Algebra di Boole: mappe di Karnaugh
|
|
|
- Eleonora Berardi
- 9 anni fa
- Visualizzazioni
Transcript
1 Corso di Calcolatori Elettronici I A.A Algebra di Boole: mappe di Karnaugh Pro. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Inormazione Corso di Laurea in Ingegneria Inormatica (allievi A-DA) Corso di Laurea in Ingegneria dell Automazione Funzioni Equivalenza ed Implicazione Funzione equivalenza a b è vera s.s.e. è 1: (a,b) = ab + ab Funzione implicazione a b è vera s.s.e. vale 1: (a,b) = (a b) = a + b = (a b) Si dice che x implica y se e solo se dalla verità di x (antecedente) scaturisce necessariamente la verità di y (conseguente) In termini algebrici, essendo l implicazione alsa se e solo se x è vera e y è alsa, applicando il Teorema di De Morgan, si ha x y = x y x y = x y = x + y
2 Implicazione come relazione d ordine Se x y è vera, allora x + y = x y + y = x y + xy + y = x y y + xy + yy x + y = ( ass. compl ) ( P 4) ( P 3) = ( x + y) y + ( x + y) y = 1 x + y = y x y 1 ( DeMorgan ) per le proprietà dell equivalenza ab+ab l'implicazione è la relazione d'ordine nell'algebra della logica Implicanti di una unzione Un implicante di è una unzione 1 tale che 1 + =1 cioè 1 Esempio: implicanti di ma anche: 2 1 e 4 3
3 Implicanti primi di una unzione Nell insieme degli implicanti di, deiniamo primi quegli implicanti che a loro volta non implicano nessun altro implicante di Solo 1 ed 3 sono implicanti primi Proprietà degli implicanti 1. La clausola di una unzione in orma di tipo P è un suo implicante n = i= 1 A i A i + = A ( A1 + A2 + K+ A ) = 1 2. Una clausola B ne implica un altra A se e solo se B contiene tutti i letterali di A 3. La somma di due clausole di ordine n che contengono n-1 letterali uguali ed in cui un letterale dell'una sia il complemento di quello dell'altra è la clausola di ordine n-1 ormata dai letterali comuni (detta consenso) i + n
4 Proprietà degli implicanti (2) 3. Ad una unzione può essere aggiunto un suo implicante senza alterarne il valore 4. A è un implicante di se e solo se nella prima orma canonica di sono presenti tutti i mintermini aventi A come attore Inatti, se A è un implicante, lo si può aggiungere ad, per poi espanderlo in mintermini (acendo comparire anche le variabili assenti in A) Se, viceversa, sono presenti tutti i mintermini aventi A come attore, essi possono essere raccolti in modo da ar apparire A come clausola di. ( x, siha: y, z) = xy+ yz, equindi = xyz + xyz+ xyz+ xyz xy e yz Mappe di Karnaugh a b c Y c ab
5 Mappe di Karnaugh Le mappe di Karnaugh sono una rappresentazione tabellare delle unzioni booleane, alternativa alla tabella di verità Consentono di individuare acilmente consensi nell espressione algebrica Due celle adiacenti sulle MdK sono associate a mintermini che dieriscono in un solo letterale Rappresentano una clausola di ordine n-1 Es: a bc + abc = ( a+ a) bc = bc Mappe di Karnaugh da: G. Bucci. Calcolatori Elettronici Architettura e organizzazione. McGraw-Hill, 2009
6 Mappe di Karnaugh Rappresentazione dei mintermini sulle Mappe di Karnaugh
