Calcolatori Elettronici
|
|
|
- Linda Novelli
- 9 anni fa
- Visualizzazioni
Transcript
1 Calcolatori Elettronici Lezione /1/2012 Reti Logiche: esercizi sulle le reti combinatorie Emiliano Casalicchio
2 Argomenti della lezione Reti combinatorie Decoder, Multiplexer, Demultiplexer, Forma SP, Mappe Karnaugh Ripasso concetti teorici Esercizi Reti Combinatorie 1
3 Decoder Semplice È una rete con N ingressi e p uscite, con p=2 N Legge di corrispondenza ogni uscita riconosce uno ed un solo stato di ingresso, in particolare l uscita j-sima riconosce lo stato di ingresso i cui bit sono la codifica di j in base 2, cioè se (x N-1 x N-2...x 1 x 0 ) b2 =j Esempio decoder 2-4 Reti Combinatorie 2
4 Esempio Decoder 2-4 otteniamo la legge di corrispondenza z 3 = x 1 x 0 z 2 = x 1 x 0 z 1 = x 1 x 0 z 0 = x 1 x 0 Reti Combinatorie 3
5 Esempio Decoder N to 2 N Generalizzando abbiamo la legge di corrispondenza per deconder N to 2 N Reti Combinatorie 4
6 Decoder con enabler Non si mettono mani 2 porte identiche in cascata a meno di non avere vincoli sul numero di ingressi Reti Combinatorie 5
7 Esercizio: costruiamo un decoder 4 to 16 a partire da decoder 2 to 4 Reti Combinatorie 6
8 Esercizio: costruiamo un decoder 4 to 16 a partire da decoder 2 to 4 Reti Combinatorie 7
9 Esercizio 1 Calcolare il numero di decoder con enabler (DE) di tipo n 2 n che servono per costruire un decoder con enabler di tipo 2n 2 (2n) Risposta: Per sostenere 2 2n =2 n 2 n uscite sono necessari 2 n DE n 2 n. Ciascuno di questi riceverà l ingresso di enabler da un ulteriore DE n 2 n. In totale, il numero di DE n 2 n necessari è 2 n +1. Per Casa: Calcolare quanti DE 1 2 sono necessari per realizzare un DE n 2 n, con n = 2 k, k 1. Calcolare inoltre quante porte AND a due ingressi sono necessarie in totale. Reti Combinatorie 8
10 Demultiplexer Identica a quella di un decoder con enabler!!! Reti Combinatorie 9
11 Multiplexer Reti Combinatorie 10
12 Multiplexer Un multiplexer con N variabili di comando è in grado di realizzare qualunque legge combinatoria di N ingressi ed un uscita Reti Combinatorie 11
13 Esercizio2: realizzazione di una rete combinatoria ad N ingressi con un MUX and N-1 variabili di comando y3 y2 y1 y0 b2 b1 1. Prendere N-1 ingressi e collegarli alle variabili di comando. La scelta non influisce sulla realizzabilità. Ad esempio associamo x2 e x1 a b2 e b1. 2. Il rimanente ingresso della RC verrà collegato ad uno degli ingressi del MUX Oss1: Ciascun ingresso del MUX è attivato da una coppia di stati di ingresso adiacenti Oss2: In corrispondenza di ciascuna coppia di stati di ingresso la variabile di uscita potrà assumere solo 4 configurazioni diverse: 00, 01, 10, 11. Reti Combinatorie 12
14 Esercizio: realizzazione di una rete combinatoria ad N ingressi con un MUX and N-1 variabili di comando 1. Veniamo al caso specifico x0 1 0 x0 y3 y2 y1 y0 x2 x1 Per Casa: Provare con una qualsiasi tabella di verita Reti Combinatorie 13
15 Esercizio 3 Si consideri la rete disegnata in figura, con 2 ingressi (x, y), un uscita (z), e 4 variabili di comando a, b, c, d. Tale rete implementa una legge,f(x,y) diversa a seconda del valore delle variabili di comando. 1. Scrivere l espressione algebrica che lega z agli ingressi e alle variabili di comando 2. Manipolando l espressione trovata al punto precedente, calcolare a, b, c, d in modo da implementare una generica funzione,f(x,y) nota (assumendo, cioè, di conoscere f(0,0), f(0,1), f(1,0), f(1,1) 3. calcolare a, b, c, d per i casi f (x, y) = xy f (x, y) = xy Reti Combinatorie 14
