Termochimica (Cap. 14)

Documenti analoghi
Capitolo 16 L energia si trasferisce

Cap. 7 - Termochimica. Le variazioni di energia relative ai processi chimici

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Termodinamica e termochimica

Termodinamica e termochimica

Termochimica. Capitolo 6

La termochimica. Energia in movimento

relazioni tra il calore e le altre forme di energia.

Termodinamica e Termochimica

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore

TERMODINAMICA E TERMOCHIMICA

Termodinamica. Scienza che studia le relazioni tra il calore e le altre forme di energia coinvolte in un processo fisico o chimico

Termochimica. La termochimica si occupa dell effetto termico associato alle reazioni chimiche. E i = energia interna molare H i = entalpia molare

Programma: a che punto siamo? Sistema, equilibrio e fase Tre concetti fondamentali. Definizione di sistema in termodinamica

Corso di Studi di Fisica Corso di Chimica

La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici

Chimica Generale ed Inorganica: Programma del Corso

Termodinamica I. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Esploriamo la chimica

Il I principio della termodinamica. Calore, lavoro ed energia interna

TERMODINAMICA 28/10/2015 SISTEMA TERMODINAMICO

Dinamica delle reazioni chimiche (attenzione: mancano i disegni)

TERMOCHIMICA. Studio del calore in gioco in una reazione chimica. Le reazioni chimiche possono coinvolgere scambi di energia

Termodinamica chimica

Termochimica. Tutte le trasformazioni della materia, chimiche e fisiche, sono accompagnate da variazioni di energia.

Un problema di grande interesse è la possibilità di prevedere se due o più sostanze poste a contatto sono in grado di reagire.

Corso di Chimica e Propedeutica Biochimica

Termochimica : studio della variazione di entalpia nelle reazioni chimiche

Fisica per scienze ed ingegneria

Definizioni: sistema ambiente sistema isolato sistema chiuso sistema adiabatico stato di un sistema. Termodinamica

+ + Corso di Chimica e Propedeutica Biochimica Le equazioni chimiche e la stechiometria. CH 4 (g)+ 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) 1

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Fisica per scienze ed ingegneria

Dalle soluzioni alla chimica del carbonio

Introduzione alla Chimica. Paolo Mazza

Energia e reazioni chimiche

TERMODINAMICA. Scienza che studia le relazioni tra il calore e le altre forme di energia coinvolte in un processo fisico o chimico

Energia e trasformazioni spontanee

2) Primo principio della Termodinamica

TERMODINAMICA. Scienza che studia le relazioni tra il calore e le altre forme di energia coinvolte in un processo fisico o chimico

TERMODINAMICA CHIMICA

TERMODINAMICA. Scienza che studia le relazioni tra il calore e le altre forme di i energia coinvolte in un processo fisico o chimico

QUANTITA TOTALE DI ENERGIA SI CONSERVA

TERMODINAMICA E TERMOCHIMICA

SISTEMA TERMODINAMICO STATO TERMODINAMICO

La temperatura. La materia può trovarsi in tre stati diversi di aggregazione diversi: solido, liquido e gassoso

Lezione n. 4. Lavoro e calore Misura di lavoro e calore Energia interna. 04/03/2008 Antonino Polimeno 1

Tale errata concezione del calore fu abbandonata quando si intuì che il calore non è altro che una forma di energia.

Il primo principio della termodinamica

Chimica Generale ed Inorganica

Entropia e secondo principio della termodinamica: prevedere la spontaneità di un processo

Termochimica - L Aspetto Energetico della Chimica (cap. 5)

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione

Termodinamica. Termodinamica TERMODINAMICA. Termodinamica. Variabili di stato. Principi della Termodinamica

Calore specifico. Il calore che deve essere fornito per aumentare di un grado centigrado un chilogrammo della sostanza è il calore specifico:

Lezione 13: Calore e sua propagazione. Elementi di Fisica AA 2011/2012 Doc Claudia R. Calidonna

