CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI
|
|
|
- Vittore Volpe
- 9 anni fa
- Visualizzazioni
Transcript
1 CONSIGLI PER L RISOLUZIONE DEI CIRCUITI ELETTRICI In questa lezione lo scopo è quello di mostrare che, con i principi e i teoremi proposti, si possono ottenere i risultati richiesti. Per mostrare l efficacia di detti principi e dei detti teoremi il circuito in esame è lo stesso. Il circuito è lo stesso per evidenziare che i risultati ottenuti o con l uno o con l altro sono i medesimi. Si risolva il seguente circuito, per mezzo del teorema di Millmann, della Sovrapposizione, di Thevenin e utilizzando i Principi di Kirchoff: V I1 I2 dove = 120 V; = 80 V; = 12 ; = 20 ; = 18. METODO DI MILLMNN Con il metodo si Millmann si può risalire al valore della tensione V e poi calcolare le correnti I1, I2 ed. Calcoliamo V : V = ( / / ) / ( 1 / + 1 / + 1 / ) = = ( 120 / / 20 ) / ( 1 / / / 18 ) = = ( 10 6 ) / ( 0, ,05 + 0,055 ) = 4 / 0,188 = 31,765 Volt. Con il calcolo di V posso determinare le tre correnti del circuito proposto: = V / = 31,765 / 18 = 1,765 ; I2 = ( + V ) / = ( ,765 ) / 20 = 5,59 circa; I1 = ( - V ) / = ( ,765 ) / 12 = 88,235 / 12 = 7,35 circa. E necessario ricordare quando Millmann non è applicabile. 1
2 Risolviamo, ora, lo stesso circuito con il Principio della Sovrapposizione. Consideriamo il circuito, ottenuto da quello iniziale disinserendo : I1 I2 Consideriamo il parallelo di ed : R P = / 30 = 216 / 30 = 7,2, da cui il circuito si può così vedere, I2 R P da cui si ricava la corrente I2, attraverso la legge di Ohm come, I2 = / ( R P + ) = 80 / ( 7, ) = 80 / 27,2 = 2,94 circa. Per determinare le correnti I1 e si deve determinare la caduta che la corrente I2 determina sulla resistenza R P, da ciò si ha che: V = I2 R P = 2,94. 7,2 = circa 21,17 Volt. La conoscenza della V ci consente di ricavare i valori delle correnti che circolano attraverso le resistenze ed, ossia: I1 = V / = 21,17 / 12 = 1,764 = V / = 21,17 / 18 = 1,176. 2
3 Consideriamo, ora, il circuito, ottenuto da quello iniziale disinserendo : I1 I2 mmetto in questo caso il parallelo fra le due resistenze ed, ottenendo il circuito di figura: R P =. / ( + ) = / ( ) = 360 / 38 = 9,474 I1 H R P Da cui la corrente si ricava per mezzo della legge di Ohm, ( constatando che le due resistenze R P e sono in serie ), I1 = / ( R P + ) = 120 / ( 9, ) = 5,59 circa. Per ottenere le altre due correnti basta calcolare la caduta di tensione che la corrente I1 determina sulla resistenza R P ossia: V HK = R P I1 = 9,474. 5,59 = circa 53 Volt. In base a questo risultato posso calcolare anche le due correnti I2 e come: I2 = V HK / = 53 / 20 = 2,65 ; = V HK / = 53 / 18 = 2,94. K questo punto per ottenere le correnti effettivamente circolanti nel circuito originario devo applicare la sovrapposizione dei risultati ottenuti. Per fare questo fissiamo l attenzione su un Nodo del circuito originario, ammettendo la convenzione che le correnti entranti siano positive e quelle uscenti negative. 3
4 Nodo I1 I2 Dal circuito Dal circuito Correnti effettive nel circuito dato I1 = 1,764 I1 = 5,59 I1 = I1 + I1 = 1, ,59 = 7,35 I2 = 2,940 I2 = 2,65 I2 = I2 + I2 = 2, ,65 = 5,59 = 1,176 = 2,94 = - = 2,94 1,176 = 1,764 Sempre ammettendo lo stesso circuito, supponiamo di dovere ricavare il solo valore della corrente passante attraverso la resistenza. Per comodità metto in evidenza il circuito originale: I1 I2 dove = 120 V; = 80 V; = 12 ; = 20 ; = 18. La riga fra e consente di attuare quanto afferma il teorema di Thevenin, in altri termini la parte a sinistra, indicate dalle frecce, può essere sostituita da un circuito più semplice. Il circuito sopra detto è caratterizzato da un generatore di tensione detto di Thevenin e da una resistenza detta resistenza di Thevenin. In altri termini il circuito si deve presentare nel modo seguente: 4