7 Proprietà notevoli I mintermini che si oppongono in una sola variabile sono adiacenti e quindi le coppie di quadratini adiacenti rappresentano clausole di ordine n-1; Le clausole di ordine n-1 (n 2) che si oppongono in una sola variabile sono ancora adiacenti e quindi le quadruple rappresentano clausole di ordine n-2; Le ottuple (n 3) rappresentano clausole di ordine n-3. Le clausole sono anche dette cubi, o sottocubi Maggiore è la dimensione del sottocubo, minore l ordine (numero di letterali) della clausola I sottocubi di area massima rappresentano gli implicanti primi della unzione Implicanti primi sulle mappe di Karnaugh Gli implicanti primi sono individuati graicamente come sottocubi di area massima ƒ = abcd + a bcd + ab cd + abc d + ab c d + abc d + ab c d Implicanti primi: bcd, a cd, ab d, ab
8 Mappe di Karnaugh Due modi per rappresentare la stessa unzione: a ) y abcd + bcd + ac b y = bcd + abd+ abcd + abcd + abcd 1 = ) 2 Mappe di Karnaugh da: G. Bucci. Calcolatori Elettronici Architettura e organizzazione. McGraw-Hill, 2009
9 Implicanti primi essenziali Un implicante primo E i di una unzione è detto essenziale se è l'unico ad essere implicato da un mintermine di In altri termini, E i è l unico a coprire un determinato mintermine della unzione Mappe di Karnaugh a bc + wxy,wyz,wxy,wyz sono essenziali, xz NO da: G. Bucci. Calcolatori Elettronici Architettura e organizzazione. McGraw-Hill, 2009
10 Mappe di Karnaugh Mappe per unzioni in orma S ( b + d ) ( a + b ) ( a + d ) ( b + d ) Mappe di Karnaugh a 5 variabili Possono essere usate anche per unzioni di 5 variabili, perdendo tuttavia l eicacia e l immediatezza della rappresentazione b d e abd a bc d
Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR
Corso di Calcolatori Elettronici I A.A. 2010-2011 Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR Lezione 7 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Funzioni Equivalenza
Corso di Calcolatori Elettronici I
Corso di Calcolatori Elettronici I Algebra di Boole: minimizzazione di funzioni booleane Roberto Canonico Università degli Studi di Napoli Federico II A.A. 2014-2015 Roberto Canonico Corso di Calcolatori
Algebra di Boole: minimizzazione di funzioni booleane
Corso di Calcolatori Elettronici I A.A. 200-20 Algebra di Boole: minimizzazione di funzioni booleane Lezione 8 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Forme Ridotte p Vantaggi
A.A. 2003/2004 Esercizi di Reti Logiche A
A.A. 2003/2004 Esercizi di Reti Logiche A A cura di F. Ferrandi, C. Silvano Ultimo aggiornamento, 11 novembre 2003 Questi appunti sono stati possibili anche per il lavoro fatto da alcuni studenti del corso
Minimizzazione di funzioni booleane:
Corso di Calcolatori Elettronici I A.A. 202-203 Minimizzazione di funzioni booleane: espansione e copertura Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria
Corso di Calcolatori Elettronici I A.A Algebra di Boole Lezione 4
Corso di Calcolatori Elettronici I A.A. 2010-2011 Algebra di Boole Lezione 4 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Segnali in circuiti elettronici digitali da: G. Bucci. Calcolatori
I circuiti digitali: dalle funzioni logiche ai circuiti
Architettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi
Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche
Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche Ing. Gestionale e delle Telecomunicazioni A.A. 27/8 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali digitali vs. segnali analogici
Richiami di Algebra di Commutazione
LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n Prof. Rosario Cerbone [email protected] http://digilander.libero.it/rosario.cerbone a.a. 6-7 Richiami di Algebra di Commutazione In questa
Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!