16 Soluzione 1. z = a! bx! cy! dxy 2. f (0, 0) = a f (1, 0) = a! b f (0,1) = a! c f (1,1) = a! b! c! d Reti Combinatorie 15
17 Soluzione 1. z = a! bx! cy! dxy 2. f (0, 0) = a f (1, 0) = a! b f (0,1) = a! c f (1,1) = a! b! c! d Reti Combinatorie 16
18 Sintesi di reti SP: richiami la forma canonica ottenuta si può ottimizzare ottenendo una soluzione a costo minore (o =) Reti Combinatorie 17
19 Semplificazione forma canonica SP K0 K1 K2 z=k0+k1+k2 ax+a=a Lista implicanti principali Reti Combinatorie 18
20 Riassumendo Procedimento un po laborioso partendo dalla forma SP. Vediamo qualche metodo alternativo: Mappe di Karnaugh Reti Combinatorie 19
21 Mappe Karnaugh - Esempio Reti Combinatorie 20
22 Esercizio 4 1. Cerco implicanti di ordine 4 2. Cerco implicanti di ordine 2 non coperti nel passo 1 3. Ottengo forma SP (ridondata) Reti Combinatorie 21
23 Esercizio 5 Data la RC in figura: 1. disegnare la mappa di Karnaugh per la legge z, sapendo che non è possibile che si presentino stati di ingresso in cui tutte le variabili hanno lo stesso valore. 2. Individuare e classificare gli implicanti principali, e trovare tutte le liste di copertura irridondanti. Sintetizzare la rete in forma SP, scegliendo la realizzazione di costo minimo secondo il criterio a porte. Reti Combinatorie 22
24 Soluzione: Mappe di Karnaugh Dallo schema si ricava subito: da cui Ricavo ora mappe di Karnaugh Reti Combinatorie 23
25 Soluzione: sintesi in forma SP Sintesi di costo minimo: Reti Combinatorie 24
26 Materiale didattico Materiale didattico basato sul corso di Reti Logiche del prof. G. Stea Reti Combinatorie 25
Esercitazioni di Reti Logiche. Lezione 4
Esercitazioni di Reti Logiche Lezione 4 Progettazione dei circuiti logici combinatori Zeynep KIZILTAN [email protected] Argomenti Procedura di analisi dei circuiti combinatori. Procedura di sintesi
Esercitazioni di Reti Logiche
Esercitazioni di Reti Logiche Sintesi di Reti Combinatorie & Complementi sulle Reti Combinatorie Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico
Reti Combinatorie: sintesi
Reti Combinatorie: sintesi Sintesi di reti combinatorie Una rete combinatoria realizza una funzione di commutazione Data una tabella di verità è possibile ricavare più espressioni equivalenti che la rappresentano.
Dalla tabella alla funzione canonica
Dalla tabella alla funzione canonica La funzione canonica è la funzione logica associata alla tabella di verità del circuito che si vuole progettare. Essa è costituita da una somma di MinTerm con variabili
Esercizi vari con soluzione
Esercii vari con soluione Esercii RC. Eserciio Data la seguente mappa: x 3 x 2 x x - - - - - -. indicare e classificare tutti gli implicanti principali; 2. trovare tutte le possibili liste di copertura
Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche
Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche Ing. Gestionale e delle Telecomunicazioni A.A. 27/8 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali digitali vs. segnali analogici
Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone
Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone Il problema dell assegnamento degli stati versione del 9/1/03 Sintesi: Assegnamento degli stati La riduzione del numero
Circuiti di commutazione, codifica e decodifica
Circuiti di commutazione, codifica e decodifica Vediamo ora i più comuni circuiti per la codifica, decodifica e commutazione di informazioni rappresentate sotto forma binaria. Tali circuiti costituiscono
