Teorema di Thevenin generalizzato
|
|
|
- Alfredo Poggi
- 9 anni fa
- Visualizzazioni
Transcript
1 Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui scorrono le correnti I AB. Rete A lineare n-1 I AB (1) I AB (2) I AB (n-1) Rete B lineare n I AB (n) Figura 1 In primo luogo si risolva il problema quando i morsetti si collegamento sono aperti (I AB (i)=0, i=1 n). Si applica il metodo dei potenziali di nodo alle due reti indipendenti: (1) G A e G B sono le matrici delle conduttanze di nodo delle due reti, aventi dimensioni (N A,N A ) e (N B,N B ). V A (N A,1) e V B (N B,1) sono i vettori delle tensioni di nodo, ovvero le incognite del sistema. I A (N A,1) e I B (N B,1) sono i vettori noti delle correnti impresse di nodo.
2 Si consideri ora il caso in cui le due reti sono collegate. Le equazioni (1) dovranno essere corrette per considerare anche i valori I AB (i) 0: (2) C A (N A,n) e C B (N B,n) sono le matrici di incidenza delle due reti rispetto agli n lati di collegamento: ( ) ( ) ( ) (3) ( ) ( ) Dal momento che gli n nodi sono un sottoinsieme degli N A nodi della rete A e degli N B nodi della rete B, allora deve valere una legge di continuità per i potenziali negli n nodi: Si costruisce un unico sistema di equazioni, comprendente le (2) e le (4). Le matrici si modificano nel seguente modo: Il vettore delle incognite [ ] Il vettore dei termini noti: [ ] La matrice a blocchi dei coefficienti: [ ] ( ) (4)
3 L obiettivo consiste ora nel semplificare la risoluzione del sistema, sfruttandone la seguente proprietà: il numero dei fili di collegamento, e quindi degli n nodi, è molto inferiore rispetto al numero dei nodi delle due reti. Si cerca un multipolo di nodi in sostituzione della rete A che sia equivalente ad essa ai morsetti di interfaccia, lasciando inalterata la rete B. Sotto queste ipotesi le equazioni (2) e (4) diventano: (5) (6) Considerando che deve valere l equivalenza ai morsetti di interfaccia, anche la seguente equazione deve essere verificata: (7) Il multipolo di ordine minimo avrà nodi, ovvero si suppone che il multipolo non abbia nodi interni. n-polo 1 2 I AB (1) Rete B lineare n I AB (n) In questo caso la matrice di incidenza coincide con la matrice identità (n,n): Il nuovo sistema di equazioni che si ottiene è il seguente: ( ) (8)
4 [ ] [ ] [ ] (9) Le incognite sono diventate valgono le disuguaglianze (5)., meno rispetto al caso precedente perché Il problema consiste nel definire la matrice e il vettore relativi al multipolo. Si sviluppi la prima equazione del sistema (9), sfruttando la (7): ( ) Si sfrutti ora la prima delle (2) in cui si è esplicitato V A : ( ) Si ottiene: (10) In questa equazione si separano i termini contenenti le correnti I AB : { (11) Ricordando che, dalla prima espressione si arriva a questo risultato: Di conseguenza si ricava anche l altra incognita: Assumendo (12) e (13), il sistema (9) è risolvibile. ( ) (12) (13) In questo modo la rete A è stata sostituita da un multipolo equivalente, rappresentato dalla due matrici e. Tuttavia, il problema che si pone ora è di tipo computazionale e riguarda il calcolo dell inversa della matrice G A in (12) e (13). Dal momento che si vuole evitare il calcolo esplicito dell inversa, si può seguire il procedimento seguente. Primo passo: morsetti aperti
5 Per prima cosa si valuti il sistema originario (2) quando gli n morsetti di interfaccia non sono collegati. Questo significa forzare la condizione ( ) Si ottiene: Allora, formalmente, si ha : (14) In pratica il sistema si risolve per fattorizzazione della matrice G A. La (14) si sostituisce nella (13) per ricavare la corrente, una volta che sia nota. Secondo passo: rete A resa passiva Per ottenere l inversa della matrice delle conduttanze per la rete A, si annullano le forzanti I A e si impongono le correnti dei fili di collegamento. In particolare, si lasciano n-1 morsetti aperti e si forza una corrente unitaria nel filo restante (fig.2) I AB (1)=0 Rete A I AB (k-1)=0 I AB (k)=1 I AB (k+1)=0 I AB (n)=0 Figura 2 Questo procedimento deve essere iterato per tutti i morsetti di interfaccia:
6 { ( ) ( ) (15) Ad ogni iterazione, risolvendo la prima delle equazioni (2), si ottiene un vettore V A. Si uniscano i vettori colonna delle correnti impresse I AB in una matrice che, come si deduce dalle (15), è la matrice identità: ( ) Infatti, alla prima iterazione si ha: ( ) [ ] Dato che tutte le correnti sono nulle tranne quella nel primo filo di interfaccia. Se si fa lo stesso con i corrispondenti vettori soluzione V A (i) si ottiene una matrice. Ma allora, ricordando la (2), ottiene: (16) Questo risultato può quindi essere sostituito nella (12), ricavando la matrice mancante: ( ) (17) Questa resta l unica inversa da calcolare, essa è però ha dimensione relativamente ridotta, (n,n), quindi è facile calcolarla. In una procedura di ottimizzazione basata su un analisi di campo, si può suddividere la regione oggetto di studio in due parti (corrispettivi delle reti A e B) che comunicano tramite n nodi (corrispondenti agli n morsetti). Un analisi ripetuta può essere limitata ad una sola sottoregione, in cui sono circoscritte le variabili del problema di ottimo. Le matrici delle conduttanze di nodo saranno sostituite dalle corrispondenti matrici di rigidezza di un analisi ad elementi finiti.
7 Calcolo di V B Si voglia ottenere un espressione analitica per il vettore delle tensioni di nodo per la rete B. Anche ora, si vuole evitare di calcolare l inversa della matrice delle conduttanze. Infatti, il calcolo dell inversa ha un elevato costo computazionale e può introdurre errori di approssimazione inaccettabili. Si usa la seconda delle equazioni (2) e la prima delle equazioni (6) La matrice (8). non compare più esplicitamente perché si è applicata la condizione Sviluppando i calcoli si ottiene: ( ) Ricordando che vale la continuità delle tensioni ai morsetti di collegamento ( ), si può scrivere: Da cui risulta: ( ) ( ) (18) Il secondo addendo del coefficiente moltiplicativo di V B e del termine noto possono essere considerati come termini di correzione introdotti dal multipolo di Thevenin che sostituisce la rete A. La matrice G A è sparsa mentre la matrice è piena. Questo significa che l occupazione in memoria sarà maggiore. Allo stesso tempo il numero di condizionamento della seconda matrice è maggiore di quello della prima. Tuttavia e vengono calcolate una sola volta e quindi la semplificazione dovuta al ridotto numero di incognite (da N A +N B a 2n+N B ) compensano questi svantaggi, particolarmente nell ambito di analisi ripetute.
8
Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001
Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti
Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo
Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:
7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari
7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,
Il metodo di Galerkin Elementi Finiti Lineari
Il metodo di Galerkin Elementi Finiti Lineari Si consideri il problema: u(x) = f(x), x (, ), u() = 0, u() = 0. Se ne fornisca la corrispondente formulazione debole. Si costruiscano inoltre la matrice di
Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1
2 nalisi delle reti sercitazioni aggiuntive sercizio 2 Calcolare la tensione ai capi e del seguente circuito, applicando il teorema di Millman: 0 [v] [] [] 0 [Ω] 2 20 [Ω] saminando il circuito si osserva,
Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli
Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:
Analisi di Reti in Regime Stazionario
nalisi di eti in egime Stazionario Data una rete con l elementi bipolari, identifico un sistema di l tensioni e l correnti descrittive (ad ex, usando la.u.). l incognite Le l incognite devono soddisfare:
Esercitazione 5: Sistemi a risoluzione immediata.
Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del
RETI LINEARI R 3 I 3 R 2 I 4
RETI LINERI 1 Leggi di Kirchoff. Metodo delle correnti di maglia R 1 R 3 I 1 I 3 E 1 J 1 J 2 J 3 I 2 I 4 R 4 I 5 R 5 I 6 R 6 J 4 R 7 Il calcolo delle correnti e delle differenze di potenziale in un circuito
Problema. Sistemi lineari. Problema. Problema. Quali sono i potenziali in ogni nodo? Leggi di Kirkoff e di Ohm:
Problema 4 Ω 3 3 Ω 2 2 Ω 40 V Sistemi lineari 2 Ω Ω 2 Ω Ω 5 6 7 8 Ω 4 Ω Ω 0 V Quali sono i potenziali in ogni nodo? 2 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 2 Ω Ω 2 Ω Ω 2 Ω Ω 2 Ω Ω
Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio
Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una
LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a
LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque
Chi non risolve esercizi non impara la matematica.
5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi
8 Metodi iterativi per la risoluzione di sistemi lineari
8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,
Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale
Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque
CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI
CONSIGLI PER L RISOLUZIONE DEI CIRCUITI ELETTRICI In questa lezione lo scopo è quello di mostrare che, con i principi e i teoremi proposti, si possono ottenere i risultati richiesti. Per mostrare l efficacia
Trasformazione elementari di Givens
Trasformazione elementari di Givens dove Osservazione Esprime una rotazione di ampiezza ϕ Esempio (n=2) Osservazione Rotazione nel senso positivo degli archi In generale Il prodotto matrice vettore equivale
Metodi di Iterazione Funzionale
Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione
Esercizi sui circuiti in fase transitoria
Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario
4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α
Esame di Teoria dei Circuiti 4 Luglio 202 () Esercizio I R R I R3 R 3 I 2 V αi R V 4 I 4 βi R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 0 Ω R R 3 kω, 5 kω,, α /2, β 2, V
Il modello duale. Capitolo settimo. Introduzione
Capitolo settimo Il modello duale Introduzione Il modello duale e la teoria della dualità assumono una grande importanza nella teoria della programmazione matematica. In questo testo i modelli primale
ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1
ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
Le equazioni. 2x 3 = x + 1. Definizione e caratteristiche
1 Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche, che è verificata solo per particolari valori che vengono attribuiti alle variabili. L espressione che si
Prerequisiti didattici
Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 1 aprile 2015 Appunti di didattica della matematica applicata
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema
Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari
Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema
Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie.
Esercizio Classe ª Elettronici Materia Elettrotecnica Argomento Reti elettriche Nel circuito di figura, utilizzando il teorema di Thevenin attraverso riduzioni successive, determinare la tensione ai capi
Esercizi sui circuiti in fase transitoria
Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un
G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3
CAPITOLO 3 Analisi delle reti resistive Paragrafi da 3.2 a 3.4: Analisi ai nodi e alle maglie Problema 3.1 Correnti di maglia: Correnti di lato in Fissa una direzione per la corrente in R 1 (ad esempio
Corso di Calcolo Numerico
Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni
Corso di Matematica per la Chimica
Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il
METODO DEGLI ELEMENTI FINITI
Introduzione al METODO DEGLI ELEMENTI FINITI Osservazioni sui metodi variazionali approssimati classici Le funzioni approssimanti devono: Soddisfare i requisiti di continuità Essere linearmente indipendenti
Lez.22 Circuiti dinamici di ordine due. 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 22 Pagina 1
Lez.22 Circuiti dinamici di ordine due. 2 Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 22 Pagina 1 Equazioni di stato L analisi dei circuiti dinamici tramite
5 - Reti di bipoli generici
rincipio di equivalenza lettrotecnica 5 - eti di bipoli generici Due n-poli sono equivalenti se: 1) sono dotati dello stesso numero di morsetti, cosicché questi possono essere messi a due a due in corrispondenza;
Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)
Esame di Teoria dei Circuiti - 6 luglio 009 Soluzione) Esercizio 1 C T V C T 1 Con riferimento al circuito di figura si assumano i seguenti valori: r 1kΩ, C 1µF 10 6 F, 4V, ma. Per t < t 0 0sec l interruttore
D. METODI DI ANALISI CIRCUITALE
D. METODI DI ANALISI CIRCUITALE Generalità (problema fondamentale della Teoria dei Circuiti) Schema concettuale dell analisi circuitale Metodo basato sui Tagli (equilibrio delle correnti) Metodo dei Nodi
Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -
Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che
Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan
Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni
Le lettere x, y, z rappresentano i segnali nei vari rami.
Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,
5.12 Applicazioni ed esercizi
138 5.12 pplicazioni ed esercizi pplicazione 1 1. Trovare il numero dei nodi e dei rami nel circuito in figura. 1 2 3 H 4 C D E 8 G 7 F 6 5 punti 1 e 2 costituiscono un unico nodo; lo stesso per i punti
Analisi reti lineari
nalisi reti lineari isolvere una rete vuol dire trovare le correnti circolanti, una volta nota la configurazione topologica della stessa rete e le caratteristiche degli aelementi passivi( e attivi (gen.
SISTEMI LINEARI, METODO DI GAUSS
SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti
Risoluzione di sistemi lineari sparsi e di grandi dimensioni
Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica
ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea)
ESERCIZIO n. 1 - Scelte di consumo (scelta ottimale, variazione di prezzo, variazione di reddito) Un consumatore ha preferenze rappresentate dalla seguente funzione di utilità: a) Determinare la scelta
Teoremi dei circuiti elettrici
Università degli Studi di Pavia Facoltà di Ingegneria Corso di Teoria dei Circuiti Elettrotecnica Teoremi dei circuiti elettrici Conseguenza di KCL, KVL e della unicità della soluzione di un circuito lineare
Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari
Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le
Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti
Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected]
Il teorema dei lavori virtuali applicato alle strutture
8 Il teorema dei lavori virtuali applicato alle strutture Tema 8.1 Si consideri la struttura riportata in figura 8.1. Si determini la componente di spostamento v S per la sezione S indicata, utilizzando
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE
LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE Partitore di tensione 2 legge kirkoff Partitore di corrente 1 legge kirkoff Principio di sovrapposizione degli effetti Legge di Thevenin Legge di
Il Teorema dei Lavori Virtuali Applicato alle Strutture
Il Teorema dei Lavori Virtuali Applicato alle Strutture Tema 1 Si consideri la struttura riportata in figura 1. Si determini la componente di spostamento v S per la sezione S indicata, utilizzando il teorema
1 Il polinomio minimo.
Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene
Analisi di Reti in Regime Stazionario
nalisi di eti in egime Stazionario ata una rete con l elementi bipolari, identifico un sistema di l tensioni e l correnti descrittive (ad ex, usando la.u.). l incognite Le l incognite devono soddisfare:
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
Dipendenza e indipendenza lineare
Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus
ALGEBRA I: SOLUZIONI TERZA ESERCITAZIONE 11 aprile 2011
ALGEBRA I: SOLUZIONI TERZA ESERCITAZIONE 11 aprile 2011 Esercizio 1. Siano m e n due numeri interi positivi tali che m + n è un numero primo. Mostrare che m e n sono coprimi. Soluzione. Sia d = (m, n)
Anno 2. Risoluzione di sistemi di primo grado in due incognite
Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione
Osservatore di Luenberger
1 Osservatore di Luenberger In queste note verrà presentato l osservatore di Luenberger, uno stimatore dello stato per sistemi lineari. Si farà il caso di sistemi dinamici tempo-continui e tempo-discreti.