Fondamenti di Informatica Algebra di Boole Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2-22 Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR () NOT (!) Gli operandi
1 Minimizzazione di espressioni logiche con le proprietà dell algebra
1 Minimizzazione di espressioni logiche con le proprietà dell algebra di Boole 1.1 Esercizi con soluzione Esercizio 1.1 - Data la seguente funzione F: F = a bcd + abcd + ab cd + a bc d 1. Utilizzando le
Algebra di Boole X Y Z V. Algebra di Boole
L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole che
Costruzione di. circuiti combinatori
Costruzione di circuiti combinatori Algebra Booleana: funzioni logiche di base OR (somma): l uscita è 1 se almeno uno degli ingressi è 1 A B (A + B) 0 0 0 0 1 1 1 0 1 1 1 1 AND (prodotto): l uscita è 1
Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)
Algebra di Boole Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole L algebra di Boole o della commutazione è lo strumento
Algebra di Boole Algebra di Boole
1 L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole
Algebra di Boole Cenni all Algebra di Boole
Algebra di Boole Cenni all Algebra di Boole Introduzione Rappresentazione di una funzione combinatoria Proprietà dell algebra di commutazione Forme canoniche Teorema di espansione di Shannon Versione del
Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA
Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori
Esercitazioni di Reti Logiche. Lezione 3
Esercitazioni di Reti Logiche Lezione 3 Semplificazione & Porte NAND/NOR Zeynep KIZILTAN [email protected] Argomenti Semplificazione con l uso delle mappe di Karnaugh a 3 variabili a 4 variabili
Algebra di Boole Cenni all Algebra di Boole. Algebra Booleana: definizione
Algebra Booleana: operazioni e sistema algebrico Algebra di Boole Cenni all Algebra di Boole Introduzione Rappresentazione di una funzione combinatoria Proprietà dell algebra di commutazione Forme canoniche
Esercitazioni di Reti Logiche
Esercitazioni di Reti Logiche Sintesi di Reti Combinatorie & Complementi sulle Reti Combinatorie Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico
Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN [email protected]
Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN [email protected] Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte
Esercitazioni di Reti Logiche. Algebra Booleana e Porte Logiche
Esercitazioni di Reti Logiche Algebra Booleana e Porte Logiche Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico 2007/2008 Notizie Il primo parziale
Corso E Docente: Siniscalchi. Algebra di Boole
Corso E Docente: Siniscalchi Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo scopo di descrivere
I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP)
I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) Prof. Alberto Borghese Dipartimento di Informatica [email protected] Università degli Studi di Milano Riferimento al testo: Sezione C.3;
Algebra di commutazione
Algebra di commutazione E un caso particolare di algebra booleana. B = Dominio Op1 = AND Vale 1 solo se entrambi gli operandi sono 1 Op2 = OR Vale 0 se entrambi I termini sono zero, altrimenti 1 Op3 =
Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )
Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei
Esercitazioni di Reti Logiche. Lezione 4
Esercitazioni di Reti Logiche Lezione 4 Progettazione dei circuiti logici combinatori Zeynep KIZILTAN [email protected] Argomenti Procedura di analisi dei circuiti combinatori. Procedura di sintesi
Esercizi. 1. Algebra booleana
Esercizi 1. Algebra booleana Esercizio 1.1 Data le forma logica F = (z(xy ) +x+yz ) +x y Svolgere i seguenti punti: Applicare le regole dell algebra per semplificare la forma riducendo il numero dei prodotti
Matematica per le scienze sociali Elementi di base. Francesco Lagona
Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona ([email protected]) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli
Algebra di Boole e circuiti logici
lgebra di oole e circuiti logici Progetto Lauree Scientiiche 29 Dipartimento di Fisica Università di Genova Laboratorio di Fisica in collaborazione con il Liceo Scientiico Leonardo da Vinci Genova - 23
I.3 Porte Logiche. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica
I.3 Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti 1 2 3 Elaboratore Hardware È il mezzo con il quale l informazione è elaborata. Software
Metodo di Quine- McCluskey
Metodo di Quine- McCluskey Maurizio Palesi Maurizio Palesi Definizioni Date due funzioni f(x,x 2,,x n ) e g(x,x 2,,x n ) si dice che f copre g (oppure g implica f) e si scrive f g se f(x,x 2,,x n )= quando
Reti logiche: introduzione
Corso di Calcolatori Elettronici I Reti logiche: introduzione ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Circuiti e porte logiche Esempio di rete di commutazione: Circuiti e porte
Fondamenti di Informatica
Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra
Reti logiche: analisi, sintesi e minimizzazione Esercitazione. Venerdì 9 ottobre 2015
Reti logiche: analisi, sintesi e minimizzazione Esercitazione Venerdì 9 ottobre 05 Punto della situazione Stiamo studiando le reti logiche costruite a partire dalle porte logiche AND, OR, NOT per progettare
I circuiti digitali: dalle funzioni logiche ai circuiti
rchitettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff.. orghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi
Sistemi Combinatori & Mappe di Karnaugh
Sistemi Combinatori & Mappe di Karnaugh AB E=0 F=0 E=1 F=0 00 01 11 10 AB 00 01 11 10 00 1 0 0 0 00 0 0 0 0 01 0 0 0 0 01 0 0 0 0 11 0 0 1 0 11 0 0 1 0 10 0 0 0 1 10 0 0 0 1 AB 00 01 11 10 AB 00 01 11
Algebra di Boole Esercizi risolti
Esercizi risolti 1 Esercizio Verificare mediante i teoremi fondamentali dell algebra di Boole o mediante induzione completa se per l operatore XOR vale la proprietà distributiva: a (b + c) = (a b)+(a c)
Algebra di Boole e circuiti dalle funzioni logiche ai circuiti digitali
rchitetture dei calcolatori e delle reti lgebra di oole e circuiti dalle funzioni logiche ai circuiti digitali. orghese, F. Pedersini Dip. Informatica Università degli Studi di Milano L 3 1 lgebra di oole
Architettura degli Elaboratori
Algebra booleana e circuiti logici slide a cura di Salvatore Orlando, Andrea Torsello, Marta Simeoni Algebra & Circuiti Elettronici I computer operano con segnali elettrici con valori di potenziale discreti!
Appunti dal corso di Tecnologia dei Sistemi di Controllo Algebra booleana
Percorsi Abilitanti Speciali A.A. 2013/2014 AUTOMAZIONE E CONTROLLO DI DISPOSITIVI BASATI SU MICROCONTROLLORE classe abilitazione C320 LABORATORIO MECCANICO TECNOLOGICO Appunti dal corso di Tecnologia
Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono:
Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: Connettivi logici True (vero identificato con 1) False (falso identificato con 0) Le variabili
Dalla tabella alla funzione canonica
Dalla tabella alla funzione canonica La funzione canonica è la funzione logica associata alla tabella di verità del circuito che si vuole progettare. Essa è costituita da una somma di MinTerm con variabili
Maurizio Palesi. Maurizio Palesi 1
Mappe di Karnaugh Maurizio Palesi Maurizio Palesi 1 Obiettivi Trovare una espressione in forma SP o PS minima rispetto a certi criteri di costo Nella ottimizzazione delle espressioni SP (PS) a due livelli
270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2.
70 Capitolo 10. Monomi 10.9 Esercizi 10.9.1 Esercizi dei singoli paragrafi 10.1 - L insieme dei monomi 10.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x
LABORATORIO DI ARCHITETTURA DEI CALCOLATORI
LABORATORIO DI ARCHITETTURA DEI CALCOLATORI Prof. Rosario Cerbone [email protected] http://digilander.libero.it/rosario.cerbone a.a. 28-29 Obiettivo I due moduli integrati (Architettura
PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1.
PORTE LOGICHE Premessa Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali dei
L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami
L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S
Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole
Andrea Passerini [email protected] Informatica Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: True (vero identificato con 1) False (falso
Sezione 9.9. Esercizi 189
Sezione 9.9. Esercizi 189 9.9 Esercizi 9.9.1 Esercizi dei singoli paragrafi 9.1 - L insieme dei monomi 9.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x
ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.
ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se
L'algebra di Boole e la minimizzazione di funzioni booleane Introduzione
L'algebra di Boole e la minimizzazione di funzioni booleane Introduzione Come già descritto, tutte le informazioni trattate da un calcolatore sono espresse da stringhe di bit, secondo convenzioni e codifiche
Algebra Booleana, Funzioni Logiche e Circuiti Logici
Algebra Booleana, Funzioni Logiche e Circuiti Logici Esercizio 1 Si scriva, utilizzando gli operatori booleani AND, OR, NOT, la funzione booleana che riceve in ingresso un numero binario puro su 3 bit
SCHEMI DI MATEMATICA
SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale
Algebra di Boole Elementi di Informatica - Algebra di Boole 1 A. Valenzano
Algebra di Boole Elementi di Informatica - Algebra di Boole 1 A. Valenano 1996-2002 Sommario Variabili e funioni booleane Tabelle di verità Operatori booleani Espressioni booleane Teoremi fondamentali
Algebra di Boole, elementi di logica e Mappe di Karnaugh
Algebra di Boole, elementi di logica e Mappe di Karnaugh Marco D. Santambrogio [email protected] Ver. aggiornata al 8 Marzo 206 Progetti Meeting Quando: 22 Marzo @2pm Dove: Sala Conferenze @DEIB
Circuiti digitali. Operazioni Logiche: Algebra di Boole. Esempio di circuito. Porte Logiche. Fondamenti di Informatica A Ingegneria Gestionale
Operazioni Logiche: lgebra di oole Fondamenti di Informatica Ingegneria Gestionale Università degli Studi di rescia Docente: Prof. lfonso Gerevini Circuiti digitali Il calcolatore può essere visto come
Le mappe di Karnaugh
Le mappe di Karnaugh Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto più pratico di semplificazione che quello
1.4 PRODOTTI NOTEVOLI
Matematica C Algebra. Le basi del calcolo letterale.4 Prodotti notevoli.4 PRODOTTI NOTEVOLI Il prodotto fra due polinomi si calcola moltiplicando ciascun termine del primo polinomio per ciascun termine
Lezione 5. Sommario. La logica booleana. I principi della logica booleana Gli operatori logici
Lezione 5 La logica booleana Sommario I principi della logica booleana Gli operatori logici 1 Variabili Booleane Variabile booleana=quantità che può assumere solo due valori I due valori hanno il significato
Capitolo 2 - Algebra booleana
ppunti di Elettronica Digitale Capitolo - lgebra booleana Introduzione... Postulati di Huntington... Reti di interruttori... Esempi di algebra booleana... 4 Teoremi ondamentali dell'algebra booleana...
Algebra & Circuiti Elettronici. Algebra booleana e circuiti logici. Blocco logico. Tabelle di Verità e Algebra Booleana
lgebra & Circuiti Elettronici lgebra booleana e circuiti logici Salvatore Orlando I computer operano con segnali elettrici con valori di potenziale discreti sono considerati significativi soltanto due
Corso di Elementi di Informatica Anno accademico 2015/16
Corso di Laurea triennale in Ingegneria Navale in condivisione con Corso di Laurea triennale in Ingegneria Chimica (matr. P-Z) Corso di Elementi di Informatica Anno accademico 2015/16 Docente: Ing. Alessandra
Macchine sequenziali. Automa a Stati Finiti (ASF)
Corso di Calcolatori Elettronici I Macchine sequenziali Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione Corso
Funzioni booleane. Vitoantonio Bevilacqua.
Funzioni booleane Vitoantonio Bevilacqua [email protected] Sommario. Il presente paragrafo si riferisce alle lezioni del corso di Fondamenti di Informatica e Laboratorio di Informatica dei giorni 9
(b) le operazioni, sono distributive: (c) le operazioni, hanno un elemento neutro: cioè esistono O e I P(X) tali che A P(X) : A O = A, A I = A.