PCl5 (g) <====> PCl3(g) + Cl2(g)

Lo stato gassoso e le sue proprietà

i tre stati di aggregazione

Esercizi di Termochimica

Bilancio di energia: il Primo Principio della Termodinamica. Principi di Ingegneria Chimica Ambientale

ASPETTO TERMODINAMICO

SCIENZA DEI MATERIALI. Chimica Fisica. VI Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari

La misura della temperatura

Determinazione del calore di combustione specifico di un pellet vegetale

Argomenti 2 lezione. Bilanciamento delle reazioni chimiche. Resa teorica e resa effettiva. Esercitazioni di Chimica Generale ed Inorganica 2

Entropia, ed Energia Libera

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

Entropia, Energia Libera, ed Equilibrio

Chimica A.A. 2017/2018

Limiti del criterio della variazione entropia

Corso di Chimica Generale CL Biotecnologie

Termodinamica I. Primo Principio della Termodinamica

Lavoro adiabatico e calore, esperimenti di Joule

SCALA TERMOMETRICA CELSIUS

TERMODINAMICA CHIMICA

Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia

Esercizi di Termochimica

TERMODINAMICA. G. Pugliese 1

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato

L2 - Completa la seguente frase: "L'auto sta al telaio come il corpo sta..."

SISTEMA. Oggetto di una osservazione è il SISTEMA. Anche un fenomeno può essere considerato un sistema.

Termodinamica Chimica. Calore

Lo stato gassoso gas. Caratteristiche dello stato gassoso. liquido. solido. assenza di volume proprio forma fluida

delle temperature iniziale e finale analogia con l energia potenziale in meccanica la funzione U e detta energia interna

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

Combustione 2H 2 CO 2. Entalpie standard di combustione

Lezione n. 5. Entalpia. a volume costante a pressione costante Calorimetria differenziale Reazione esotermiche ed endotermiche Legge di Hess

Termochimica reazione esotermica: cede calore all ambiente 2Al + Fe 2 O 3 Al 2 O 3 + 2Fe 2Mg + CO 2 2MgO + C

termodinamica: 2. il Primo Principio

LEGGI PONDERALI DELLA CHIMICA

Esercizi sulla Termodinamica Chimica

I legami chimici. Programma: a che punto siamo? Funzioni di stato. Corso di Studi di Fisica Corso di Chimica. Luigi Cerruti

Corso di Studi di Fisica Corso di Chimica

Il fine è quello di individuare reazioni energeticamente convenienti

Transcript:

Termochimica (Cap. 14) Energia, lavoro e calore Energia interna ed Entalpia Primo Principio della Termodinamica Variazioni di Entalpia Entalpia molare di formazione Entalpie molari di legame Capacità termica Calorimetria

Termodinamica e Termochimica La termodinamica è quella parte della chimica che si occupa delle variazioni di energia nelle reazioni chimiche e nei cambiamenti dello stato fisico delle sostanze. La termochimica è quella parte della termodinamica che si occupa della produzione o assorbimento di energia sotto forma di calore nei processi chimici. La maggior parte delle reazioni chimiche è accompagnata da produzione o assorbimento di energia sotto forma di calore.

Sistema e ambiente Nelle reazioni chimiche c è un trasferimento di energia tra il sistema di reazione e l ambiente. Il sistema di reazione comprende tutte le sostanze chimiche che prendono parte alla reazione. L ambiente consiste di tutto il resto, come recipienti di reazione, bagni di acqua e l atmosfera. Tra un sistema di reazione e l ambiente l energia può essere scambiata in due modi: come lavoro o come calore. La termodinamica è lo studio di questi scambi di energia.

Il trasferimento di energia come lavoro (w) richiede l azione di una forza lungo una distanza. Un sistema costituito da un gas racchiuso in un cilindro munito di pistone. Si applica una forza F al pistone, provocando uno spostamento del pistone h. L area della superficie del pistone è A.