5 V Th R Th Se si riesce a determinare il generatore di tensione di Thevenin e la resistenza di Thevenin risulta possibile calcolare immediatamente la corrente richiesta; infatti si avrebbe per la legge di Ohm: = V Th / ( + R Th ). La domanda è come faccio a calcolare la resistenza R Th ed il valore della tensione V Th prodotta dal generatore di Thevenin? La risposta applicando queste semplici considerazioni: per determinare la resistenza di Thevenin è necessario disinserire tutti i generatori e verificare poi, come le resistenze risultano collegate fra loro; per determinare la tensione prodotta dal generatore di tensione di Thevenin è necessario calcolare proprio la tensione a vuoto fra i punti e del circuito, ossia ammettendo che il circuito di partenza non abbia collegamento con la resistenza, che funge da carico per il circuito stesso. Vediamo il procedimento dal punto di vista pratico: OX Come mostra lo schema l osservatore vedrebbe il parallelo fra le due resistenze ed. Il calcolo della resistenza equivalente al parallelo indicato rappresenta proprio la R Th. In definitiva sarà: R Th = / ( + ) = / 32 = 240 / 32 = 7,5. Mentre per il calcolo della tensione prodotta dal generatore di Thevenin posso considerare due possibilità. PRIMO MODO 5
6 I V = V Th Posso applicare il secondo principio di Kirchoff alla monomaglia rappresentata superiormente, ammettendo che: la somma delle tensioni prodotte dai due generatori deve uguagliare le cadute di tensioni prodotte dalla corrente I sulle resistenze ed. Nel nostro caso sarà allora: + = ( + ) I, ossia I = ( + ) / ( + ) = ( ) / ( ) = 200 / 32 = 6,25. Con questo risultato osservando i Nodi e si deduce che: V = I = ( 6,25 ) = = - 45 Volt, ossia la tensione è diretta in modo opposto a quella del generatore, ( vedasi il grafico superiore ). E evidente che la corrente che circola nel ramo in cui è inserita la resistenza è ottenuta come: V Th I = V Th / ( R Th + ) = = 45 / ( 7, ) = = 45 / 25,5 = 1,764. R Th 6
7 SECONDO MODO Il secondo modo è semplicemente l applicazione del Teorema di Millmann, che si è visto precedentemente, ma che qui ripeto. I V = V Th Posso col teorema di Millmann determinare la Tensione a Vuoto V, che per Noi altro non è che la tensione prodotta dal generatore di Thevenin. In questo caso la tensione V è data come, per il teorema di Millmann: V = ( / / ) / ( 1 / + 1 / ) = = ( 120 / / 20 ) / ( 0, ,05 ) = ( 10 4 ) / 0, 1333 = 6 / 0,1333 = 45 V. Infine esaminiamo l applicazione dei Principi di Kirchoff che consentono di ottenere, direttamente, tutte le correnti incognite. Sia ammesso lo stesso circuito elettrico e si vogliano determinare tutte le correnti in esso circolanti. 1 Nodo 2 I1 I2 4 3 Dal nodo si desume che: I1 = I2 +, considerando la maglia 2 3 si ottiene, = I2, 7
8 considerando infine la maglia si ricava, = I1 +. In definitiva il sistema risulta costituito dalle seguenti tre equazioni: I1 = I2 +, 80 = 20 I2 18, 120 = 12 I da cui si ricava, I1 = I2 +, 20 I2 = I1 = Con semplici passaggi si ricava: I1 = I2 +, I2 = 4 + 0,9 I1 = 10 1,5. I valori trovati di I1 ed I2 introdotte nell equazione del nodo consentono di ricavare il valore di : 10 1,5 = 4 + 0,9 +, da cui ne segue 3,4 = 6, ossia = 6 / 3,4 = 1,764. I2 = 4 + 0,9 = 4 + 0,9 ( 1,764 ) = 5,59 ed infine si ottiene, I1 = 10 1,5 = 10 1,5 ( 1,764 ) = 7,35. 8
Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001
Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti
Principio di NORTON e Teorema di MILLMANN
Principio di NORTON e Teorema di MILLMNN Esempio nr.5 PRINIPIO DI NORTON Dato il circuito in figura, calcolare il valore delle correnti nei rami. 1 Impostare il problema... 2 alcolare il valore di Rno...
Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo
Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:
ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1
ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1
Liberamente tratto da Prima Legge di Ohm
Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale
Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie.
Esercizio Classe ª Elettronici Materia Elettrotecnica Argomento Reti elettriche Nel circuito di figura, utilizzando il teorema di Thevenin attraverso riduzioni successive, determinare la tensione ai capi
Esercizi e problemi su circuiti elettrici elementari
28/01/10 Esercizi e problemi su circuiti elettrici elementari 1 Esercizi Esercizio (p.480 n.9). La resistenza totale di un circuito è 300Ω. In esso vi sono tre resistenze in serie: la seconda è tripla
Università degli Studi di Bergamo Facoltà di Ingegneria
Università degli Studi di Bergamo Facoltà di Ingegneria Piatti Marina _ RISOLUZIONE TEMA D ESAME CORSO DI ELETTROTECNICA A.A. 1995/96 SCRITTO 26 SETTEMBRE 1996_ Esercizio n 1 Dato il circuito in figura,
Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff
Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff primo principio di Kirchhoff "principio dei nodi " - la sommatoria di tutte le correnti che confluiscono in un nodo (siano
Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni
Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i
5.12 Applicazioni ed esercizi
138 5.12 pplicazioni ed esercizi pplicazione 1 1. Trovare il numero dei nodi e dei rami nel circuito in figura. 1 2 3 H 4 C D E 8 G 7 F 6 5 punti 1 e 2 costituiscono un unico nodo; lo stesso per i punti
Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli
Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:
CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:
CIRCUITI ELETTRICI Riccardo Scannaliato 4H 2015/16 Le grandezze fondamentali nei circuiti elettrici sono: La corrente elettrica: la quantità di carica che attraversa una sezione S di conduttore in un secondo.
Esercizi sui circuiti in fase transitoria
Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un
UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria
UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Elettrotecnica A.A. 2001/2002 Prova scritta del 4 settembre 1999 Esercizio n 1 Data la rete in figura, determinare tutte le correnti (4
Università degli Studi di Bergamo Facoltà di ingegneria. Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996
Università degli Studi di Bergamo Facoltà di ingegneria Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996 Es. 1 Dato il circuito magnetico in figura, trascurando gli effetti di bordo, calcolare
LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE
LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE Partitore di tensione 2 legge kirkoff Partitore di corrente 1 legge kirkoff Principio di sovrapposizione degli effetti Legge di Thevenin Legge di
CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis
CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in
RETI LINEARI R 3 I 3 R 2 I 4
RETI LINERI 1 Leggi di Kirchoff. Metodo delle correnti di maglia R 1 R 3 I 1 I 3 E 1 J 1 J 2 J 3 I 2 I 4 R 4 I 5 R 5 I 6 R 6 J 4 R 7 Il calcolo delle correnti e delle differenze di potenziale in un circuito
CIRCUITI RESISTIVI ESERCIZI
CIRCUITI RESISTIVI ESERCIZI Calcolare la corrente erogata dal generatore e la corrente passante per ogni resistenza dei seguenti circuiti CIRCUITO 1 Figura 1 Per prima cosa calcoliamo la resistenza equivalente
IL TEOREMA DI THEVENIN
IL TEOREMA DI THEVENIN Il teorema di Thevenin si usa per trovare più agevolmente una grandezza (corrente o tensione) in una rete elettrica. Enunciato: una rete elettrica vista a una coppia qualsiasi di
Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -
Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che
Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n
Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 12.1.2016 Circuiti elettrici Equazioni per la soluzione dei circuiti Anno Accademico 2015/2016 Forza elettromotrice
Regola del partitore di tensione
Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,
Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti
Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected]
Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo
alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita) dai generatori di tensione ed e quella assorbita
Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)
Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2
Esercizi sui circuiti in fase transitoria
Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario
Analisi reti lineari
nalisi reti lineari isolvere una rete vuol dire trovare le correnti circolanti, una volta nota la configurazione topologica della stessa rete e le caratteristiche degli aelementi passivi( e attivi (gen.