COMPITO A Esercizio 1 (13 punti) Dato il seguente automa:
COMPITO A Esercizio 1 (13 punti) Dato il seguente automa: 1/0 q8 1/0 q3 q1 1/0 q4 1/0 q7 1/1 q2 1/1 q6 1/1 1/1 q5 - minimizzare l automa usando la tabella triangolare - disegnare l automa minimo - progettare
Algebra di Boole e circuiti logici
lgebra di oole e circuiti logici Progetto Lauree Scientiiche 29 Dipartimento di Fisica Università di Genova Laboratorio di Fisica in collaborazione con il Liceo Scientiico Leonardo da Vinci Genova - 23
Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer
Corso di Calcolatori Elettronici I A.A. 2011-2012 Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Lezione 12 Prof. Antonio Pescapè Università degli Studi di Napoli Federico II Facoltà
Algebra di Boole. Fondamenti di Informatica per Meccanici Energetici - Biomedici 1. Politecnico di Torino Ottobre Mr. Boole. Variabile booleana
Fondamenti di Informatica per Meccanici Energetici - iomedici 1 Mr. oole lgebra di oole George oole: Matematico inglese del XIX secolo lgebra che descrive le leggi del pensiero Logica da cui è possibile
Richiami di Algebra di Commutazione
LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n Prof. Rosario Cerbone [email protected] http://digilander.libero.it/rosario.cerbone a.a. 6-7 Richiami di Algebra di Commutazione In questa
Le mappe di Karnaugh
Le mappe di Karnaugh Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto più pratico di semplificazione che quello
Esercizi Logica Digitale,Circuiti e Bus
Esercizi Logica Digitale,Circuiti e Bus Alessandro A. Nacci [email protected] ACSO 214/214 1 2 Esercizio 1 Si consideri la funzione booleana di 3 variabili G(a,b, c) espressa dall equazione seguente:
Algebra di Boole X Y Z V. Algebra di Boole
L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole che
LEZIONE N 91. Introduzione agli elementi architetturali principali. Roberto Giorgi, Universita di Siena, C116L91, Slide 1
LEZIONE N 91 Introduzione agli elementi architetturali principali Roberto Giorgi, Universita di Siena, C116L91, Slide 1 FORME STANDARD DI FUNZIONI BOOLEANE Roberto Giorgi, Universita di Siena, C116L91,
PIANO DI LAVORO DEI DOCENTI
Pag. 1 di 5 Docente: Materia insegnamento: ELETTRONICA GENERALE Dipartimento: Anno scolastico: ELETTRONICA ETR Classe 1 Livello di partenza (test di ingresso, livelli rilevati) Il corso richiede conoscenze
Corso di Calcolatori Elettronici I
Corso di Calcolatori Elettronici I Algebra di Boole: minimizzazione di funzioni booleane Roberto Canonico Università degli Studi di Napoli Federico II A.A. 2014-2015 Roberto Canonico Corso di Calcolatori
Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR
Corso di Calcolatori Elettronici I A.A. 2010-2011 Algebra di Boole: mappe di Karnaugh e funzioni NAND e NOR Lezione 7 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Funzioni Equivalenza
Programma di Elettrotecnica ed Elettronica. Classe III A EN Prof. Maria Rosaria De Fusco e Domenico Bartemucci. a.s
Programma di Elettrotecnica ed Elettronica Classe III A EN Prof. Maria Rosaria De Fusco e Domenico Bartemucci a.s. 2014-2015 Elettrotecnica: Nozioni fondamentali: La struttura della materia La corrente
ISTITUTO D'ISTRUZIONE SUPERIORE J.C. MAXWELL Data 30 maggio 2016 Pag. 1 di 5 PROGRAMMA SVOLTO: ELETTROTECNICA, ELETTRONICA E AUTOMAZIONE
Data 30 maggio 2016 Pag. 1 di 5 materia: ELETTROTECNICA, ELETTRONICA E AUTOMAZIONE I circuiti elettrici e relative misure docenti : Carla BIASCA Giovanni PENNACCHIA classe : 3CR Ripasso: potenze, notaz.
