INGEGNERIA CHIMICA AMBIENTALE - Esercizi

Documenti analoghi
INGEGNERIA CHIMICA AMBIENTALE - Esercizi

IMPIANTI DELL INDUSTRIA DI PROCESSO ESERCITAZIONE N. 2. Bilanci di energia

Esercitazione 8: Aria Umida

Nella seguente tabella sono riportati i dati relativi ai vapori saturi circolanti nell impianto, dove W è il vapore di rete e V il vapore sviluppato:

EVAPORAZIONE 2. Dati di progetto relativi ai vapori circolanti nell impianto:

ESERCIZI sulle SOLUZIONI

PROBLEMA 1. Adottando un ugual salto termico nei tre concentratori e tenendo conto che i fluidi ausiliari sono disponibili alle seguenti condizioni:

A) ESERCIZI SVOLTI CON RISULTATI

FISICA TECNICA (Ingegneria Medica)

Corso Termodinamica. Esercitazione 3. II Principio

UNITA 3 COMBUSTIONE, CARBURANTI, LUBRIFICANTI

In base ai coefficienti stechiometrici posso calcolare quanti grammi di sostanza reagiscono.

6. Determinare il titolo del vapor d acqua che ad 8,00 bar ha un entalpia specifica di 2000 kj/kg.

Esercitazione di Fisica Tecnica

-SOLUZIONE- In una soluzione liquida si possono distinguere un solvente (il componente liquido più abbondante) e uno o più soluti.

FISICA TECNICA - A.A. 99/00

SOLUZIONI COMPITO A CHIMICA

Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale Termodinamica

Trasmissione del calore tra due fluidi in movimento separati da una parete, scambiatori a doppio tubo -HAIRPIN-

La legge dei gas perfetti

Esercizi di. Stechiometria dei composti. mercoledì 9 dicembre 2015

Prima parte dell esame di CHIMICA GENERALE ED INORGANICA CORSO DI LAUREA IN SCIENZE BIOLOGICHE (L-Z) (ELABORATO SIMBOLICO-NUMERICO)

Sistemi Gassosi. GAS = specie che occupa tutto lo spazio disponibile. VOLUME = spazio occupato si misura in: m 3, L (1L = 1dm 3 )

+ + Corso di Chimica e Propedeutica Biochimica Le equazioni chimiche e la stechiometria. CH 4 (g)+ 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) 1

Esame di Chimica Generale 19 Giugno 2013

SOLUZIONI COMPITO A DI CHIMICA DEL

5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente.

23/10/2013. La normalità si può mettere in relazione con la molarità di una soluzione attraverso la relazione: N = M x n

Problema 1 Mg + 2HCl H 2 + MgCl 2. di Mg 1 Mg 1 H 2 quindi 0,823 moli di H 2 di H 2

CORSO DI FISICA TECNICA e SISTEMI ENERGETICI. Proff. P. Silva e G. Valenti - A.A. 2009/2010 Calcolo di un Generatore di Vapore

Università Degli Studi di Cagliari Facoltà Farmacia Corso di laurea in Tossicologia. Corso di Analisi Chimico-Tossicologica.

Esame di Chimica Generale 22 Febbraio 2011

CORSO DI CHIMICA. Esercitazione del 7 Giugno 2016

Kelvin K T [K] = T [ C] + 273,16. Fahrenheit F T [ F] = 1,8 T [ C] Atmosfera atm = Pa = 760 mm Hg

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Esercizi di Chimica Fisica

Inquinamento ARIA. Inquinamento ARIA. Inquinamento ARIA. Inquinamento ARIA

Psicrometria propedeutica all essiccamento

Laboratorio di Impianti Chimici

Bari,7 luglio 1999 Compito di Analisi dei Farmaci I

CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 05/10/2010

SOLUZIONE : Sistema omogeneo di due o più componenti solidi, liquidi o gassosi

SOLUZIONI COMPITO PARZIALE CHIMICA

Fisica dell Atmosfera: composizione e struttura

Distribuzione e Temperatura. Pressione di Vapore. Evaporazione

CICLONE SEPARATORE Punto di emissione n. Temperatura emissione (K) Altezza geometrica di emissione (m)

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA

Lezione di Combustione

Reazioni chimiche e stechiometria

Fluidi termici di servizio

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl

SOLUZIONI e DILUIZIONI

Esercizi sui Motori a Combustione Interna

pressione esercitata dalle molecole di gas in equilibrio con Si consideri una soluzione di B in A. Per una soluzione ideale

Sommario della lezione 5. Esercizi sui concetti di Mole e Composizione percentuale. Formule chimiche

COMPITO A PARZIALE DI CHIMICA DEL

Reazioni chimiche reversibili

4) 8 g di idrogeno reagiscono esattamente con 64 g di ossigeno secondo la seguente reazione:

Soluzioni. Definizioni. Unità di concentrazione. Si definisce soluzione una miscela omogenea di 2 o più componenti occupanti la stessa fase.