Circuiti con due generatori di tensione esercizio n. 2 principi di Kirchhoff
ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando i principi di Kirchhoff, la potenza erogata (o eventualmente assorbita) dai
Esercizi sulle reti elettriche in corrente alternata (parte 1)
Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive
Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)
Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3
Esercizio svolto 1 Dati: R 1
Esercizio svolto = 4 = = I G = 4A = Determinare la corrente I e le potenze rispettivamente erogate dal generatore Ig e dal generatore αi. Per trovare la grandezza pilota uso la sovrapposizione degli effetti.
Verifica sperimentale dei due principi di Kirchhoff. Premessa
Verifica sperimentale dei due principi di Kirchhoff Premessa Scegliamo un circuito su cui misurare le correnti e le tensioni in modo da verificare i due principi di Kirchhoff, cioè quello delle correnti
Le leggi di Kirchhoff
Le leggi di Kirchhoff n questa lezione impareremo... legge di Kirchhoff o legge delle correnti (KL) legge di Kirchhoff o legge delle tensioni (KVL) LZON 7 circuiti elettrici Le leggi di Ohm ci permettono
Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A
Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C E con un corto. L amplificazione pertanto è g m R C dove
1. Serie, parallelo e partitori. ES Calcolare la
Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore
UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica
7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di
Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria
Schede di Elettrotecnica Corso di Elettrotecnica - Cod. 900 N Diploma Universitario Teledidattico in ngegneria nformatica ed utomatica olo Tecnologico di lessandria cura di Luca FES Scheda N Circuiti in
per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2,
100 Luciano De Menna Corso di Elettrotecnica Il caso N = 2 è particolarmente interessante tanto da meritare un nome speciale: doppio bipolo I parametri indipendenti saranno tre: R 11, R 22 ed R 12 =R 21
9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ
9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta
Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1
000-000 M6.qxp 7-09-01 1005 Pagina 1 sercizi aggiuntivi Unità sercizi svolti sercizio 1 ipoli elettrici e loro collegamenti 1 Per il circuito di figura.1 calcolare la resistenza equivalente tra i morsetti
4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α
Esame di Teoria dei Circuiti 4 Luglio 202 () Esercizio I R R I R3 R 3 I 2 V αi R V 4 I 4 βi R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 0 Ω R R 3 kω, 5 kω,, α /2, β 2, V
Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio
Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una
Circuiti in corrente continua
Domanda Le lampadine mostrate in figura sono le stesse. Con quali collegamenti si ha maggiore luce? Circuiti in corrente continua Ingegneria Energetica Docente: Angelo Carbone Circuito 1 Circuito 2 La
Collegamento di resistenze
Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice
Esercizio 1. Amplificatore operazionale configurazione non invertente. Calcoliamo l'uscita Vo
Esercizio 1 Amplificatore operazionale configurazione non invertente Calcoliamo l'uscita Vo Esercizio 2 Amplificatore operazionale in configurazione non invertente con partitore di resistenze al morsetto
Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli
Esercizi svolti Esperimentazioni di Fisica A.A. 009-00 Elena Pettinelli Principio di sovrapposizione: l principio di sovrapposizione afferma che la risposta di un circuito dovuta a più sorgenti può essere
INTENSITÀ DI CORRENTE E LEGGI DI OHM
QUESITI 1 INTENSITÀ DI CORRENTE E LEGGI DI OHM 1. (Da Veterinaria 2014) Un filo di alluminio ha una sezione di 1,0 x 10-6 m 2. Il filo è lungo 16,0 cm ed ha una resistenza pari a 4,0 x 10-3 Ω. Qual è la
Esercizi sulle reti elettriche in corrente continua (parte 1)
Esercizi sulle reti elettriche in corrente continua (parte ) Esercizio : eterminare la resistenza equivalente della rete in figura tra i terminali e (supponendo e isolati) e la conduttanza equivalente
Eserciziario di Elettrotecnica
Didattica e icerca Manuali Francesco ertoncini Eserciziario di Elettrotecnica ertoncini, Francesco Eserciziario di elettrotecnica / Francesco ertoncini. - Pisa : Pisa university press, c013 (Didattica
Università degli studi di Bergamo Facoltà di Ingegneria
Università degli studi di ergamo Facoltà di Ingegneria Corso di elettrotecnica Soluzione tema d esame del 16 giugno 1998 Esercizio n 1 Data la rete in figura determinare le correnti I 1,I 2,I,I 5 e la
Laurea di I Livello in Ingegneria Informatica
Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare
Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito
Elettronica Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano, 603 Crema email:
Le lettere x, y, z rappresentano i segnali nei vari rami.
Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,
Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff
Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Elettronica Bipoli lineari;
Tre resistenze in serie
Tre resistenze in serie Un circuito è formato da tre resistenze collegate in serie a una batteria da 24,0 V. La corrente nel circuito è di 0,0320 A. Sapendo che R 1 = 250,0 Ω e R 2 = 150,0 Ω, calcola a)il
MATRICI DEI QUADRIPOLI
Giovanni Schgör (g.schgor) MATRICI DEI QUADRIPOLI 22 November 2014 Un recente argomento del Forum richiedeva l'applicazione di una matrice ad un quadripolo ed è stata consigliata la visione di questo link.
LEGGE DI OHM. Inizieremo a trattare il caso in cui il circuito elettrico risulta schematizzabile con soli parametri in serie :
EGGE D OHM nizieremo a trattare il caso in cui il circuito elettrico risulta schematizzabile con soli parametri in serie : Supponiamo nota la corrente e quindi incognita la tensione da applicare al circuito.
7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari
7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia
Elettronica I Amplificatore operazionale ideale; retroazione; stabilità
Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/
Elettronica Amplificatore operazionale ideale; retroazione; stabilità
Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Elettronica Amplificatore operazionale
Esercizi svolti. Elettrotecnica
Esercizi svolti di Elettrotecnica a cura del prof. Vincenzo Tucci NOVEMBE 00 NOTA SUL METODO PE LA DEGLI ESECIZI La soluzione degli esercizi è un momento della fase di apprendimento nel quale l allievo
Unità 5. La corrente elettrica continua
Unità 5 La corrente elettrica continua 1. L'intensità della corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. In un filo metallico (come il filamento di una lampadina)
Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003
Esercizi & Domande per il Compito di Elettrotecnica del 7 settembre 003 ESERCIZIO v a i a i b v b R v 0 Nel circuito in figura determinare il valore di v o e i o Si ponga: R 6kΩ, R kω, e i o R v o ; i
Teorema di Thevenin generalizzato
Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui
0 : costante dielettrica nel vuoto
0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ
Leggi e principi fondamentali
Legge di Ohm per i conduttori filiformi Leggi e principi fondamentali La resistenza elettrica R [Ω] di un conduttore metallico filiforme dipende dalla natura del conduttore e dalle sue dimensioni secondo
Soluzione di circuiti RC ed RL del primo ordine
Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare
Anno 2. Risoluzione di sistemi di primo grado in due incognite
Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione
1.1 Assenza di generatori di corrente ideali.
ANALISI AGLI ANELLI Questa dispensa presenta un metodo alternativo a quello presentato nel libro Circuiti Elettrici di C.K. Alexander, M.N.O.Sadiku - seconda edizione - traduzione a cura del Prof. P.Gubian
I generatori controllati nella risoluzione dei circuiti elettrici
UNERSTA' DEGL STUD D MESSNA Dipartimento di ngegneria Contrada Di Dio, 98166 illaggio S. Agata Messina generatori controllati nella risoluzione dei circuiti elettrici Anno Accademico 2016-2017 dott. ing.