Sintesi di Reti Sequenziali Sincrone
Sintesi di Reti Sequenziali Sincrone Maurizio Palesi Maurizio Palesi 1 Macchina Sequenziale Una macchina sequenziale è definita dalla quintupla (I,U,S,δ,λ ) dove: I è l insieme finito dei simboli d ingresso
Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010 MUX-DEMUX-ROM-PLA
Reti Logiche Prof. B. Buttarazzi A.A. 29/2 MUX-DEMUX-ROM-PLA Sommario Sintesi di Reti Combinatorie mediante Multiplexer Demultiplexer ROM PLA 2/6/2 Corso di Reti Logiche 29/ 2 Metodo generale di sintesi
I Indice. Prefazione. Capitolo 1 Introduzione 1
I Indice Prefazione xi Capitolo 1 Introduzione 1 Capitolo 2 Algebra di Boole e di commutazione 7 2.1 Algebra di Boole.......................... 7 2.1.1 Proprietà dell algebra.................... 9 2.2
FONDAMENTI DI INFORMATICA. Prof. PIER LUCA MONTESSORO. Facoltà di Ingegneria Università degli Studi di Udine. Reti logiche
FONDAMENTI DI INFORMATICA Prof. PIER LUCA MONTESSORO Facoltà di Ingegneria Università degli Studi di Udine Reti logiche 2000 Pier Luca Montessoro (si veda la nota di copyright alla slide n. 2) 1 Nota di
Circuiti digitali. Operazioni Logiche: Algebra di Boole. Esempio di circuito. Porte Logiche. Fondamenti di Informatica A Ingegneria Gestionale
Operazioni Logiche: lgebra di oole Fondamenti di Informatica Ingegneria Gestionale Università degli Studi di rescia Docente: Prof. lfonso Gerevini Circuiti digitali Il calcolatore può essere visto come
Algebra di Boole Algebra di Boole
1 L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole
Algebra di Boole: minimizzazione di funzioni booleane
Corso di Calcolatori Elettronici I A.A. 200-20 Algebra di Boole: minimizzazione di funzioni booleane Lezione 8 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Forme Ridotte p Vantaggi
Esercizio sugli automi di Moore
Esercizio sugli automi di Moore 1. Sintesi di un automa di Moore: Gestione di un sistema di inscatolamento. Si vuole costruire una rete sequenziale che controlli un sistema di inscatolamento. Braccio1
Esercizi. 1. Algebra booleana
Esercizi 1. Algebra booleana Esercizio 1.1 Data le forma logica F = (z(xy ) +x+yz ) +x y Svolgere i seguenti punti: Applicare le regole dell algebra per semplificare la forma riducendo il numero dei prodotti
Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!
Fondamenti di Informatica Algebra di Boole Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2-22 Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR () NOT (!) Gli operandi
Architetture degli Elaboratori I II Compito di Esonero (A) - 16/1/1997
1 II Compito di Esonero (A) - 16/1/1997 Non è ammessa la consultazione di nessun testo, nè l utilizzo di nessun tipo di calcolatrice. Ogni esercizio riporta, fra parentesi, il suo valore in trentesimi
Esercizi svolti Y Z. 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari AND, OR, NOT.
Esercizi svolti 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari ND, OR, NOT. a) F= b) F= F= 2. Date le seguenti funzioni logiche ricavare le
Sistemi Combinatori & Mappe di Karnaugh
Sistemi Combinatori & Mappe di Karnaugh AB E=0 F=0 E=1 F=0 00 01 11 10 AB 00 01 11 10 00 1 0 0 0 00 0 0 0 0 01 0 0 0 0 01 0 0 0 0 11 0 0 1 0 11 0 0 1 0 10 0 0 0 1 10 0 0 0 1 AB 00 01 11 10 AB 00 01 11
Quante sono le combinazioni possibili n cifre che possono assumere i valori 0 e 1? Le combinazioni possibili sono 2 n.
Lezioni di Architettura degli elaboratori O. D antona Le funzioni booleane Funzione booleana La funzione booleana è un applicazione dall insieme dei numeri le cui cifre sono composte da 0 e 1 all insieme
IIS Via Silvestri ITIS Volta Programma svolto di Tecnologie Informatiche A.S. 2015/16 Classe 1 A
IIS Via Silvestri ITIS Volta Programma svolto di Tecnologie Informatiche A.S. 2015/16 Classe 1 A Modulo n 1 - Concetti informatici di base 1.1 Introduzione allo studio del computer 1.2 Rappresentazione
Sintesi di Reti sequenziali Sincrone
Sintesi di Reti sequenziali Sincrone alcolatori ElettroniciIngegneria Telematica Sintesi di Reti Sequenziali Sincrone na macchina sequenziale è definita dalla quintupla δ, λ) dove: I è l insieme finito
Esercitazioni di Reti Logiche
Esercitazioni di Reti Logiche Sintesi di Reti Sequenziali Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico 2007/2008 Sintesi dei circuiti sequenziali
Mappe di Karnaugh G. MARSELLA UNIVERSITÀ DEL SALENTO
Mappe di Karnaugh 1 G. MARSELLA UNIVERSITÀ DEL SALENTO Introduzione Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto
Automi a stati finiti
1. Automi a stati finiti: introduzione Automi a stati finiti Supponiamo di avere un sistema che si può trovare in uno stato appartenente ad un insieme finito di stati possibili. Ex: Immaginiamo un incrocio
1. Automi a stati finiti: introduzione
1. Automi a stati finiti: introduzione Supponiamo di avere un sistema che si può trovare in uno stato appartenente ad un insieme finito di stati possibili. Ex: Immaginiamo un incrocio tra due strade regolate
Dispositivi Logici Programmabili
Dispositivi Logici Programmabili Introduzione ROM (Read Only Memory) PLA (Programmable Logic Array) PAL (Programmable Array Logic) PLA e PAL avanzate Logiche programmabili Sono dispositivi hardware che
Funzioni booleane. Vitoantonio Bevilacqua.