Il lavoro w fatto sul sistema può essere espresso come: w = - F h con il segno meno perché usiamo la convenzione che il lavoro fatto sul sistema è positivo. P = F/A F = PA w = - P A h w = - P V

Il lavoro di tipo PV è il lavoro fatto sul sistema o dal sistema quando è compresso o espanso a P cost. w = - P V (1) L equazione (1) è molto utile nella termochimica, perché molte reazioni avvengono in recipienti aperti verso l atmosfera, e l atmosfera esercita una pressione costante nel corso della reazione. Durante la compressione, il lavoro è fatto dall ambiente sul sistema, il sistema quadagna energia ed il segno del lavoro è positivo (w > 0). Durante l espansione, il lavoro è fatto dal sistema sull ambiente, il sistema perde energia ed il segno del lavoro è negativo (w < 0).

Unità di misura del lavoro In unità SI il lavoro si misura in joule (J). (1 J = 1 kg m 2 s -2 ) la pressione in pascal ( 1 Pa = 1 J m -3 ) e il volume in m -3 Se la pressione si esprime in atmosfere ed il volume in litri, L unità di misura per il lavoro è litri x atmosfere (litri-atmosfere, L atm) 1 L atm = 101,325 J

Il trasferimento di energia come calore (q) non richiede l applicazione di una forza. Il trasferimento di calore avviene ogni volta che c è una differenza di temperatura tra il sistema e l ambiente. L energia fluisce spontaneamente come calore dalle regioni a temperatura più alta alle regioni a temperatura più bassa. La convenzione sul segno per il calore è la stessa di quella per il lavoro: -Quando il sistema perde energia verso l ambiente sotto forma di calore, il segno di q è negativo (q < 0) (reazione esotermica). -Quando si trasferisce energia sotto forma di calore dall ambiente al sistema, il segno di q è positivo (q > 0) (reazione endotermica) Calore e lavoro sono i modi in cui l energia è trasferita.

L energia può essere classificata come cinetica o potenziale. L energia cinetica è associata al moto, per esempio: - Il moto di atomi, molecole o ioni a livello particellare (energia termica). Tutta la materia possiede energia termica. - Il moto di un oggetto macroscopico in movimento (energia meccanica). - Il moto degli elettroni in un conduttore (energia elettrica). L energia potenziale deriva dalla posizione dell oggetto ed include: - L energia posseduta da un oggetto tenuto ad una certa altezza rispetto al pavimento (energia gravitazionale). - L energia immagazzinata nei combustibili (energia chimica). Tutte le reazioni chimiche implicano una variazione di energia chimica. - L energia associata alla separazione di due cariche elettriche (energia elettrostatica). L energia potenziale e l energia cinetica possono essere interconvertite.

Primo Principio della Termodinamica Il primo principio della termodinamica postula che l energia non può essere né creata né distrutta ma può essere solo convertita da una forma in un altra: ciò ha portato R. Clausius (1865) ad affermare che il contenuto di energia dell Universo (considerato come un sistema isolato) è costante. Ogni sistema ha un suo contenuto di energia, energia interna (U), nella quale si sommano tutte le forme di energia legate al suo stato (energia dovuta ai legami fra nucleo ed elettroni, fra atomi, energia cinetica, energia nucleare, etc.). Il valore assoluto della U di un determinato sistema in un determinato stato, non è noto, ma la termodinamica si interessa solo alle differenze tra i valori dell energia del sistema stesso prima e dopo una trasformazione.

Primo Principio della Termodinamica Per un qualsiasi sistema si possono individuare i trasferimenti di energia sia come calore che come lavoro tra il sistema e l ambiente. Questa relazione può essere espressa dall equazione: U = variazione del contenuto energetico U = q + w (1) q = energia trasferita come calore al o dal sistema w = energia trasferita come lavoro al o dal sistema L equazione (1) è l espressione matematica del primo principio della termodinamica: la variazione di energia interna di un sistema ( U) è la somma dell energia trasferita sotto forma di calore tra il sistema e l ambiente (q) e dell energia trasferita come lavoro tra il sistema e l ambiente (w).