Elementi di Algebra e Logica 2008. 7. Algebre di Boole. 1. Sia X un insieme e sia P(X) l insieme delle parti di X. Indichiamo con, e rispettivamente le operazioni di intersezione, unione e complementare
Reti Combinatorie: sintesi
Reti Combinatorie: sintesi Sintesi di reti combinatorie Una rete combinatoria realizza una funzione di commutazione Data una tabella di verità è possibile ricavare più espressioni equivalenti che la rappresentano.
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni.
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 2. MONOMIO 2a + b -3 due a più b meno tre 3x 2 x + 5 3 ics al quadrato ics + 5 MONOMI Si dice
Reti Logiche Combinatorie
Reti Logiche Combinatorie Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Logica combinatoria Un blocco di logica
Architetture degli Elaboratori I II Compito di Esonero (A) - 16/1/1997
1 II Compito di Esonero (A) - 16/1/1997 Non è ammessa la consultazione di nessun testo, nè l utilizzo di nessun tipo di calcolatrice. Ogni esercizio riporta, fra parentesi, il suo valore in trentesimi
Il libro di Boole. L algebra di Boole
L algebra di Boole Esiste una definizione generale di algebra in cui, oggi, viene fatta rientrare la geniale intuizione del matematico inglese George Boole (85-864) che, intorno al 85 si rese conto, molto
CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO.
CALCOLO LETTERALE Il calcolo letterale è importante perchè ci consente di realizzare un meccanismo di astrazione fondamentale per l'apprendimento in generale. Scrivere, ad esempio, che l'area di un rettangolo
Sintesi di Reti Combinatorie
Sintesi di Reti Combinatorie Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Quine-McCluskey per reti a più uscite Mariagiovanna Sami Corso di Reti Logiche B 08 Sintesi a due livelli Reti
Minimizzazione a più livelli di reti combinatorie Cristina Silvano
Minimizzazione a più livelli di reti combinatorie Cristina Silvano Università degli Studi di Milano Dipartimento di Scienze dell Informazione Milano (Italy) Sommario Modello booleano e modello algebrico
Elementi di informatica
Elementi di informatica Algebra di Boole Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo
Tecniche di Progettazione Digitale. Reti combinatorie: Le mappe di Karnaugh
Tecniche di Progettazione Digitale Reti cominatorie: Le mappe di Karnaugh Valentino Lierali Mappe di Karnaugh (1) Una unzione ooleana di n it ha come dominio l insieme costituito da tutte le possiili n-ple
Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.
CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo
IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico
IL CALCOLO LETTERALE La «traduzione» del linguaggio comune in linguaggio matematico BREVE STORIA DELL ALGEBRA Dall algebra sincopata all algebra simbolica L algebra è una disciplina antichissima ma il
Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli
Sommario Sintesi di reti combinatorie Funzioni Espressioni 1 Teorema di espansione di Shannon (Boole) M. Favalli Engineering Department in Ferrara 2 Forme canoniche 3 Metriche per il costo di una rete
Architettura degli Elaboratori Implementazione di funzioni booleane
Architettura degli Elaboratori Implementazione di funzioni booleane Giacomo Fiumara [email protected] Anno Accademico 2012-2013 1 / 34 Introduzione /1 Ogni funzione booleana può essere implementata
x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario
Esercitazione di Calcolatori Elettronici Prof. Gian Luca Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali
Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche
Esercitazione di Calcolatori Elettronici Ing. Battista Biggio Corso di Laurea in Ingegneria Elettronica Esercitazione 1 (Capitolo 2) Reti Logiche Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie
Mappe di Karnaugh G. MARSELLA UNIVERSITÀ DEL SALENTO
Mappe di Karnaugh 1 G. MARSELLA UNIVERSITÀ DEL SALENTO Introduzione Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto
