizie Il primo parziale
La rivista di giochi logici. Amico Logico. organizza il. 2 CAMPIONATO STUDENTESCO DI GIOCHI LOGICI per l anno scolastico
La rivista di giochi logici Amico Logico organizza il 2 CAMPIONATO STUDENTESCO DI GIOCHI LOGICI per l anno scolastico 2014-15 Regolamento della gara individuale per gli studenti delle scuole superiori
Teorema di Thevenin generalizzato
Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui
Reti logiche: introduzione
Corso di Calcolatori Elettronici I Reti logiche: introduzione ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Circuiti e porte logiche Esempio di rete di commutazione: Circuiti e porte
UNITÀ DIDATTICA 5 LA RETTA
UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme
Le mappe di Karnaugh
SSIS Veneto Scuola di Specializzazione per l Insegnamento Secondario Indirizzo Tecnologico Ciclo: IX A.A. 28/29 TESI FINALE DI SPECIALIZZAZIONE CLASSE DI CONCORSO A34 Relatore: Prof. Luca Bottazzo SVT:
Numeri interi (+/-) Alfabeto binario. Modulo e segno
Numeri interi (+/-) Alfabeto binario il segno è rappresentato da 0 (+) oppure 1 (-) è indispensabile indicare il numero k di bit utilizzati Modulo e segno 1 bit di segno (0 positivo, 1 negativo) k 1 bit
Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012
Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 Sommario Rappresentazione dei numeri naturali (N) Rappresentazione dei numeri interi (Z) Modulo e segno In complemento a 2 Operazioni aritmetiche
Codice Gray. (versione Marzo 2007)
Codice Gray (versione Marzo 27) Data una formula booleana con n variabili, per costruire una tavola di verità per questa formula è necessario generare tutte le combinazioni di valori per le n variabili.
I CONTATORI. Definizioni
I CONTATORI Definizioni. I contatori sono dispositivi costituiti da uno o più flip-flop collegati fra loro in modo da effettuare il conteggio di impulsi applicati in ingresso. In pratica, i flip-flop,
1 Il metodo dei tagli di Gomory
Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare
LATCH E FLIP-FLOP PREMESSA
LATCH E FLIP-FLOP PREMESSA I latch e i flip flop sono circuiti digitali sequenziali che hanno il compito di memorizzare un bit. Un circuito digitale si dice sequenziale se l'uscita dipende dagli ingressi
OPERAZIONI IN Q = + = = = =
OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione
I Indice. Prefazione. Capitolo 1 Introduzione 1
I Indice Prefazione xi Capitolo 1 Introduzione 1 Capitolo 2 Algebra di Boole e di commutazione 7 2.1 Algebra di Boole.......................... 7 2.1.1 Proprietà dell algebra.................... 9 2.2
1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):
. equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale
Kangourou Italia Gara del 17 marzo 2005 Categoria Junior Per studenti di seconda o terza superiore
junior_05_d.qxp 21/02/2005 16.13 Pagina 22 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di seconda o terza superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. A Kangourou
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
Algebra di Boole e porte logiche
Algebra di Boole e porte logiche Dott.ssa Isabella D'Alba Corso PENTEST MIND PROJECT 2016 Algebra di Boole e porte logiche (I parte) Algebra di Boole I Sistemi di Numerazione (Posizionali, Non posizionali)
Esercitazioni di Reti Logiche. Lezione 5
Esercitazioni di Reti Logiche Lezione 5 Circuiti Sequenziali Zeynep KIZILTAN [email protected] Argomenti Circuiti sequenziali Flip-flop D, JK Analisi dei circuiti sequenziali Progettazione dei circuiti
SOLUZIONI. u u In un quadrato magico sommando gli elementi di una riga, di una
1 a GARA MATEMATICA CITTÀ DI PADOVA 2 Aprile 2016 SOLUZIONI 1.- Sia n un numero intero. È vero che se la penultima cifra di n 2 è dispari allora l ultima è 6? Possiamo supporre n positivo. Sia : n = 100c
Semplificare la seguenti espressioni: a) [(A+ A)*(B*B)]+(A XOR A) + ( B XOR F) Soluzione: [ V * B ] + F + B B + B V
Esercizio 1 Semplificare le seguenti espressioni booleane, qualora il risultato finale sia DIVERSO da V, F, A, B, C, ma sia qualcosa di più complesso del tipo A+B, A xor B disegnare la tabella di verità