L energia interna U di un sistema chimico è la somma delle energie potenziale e cinetica degli atomi, molecole o ioni del sistema. L energia potenziale è l energia associata alle forze attrattive e repulsive tra i nuclei e gli elettroni del sistema. Essa include l energia associata ai legami nelle molecole, alle forze tra gli ioni ed alle forze tra le molecole nello stato liquido e solido. L energia cinetica è l energia associata al moto degli atomi, ioni e molecole del sistema. Quello che si valuta è la variazione di energia interna U, che è una quantità misurabile. L energia interna U è una funzione di stato in quanto il U dipende solo dallo stato iniziale e finale del sistema, e non da come il sistema passa dallo stato iniziale allo stato finale. In termodinamica le funzioni che dipendono solo dallo stato del sistema e non da come quello stato è stato raggiunto sono chiamate funzioni di stato. Il lavoro e il calore sono funzioni di trasferimento di energia.

Per convenzione: quando si trasferisce energia sotto forma di lavoro dal sistema all ambiente il segno del lavoro è negativo (w < 0) e quando si trasferisce dall ambiente al sistema il segno è positivo (w > 0). Analogamente: quando si trasferisce energia sotto forma di calore dal sistema all ambiente il segno del calore è negativo (q < 0) (reazione esotermica), e quando si trasferisce dall ambiente al sistema il segno è positivo (q > 0) (reazione endotermica). Poiché U = q + w, quando il flusso netto di energia è dal sistema all ambiente U < 0, e quando il flusso netto di energia è dall ambiente al sistema U > 0.

Variazione Convenzioni sui segni per q e w del sistema Energia trasferita in forma di calore al sistema (endotermico) Energia trasferita in forma di calore dal sistema (esotermico) Energia trasferita in forma di lavoro al sistema Energia trasferita in forma di lavoro dal sistema Convenzione sul segno q > 0 (+) q < 0 (-) w > 0 (+) w < 0 (-) Effetto su U sistema U aumenta U diminuisce U aumenta U diminuisce La convenzione sul segno per la variazione di energia ( U) è la stessa di quella per il lavoro (w) ed il calore (q). U < 0 l energia fluisce dal sistema all ambiente U > 0 l energia è trasferita dall ambiente al sistema

Funzione di stato entalpia, H Nel caso di reazioni che si svolgono a pressione costante, (es. P atmosferica) conviene introdurre una nuova funzione di stato termodinamica H, chiamata entalpia, definita dall equazione: H = U + PV In un sistema chimico, la variazione di entalpia H è uguale al calore q p scambiato a pressione costante q p = H = H prodotti H reagenti H < 0 H > 0 reazioni esotermiche reazioni endotermiche

Esempio di reazione esotermica, H < 0 (si libera calore). Combustione del metano in aria con un becco Bunsen. La reazione è a pressione costante perché condotta all aperto nell atmosfera.

Esempio di reazione endotermica H > 0 (si assorbe calore). Impacco freddo commerciale usato in medicina dello sport per rimediare rapidamente agli incidenti, senza bisogno di ghiaccio. Questi impacchi freddi contengono sostanze chimiche in camere separate. Quando l impacco viene piegato si rompe una barriera di plastica permettendo al contenuto di mescolarsi. Le sostanze reagiscono e raffreddano rapidamente l impacco. Es. nitrato di ammonio solido e acqua.

Funzione di stato entalpia, H Diagramma delle entalpie per a) una reazione esotermica e b) una reazione endotermica. a) In una reazione esotermica, l entalpia dei prodotti è minore di quella dei reagenti. La differenza di entalpia è liberata come energia sotto forma di calore durante la reazione a P costante. b) In una reazione endotermica, l entalpia dei prodotti è maggiore di quella dei reagenti. La differenza di entalpia deve essere fornita come energia sotto forma di calore per far avvenire la reazione a P costante.

Entalpia di reazione L entalpia di reazione dipende dalla temperatura e dalla pressione. I valori generalmente riportati nelle tabelle si riferiscono alla temperatura di 25 C e alla pressione di 1 bar. La variazione di entalpia standard di reazione H reaz si riferisce ai reagenti puri alla pressione di 1 bar e ai prodotti puri alla pressione di 1 bar. Questi stati sono detti stati standard delle sostanze. Lo stato standard di un soluto è la soluzione 1 M del soluto. Quando scriviamo il valore numerico della variazione di entalpia standard di una reazione dobbiamo specificare sempre sia il valore di H reaz sia l equazione chimica corrispondente.

Le entalpie di reazione possono essere usate per prevedere la quantità di energia trasferita sotto forma di calore in un dato processo: es. reazione della termite: è una delle reazioni più esotermiche conosciute. Una volta che questa reazione è iniziata da una sorgente di calore, procede sviluppando tanto calore che il ferro che si forma è fuso.

Unità di misura dell energia L unità di misura dell energia del SI è il joule (J). 1 J = 1 kg m 2 s -2 Il kilojoule (kj) è equivalente a 1000 J. La caloria (cal) è un unità di misura del calore usata in passato. E definita come la quantità di energia sotto forma di calore necessaria per innalzare di 1,00 C, da 14,5 a 15,5 C, la tempe ratura di 1,00 g di acqua liquida pura. La kilocaloria (kcal) è equivalente a 1000 cal. Il fattore di conversione tra joule e calorie è: 1 caloria (cal) = 4,184 joule (J) La Caloria alimentare viene utilizzata per rappresentare l energia contenuta nei cibi. La caloria alimentare (Cal) è un unità equivalente alla kilocaloria o a 1000 calorie.

Legge di Hess Un importante proprietà dei valori di H reaz delle reazioni chimiche è la loro additività, che è conseguenza diretta del fatto che l entalpia è una funzione di stato. La proprietà di additività dei valori di H reaz è nota come legge di Hess. Le legge di Hess stabilisce che se una reazione è la somma di due reazioni o più reazioni, il H reaz per il processo complessivo è pari alla somma dei valori di H reaz di quelle reazioni. Illustrazione schematica dell applicazione della legge di Hess

Legge di Hess Illustrazione schematica dell applicazione della legge di Hess.

Regole per usare la legge di Hess nei calcoli per le equazioni chimiche Operazione Risultato Sommare due o più equazioni chimiche Moltiplicare un equazione chimica per un fattore n Usare l equazione chimica inversa H reaz (1+2) = H reaz (1) + H reaz (2) H reaz = n H reaz (1) H reaz (inversa) = - H reaz (diretta) L utilità della legge di Hess è che ci permette di calcolare il valore di H reaz di un equazione chimica dai valori di H reaz di equazioni correlate.

Entalpia molare standard di formazione L entalpia molare standard di formazione, H f, di un composto è la variazione di entalpia che accompagna la formazione di una mole di un composto nel suo stato standard a 1 bar, a partire dalle forme più stabili degli elementi che lo costituiscono, ciascuno nel proprio stato standard a 1 bar. Per convenzione, l entalpia standard di formazione di un elemento nel suo stato fisico più stabile a 25 C e 1 ba r, è uguale a zero.

Entalpie molari standard di formazione Variazioni di entalpie di formazione per tre diverse reazioni

La maggior parte dei composti non si riesce a formarli direttamente. Nel caso della formazione di acetilene a partire da C(s) e H 2 (g) non si ottiene soltanto C 2 H 2 (g) ma una miscela complessa di vari idrocarburi inclusi C 2 H 2 (g) (etilene) ed C 2 H 6 (g) (etano). In questo caso si può applicare la legge di Hess. Possiamo realizzare una tabella dei valori di H f dei composti ponendo uguale a zero i valori per la forma più stabile degli elementi. Per ogni elemento nel suo stato fisico più stabile a 1 bar e alla temperatura di 25 C, poniamo H f = 0 (si tratta di una scelta arbitraria, fatta per convenienza).

Stati di alcune forme di elementi per i quali assumiamo H f = 0 a 25 C Elemento Idrogeno ossigeno azoto cloro fluoro bromo mercurio sodio magnesio carbonio (grafite) zolfo (rombico) ferro Formula H 2 (g) O 2 (g) N 2 (g) Cl 2 (g) F 2 (g) Br 2 (l) Hg(l) Na(s) Mg(s) C(s) S(s) Fe(s)

Variazioni di entalpia di una reazione Usando le entalpie molari standard di formazione e l equazione (1) si può calcolare la variazione di entalpia di una reazione in condizioni standard. H reaz = Σ H f (prodotti) - Σ H f (reagenti) (1) Per calcolare il H reaz bisogna sommare le entalpie molari standard di formazione dei prodotti, ciascuno moltiplicato per il suo coefficiente stechiometrico, e sottrarre da questa la somma delle entalpie molari standard di formazione dei reagenti, ciascun moltiplicata per il suo coefficiente stechiometrico. Questa equazione è una conseguenza della definizione di H f e della legge di Hess. Esercizio 14.7 Esempio 14.8

Il valore di H reaz è determinato dalla differenza delle entalpie molari di legame (H leg ) delle molecole di reagenti e prodotti La variazione di entalpia di una reazione è data approssimativamente dalla differenza tra l energia necessaria come calore per rompere tutti i legami chimici delle molecole dei reagenti e l energia liberata come calore nella formazione di tutti i legami chimici delle molecole dei prodotti. H reaz ΣH leg (reagenti) - ΣH leg (prodotti)

Se nella formazione dei legami dei prodotti si libera più energia di quella richiesta per rompere i legami dei reagenti, il valore di H reaz è negativo (reazione esotermica). Se nella formazione dei prodotti si libera meno energia di quella necessaria per rompere i legami dei reagenti, il valore di H reaz è positivo (reazione endotermica). L entalpia di dissociazione di legame (o entalpia molare di legame) è la variazione di entalpia richiesta per rompere il legame in una molecola in fase gassosa. Il calcolo dei valori dei H reaz dalle entalpie molari di legame si può fare solo per le reazioni in fase gassosa. I valori di entalpie molari di legame sono valori medi, e i valori di H reaz calcolati usando le entalpie molari di legame sono solo approssimazioni dei valori veri misurati sperimentalmente. (Esempio 14.9)

Entalpia di atomizzazione: variazione di entalpia che accompagna il processo di dissociazione di un composto in atomi isolati allo stato gassoso

Capacità termica La capacità termica di un campione di sostanza è definita come l energia sotto forma di calore necessaria per aumentare la temperatura del campione di un grado Celsius o un kelvin ( T = t) c P = q P / T = H / T q P = H = c P T dove q P è l energia somministrata come calore a P costante e T è l aumento di temperatura Per misurare c P di una sostanza basta somministrare una quantità nota di energia come calore e misurare l aumento di temperatura ottenuto ad una certa pressione; c P è sempre positiva C P = capacità termica molare = c P /n q P = H = c P T= n C P T con n = numero di moli di sostanza che acquista o perde energia

Il calore specifico è la capacità termica per grammo di una sostanza e si indica come c sp : c sp = c p /m = q p /m T L energia passa spontaneamente sotto forma di calore da un oggetto a temperatura più alta ad uno a temperatura più bassa, finché si raggiunge l equilibrio termico. La temperatura finale (T f ) sarà nell intervallo tra le due temperature iniziali. Il valore di T f sarà più vicino numericamente alla temperatura iniziale del sistema con capacità termica maggiore. Più alta è la capacità termica di un sistema, più piccola è la variazione di temperatura che il sistema subisce quando perde o acquista una certa quantità di energia come calore.

Calorimetro: permette di determinare il H di una reazione chimica Calorimetro costituito da: un vaso di Dewar (bottiglia termostatica) con coperchio; un termometro di alta precisione; un agitatore ad anello; una resistenza elettrica per il riscaldamento. Si mette uno dei reagenti nel Dewar e poi si aggiunge l altro reagente, alla stessa temperatura. Dopo aver agitato la miscela di reazione si misura la variazione di temperatura. La resistenza riscaldante è usata per misurare la capacità termica del calorimetro.

Il calorimetro si basa sul principio che l energia totale è sempre conservata. Se una reazione avviene a P cost, il valore di H è uguale all energia emessa o assorbita come calore dalla reazione. Se per es. in un vaso di Dewar avviene una reazione esotermica, l energia emessa come calore non può uscire dal vaso, ed è assorbita dal contenuto del calorimetro (miscela di reazione, termometro, agitatore, etc.). L assorbimento di energia da parte del contenuto del calorimetro porta ad un aumento di T, T.

Calorimetro a bomba a) Calorimetro a bomba b) schema in sezione Il recipiente interno (la bomba ) in cui avviene la reazione di combustione, è posto in un recipiente esterno pieno d acqua. La variazione di temperatura del bagno d acqua circostante si misura con un termometro ad alta precisione. L acqua è in agitazione per assicurare una distribuzione uniforme del calore

Calorimetro a bomba Il calorimetro a bomba può essere utilizzato per misurare il U di una reazione di combustione. Una massa nota della sostanza di cui si vuole determinare l energia di combustione si carica nel calorimetro a bomba insieme a un filo di accensione. Il calorimetro è poi riempito con ossigeno gassoso in eccesso alla pressione di 30 bar. La reazione di combustione inizia facendo passare una breve scarica di corrente ad alta tensione nel filo di accensione. Il valore di U si determina misurando l aumento di temperatura del calorimetro e dell acqua in cui è immerso. Conoscendo la capacità termica del calorimetro e dal T osservato si calcola il valore di U ( U H).

Interpretazione molecolare delle capacità termiche Il moto delle molecole può essere traslazionale, rotazionale o vibrazionale. a) La traslazione è lo spostamento dell intera molecola attraverso lo spazio. b) La rotazione è il girare su se stessa della molecola nello spazio. c) La vibrazione è il movimento avanti e indietro dei nuclei intorno a posizioni relative fisse nella molecola. Le molecole poliatomiche possono assumere energia in vari modi. Più grande è la molecola, maggiore è il numero di modi in cui può ruotare e vibrare e maggiore la sua capacità termica.

Interpretazione molecolare delle capacità termiche Dai dati di capacità termiche molari a pressione costante, si osserva che tutti i gas monoatomici (He(g), Ne(g), Ar(g), Hg(g)), hanno un valore di C P di 20,8 J mol -1 K -1. Essendo monoatomiche, queste specie possono aumentare la loro energia solo muovendosi a velocità maggiore (moto traslazionale). I gas poliatomici (H 2 (g), NH 3 (g), CH 4 (g)), hanno valori di C P > 20,8 J mol -1 K -1. Possiamo calcolare la C P dei gas monoatomici dalla teoria cinetica dei gas che dice che l energia cinetica media per mole di gas è correlata alla temperatura assoluta. A parte l energia elettronica, l unica energia disponibile per un gas monoatomico è l energia cinetica, per cui possiamo identificare E c media con l energia termodinamica U.

Valori di C P dei metalli solidi: Al(s), Au(s), Cu(s), Fe(s), Ag(s), Li(s) Per questi metalli solidi il valore di C P è circa uguale a 3R (regola di Dulong e Petit) C P dell acqua liquida è il doppio di quella del ghiaccio. A causa della elevata capacità termica, una certa quantità di acqua è capace di assorbire una quantità relativamente grande di energia sotto forma di calore per cui l acqua è un eccellente refrigerante.