Funzioni booleane Vitoantonio Bevilacqua [email protected] Sommario. Il presente paragrafo si riferisce alle lezioni del corso di Fondamenti di Informatica e Laboratorio di Informatica dei giorni 9
Reti Logiche Appello del 1 marzo 2011
Politecnico di Milano Dipartimento di Elettronica e Informazione prof.ssa Anna Antola prof. Fabrizio Ferrandi prof.ssa Cristiana Bolchini Esercizio n. 1 Si consideri la macchina sequenziale sincrona a
Progetto di Contatori sincroni. Mariagiovanna Sami Corso di reti Logiche 8 Anno
Progetto di Contatori sincroni Mariagiovanna Sami Corso di reti Logiche 8 Anno 08 Introduzione Per le reti sequenziali esistono metodologie di progettazione generali, che partendo da una specifica a parole
I circuiti digitali: dalle funzioni logiche ai circuiti
rchitettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff.. orghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi
I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP)
I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) Prof. Alberto Borghese Dipartimento di Informatica [email protected] Università degli Studi di Milano Riferimento al testo: Sezione C.3;
Metodo di Quine- McCluskey
Metodo di Quine- McCluskey Maurizio Palesi Maurizio Palesi Definizioni Date due funzioni f(x,x 2,,x n ) e g(x,x 2,,x n ) si dice che f copre g (oppure g implica f) e si scrive f g se f(x,x 2,,x n )= quando
Algebra di Boole: mappe di Karnaugh
Corso di Calcolatori Elettronici I A.A. 2012-2013 Algebra di Boole: mappe di Karnaugh Pro. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie
Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici
Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e
Prova d esame di Reti Logiche T 10 Giugno 2016
Prova d esame di Reti Logiche T 10 Giugno 2016 COGNOME:.. NOME:.. MATRICOLA: Si ricorda il divieto di utilizzare qualsiasi dispositivo elettronico (computer, tablet, smartphone,..) eccetto la calcolatrice,
Circuiti Combinatori
Circuiti Combinatori circuiti combinatori sono circuiti nei quali le uscite dipendono solo dalla combinazione delle variabili logiche presenti nello stesso istante all ingresso Essi realizzano: Operazioni
Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)
Algebra di Boole Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole L algebra di Boole o della commutazione è lo strumento
PROGRAMMA DI ELETTRONICA classe 3B a.s. 2014/15
PROGRAMMA DI ELETTRONICA classe 3B a.s. 2014/15 Caratteristiche elettriche dei materiali Leggi di Ohm Generatori di tensione e di corrente Resistori in serie e in parallelo Partitori di tensione e di corrente
Le coniche: circonferenza, parabola, ellisse e iperbole.
Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono
Sintesi di Espressioni Booleane
MIXAGGI POCO FLUIDIISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY Sintesi di Espressioni Booleane Prof. G. Ciaschetti. Definizioni preliminari Nella vita di tutti giorni, troviamo spesso le parole analisi e sintesi.
A.A. 2003/2004 Esercizi di Reti Logiche A
A.A. 2003/2004 Esercizi di Reti Logiche A A cura di F. Ferrandi, C. Silvano Ultimo aggiornamento, 11 novembre 2003 Questi appunti sono stati possibili anche per il lavoro fatto da alcuni studenti del corso
I Circuiti combinatori: LOGISIM
1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY I Circuiti combinatori: LOGISIM Prof. G. Ciaschetti 1. Le porte logiche Un circuito combinatorio (o sistema combinatorio o rete combinatoria) è un circuito elettrico,
Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer
Corso di Calcolatori Elettronici I A.A. 20-202 Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Lezione 5 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di
Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono:
Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: Connettivi logici True (vero identificato con 1) False (falso identificato con 0) Le variabili
Cosa è l Informatica?
Cosa è l Informatica? Scienza degli elaboratori elettronici (Computer Science) Scienza dell informazione Scienza della rappresentazione, memorizzazione, elaborazione e trasmissione dell informazione Elaboratore
(Link al materiale in formato html)
Materiale didattico realizzato dal Prof. Giancarlo Fionda insegnante di elettronica. Di seguito è mostrato l'elenco degli argomenti trattati (indice delle dispense): (Link al materiale in formato html)
Indice. Prefazione. sommario.pdf 1 05/12/
Prefazione xi 1 Introduzione 1 1.1 Evoluzione della progettazione dei sistemi digitali 1 1.2 Flusso di progettazione dei sistemi digitali 2 1.3 Obiettivi del libro 6 1.4 Struttura ragionata del libro 7
Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole
Andrea Passerini [email protected] Informatica Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: True (vero identificato con 1) False (falso
UNITÀ DIDATTICA 5 LA RETTA
UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme
SIMULAZIONE DELLA PROVA INTERMEDIA DEL CORSO DI CALCOLATORI ELETTRONICI
SIMULAZIONE DELLA PROVA INTERMEDIA DEL CORSO DI CALCOLATORI ELETTRONICI ESERCIZIO 1 (10 Punti) Si implementi una rete sequenziale la cui uscita valga Z=1 solo quando viene riconosciuta la sequenza in ingresso
Corso E Docente: Siniscalchi. Algebra di Boole
Corso E Docente: Siniscalchi Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo scopo di descrivere
Architettura degli Elaboratori
circuiti combinatori: ALU slide a cura di Salvatore Orlando, Marta Simeoni, Andrea Torsello 1 ALU ALU (Arithmetic Logic Unit) circuito combinatorio all interno del processore per l esecuzione di istruzioni
Algebra Booleana, Funzioni Logiche e Circuiti Logici
Algebra Booleana, Funzioni Logiche e Circuiti Logici Esercizio 1 Si scriva, utilizzando gli operatori booleani AND, OR, NOT, la funzione booleana che riceve in ingresso un numero binario puro su 3 bit
Domande di Reti Logiche compito del 29/1/2016
Domande di Reti Logiche compito del 29/1/2016 Barrare una sola risposta per ogni domanda Il punteggio finale è -1 (n. di risposte errate + n. domande lasciate in bianco Usare lo spazio bianco sul retro
Reti Logiche A Esame del 19 febbraio 2007
Politecnico di Milano Dipartimento di Elettronica e Informazione prof.ssa Anna Antola prof. Fabrizio Ferrandi Reti Logiche A Esame del 9 febbraio 007 Matricola prof.ssa ristiana Bolchini Esercizio n. Data
Tecniche di Progettazione Digitale. Reti combinatorie: Le mappe di Karnaugh
Tecniche di Progettazione Digitale Reti cominatorie: Le mappe di Karnaugh Valentino Lierali Mappe di Karnaugh (1) Una unzione ooleana di n it ha come dominio l insieme costituito da tutte le possiili n-ple
ESERCIZI DEL CORSO DI INFORMATICA
ESERCIZI DEL CORSO DI INFORMTIC Questa breve raccolta di esercizi vuole mettere in luce alcuni aspetti della prima parte del corso e fornire qualche spunto di riflessione. Il contenuto del materiale seguente
PROGETTO E VERIFICA DI CIRCUITI LOGICI COMBINATORI IMPLEMENTATI CON SOLE PORTE NAND.
PROGETTO E VERIFICA DI CIRCUITI LOGICI COMBINATORI IMPLEMENTATI CON SOLE PORTE NAND. I CIRCUITO Si vuole realizzare il circuito logico della funzione logica rappresentata nella tabella di verità di seguito
Anno 4 Matrice inversa
Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere
Rappresentazione in complemento a 2: caratteristiche generali
Rappresentazione in complemento a 2: caratteristiche generali La rappresentazione non è completamente posizionale, ma in parte sì. Guardando il bit più significativo (MSB) si capisce se il numero è positivo
La trilaterazione. Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato
La trilaterazione È necessario sapere e saper operare con: Le proporzioni Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato La trilaterazione è una tecnica
3. Segni della funzione (positività e negatività)
. Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della
orario ricevimento via e-mail: orario ufficio risposta entro 3 giorni
FACOLTA : INGEGNERIA CORSO DI LAUREA: INFORMATICA INSEGNAMENTO: CONTROLLI DIGITALI Modulo 1 NOME DOCENTE: Prof. Giovanni Fedecostante indirizzo e-mail: [email protected] orario ricevimento