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

+ 4e H 3 O + 3S H 2 O 3SO e H 3 O +

è completamente immerso in acqua. La sua

Esercizi e problemi tratti dal libro La chimica di Rippa Cap. 14 L'equilibrio chimico

Prova in itinere di Chimica Generale 9 Gennaio 2013

Massa assoluta e relativa e mole

2. CALCOLO DELL'ANIDRIDE CARBONICA NEI GAS DI SCARICO

Una colonna di rettifica, funzionante a pressione atmosferica, viene alimentata in continuo da 200 kmol/h di una miscela formata da 40 % di benzene e

REFRIGERAZIONE. Corso Base II. ESSE - Wilhelm Nießen

LABORATORIO DI CHIMICA GENERALE E INORGANICA

XVII ZOLFO. Metodo XVII.1 DETERMINAZIONE DELLO ZOLFO TOTALE. Metodo XVII.2 DETERMINAZIONE DELLO ZOLFO DA SOLFATI

Pesi atomici e molecolari La mole

Miscela di gas 1, 2 e 3. P 1 = n1 R T P 2 = n2 R T P 3 = n3 R T V V V. Pressioni parziali dei gas P 1 P 2 P 3

SCAMBIATORI DI CALORE

I GAS GAS IDEALI. PV=nRT. Pressione Volume numero di moli Temperatura Costante dei gas. P V n T R. n, T= cost Legge di Boyle

MASSE ATOMICHE. Oggi è possibile misurare accuratamente le masse atomiche tramite uno strumento chiamato spettrometro di massa

See more about

PCl5 (g) <====> PCl3(g) + Cl2(g)

air protection technology

H N. Mn Fe H 2 O

COMPITO A DI CHIMICA DEL

Lezione 2. Leggi ponderali

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

Valutazione di Emulsioni Acqua-DMA in un Motore Marino Ausiliario

Bilancio di materia in presenza di reazioni chimiche. Termodinamica dell Ingegneria Chimica

Formulario corso vapore

1 GRUPPO DI ESERCIZI SVOLTI tratti dal libro di testo

1 DOMANDE A SCELTA MULTIPLA

Esame di Chimica Generale 13 Aprile 2012

Misure Meccaniche e Termiche

Esercizi di Fisica Tecnica Scambio termico

[E] l energia occorrente per innalzare di 1 K la temperatura di 1 Mol di sostanza.

Esame di Chimica Generale 22 Luglio 2014

Dimensionamento di canna fumaria singola

ESAME DI SCIENZE SPERIMENTALI PARTE CHIMICA

Prova in itinere di Chimica Generale 12 Gennaio 2012

CONTROLLO E SICUREZZA DEI PROCESSI PRODUTTIVI IN AMBITO FARMACEUTICO PRE-APPELLO 19 DICEMBRE 2015

Esercizi di stechiometria

LABORATORIO DI CHIMICA GENERALE E INORGANICA

Flamma fumo est proxima. Paolo Cardillo. Dove c è fumo c è fiamma

LEZIONE 4. Le soluzioni

Transcript:

A cura dell Ing. Alessandro Erto INGEGNERIA CHIMICA AMBIENTALE - Esercizi A Bilanci di materia Legge dei gas ideali 1. Calcolare la densità dell'aria secca a 20 C e alla pressione di 1 atm, sapendo che la sua composizione (frazione molare) è la seguente: 20,95% di O2; 78,08% di N2; 0,94% di Ar; 0,03% di CO2. Calcolare inoltre la composizione dell'aria espressa come % in peso. 2. Una bombola da 30 l contiene metano (CH4) alla pressione di 150 atm e alla temperatura di 20 C. Calcolare quanti g di metano rimangono nella bombola dopo che, avendo fatto uscire parte del gas, la pressione si è dimezzata. 3. Un serbatoio del volume di 1200 m 3 è occupato per metà da bitume e per metà da aria alla temperatura di 160 C e alla pressione atmosferica. A seguito di fenomeni di degradazione del bitume si ha una produzione di gas pari a 100 moli/s, con aumento della pressione fino all esplosione del serbatoio in corrispondenza di un valore della pressione interna pari a 112 kpa. Calcolare il numero di moli di gas necessarie a determinare l evento incidentale. Calcolare il tempo necessario a raggiungere tali condizioni ipotizzando una portata di gas uscente costante e pari a 50 moli/s. 4. Si supponga di avere 1,5 litri di soluzione acquosa di idrossido di potassio KOH al 20% in peso. Si calcoli la quantità di acqua da aggiungere alla soluzione per ottenerne una all 8% in peso di KOH 5. Una miscela di A e B contenente il 45% in peso di B è inviata ad una colonna di distillazione. A seguito della distillazione si ottengono due correnti in uscita, una corrente di testa al 95% in peso di B e una di fondo al 90% in peso di A Se la portata di alimentazione è 1000 kg/h, calcolare le portate uscenti. 6. Un evaporatore è utilizzato per concentrare 7 kg/s di una soluzione acquosa di NaCl dal 10% al 50% in peso. Calcolare la portata di concentrato e quella di vapore acqueo generata. 7. L acido di scarico di un processo di nitrazione contiene il 23% di HNO3, il 57% di H2SO4 e il 20% di H2O (% w/w). L acido dev essere concentrato al 27% in HNO3 e al 60% in H2SO4, mediante aggiunta di H2SO4 al 93% e HNO3 al 90%. Calcolare le quantità di soluzioni da aggiungere 8. Una miscela gassosa al 25% di H2O e 75% NH3 in volume è trattata con una soluzione acida (liquido assorbente) per rimuovere NH3. La corrente gassosa risultante contiene il 37% in volume di NH3. Quale percentuale dell ammoniaca originaria è stata rimossa? 9. Una miscela di 1000 litri di aria satura di vapor d acqua viene raffreddata da 70 a 30 C a volume costante. Calcolare quanti grammi di acqua condensano alla fine del raffreddamento, sapendo che la tensione di vapore dell acqua vale 0,308 e 0,042 atm rispettivamente a 70 e 35 C.

10. In una stanza delle dimensioni 7x5x3,5 m 3, in cui è inizialmente presente propano in percentuale volumetrica dello 1,4 % in aria, viene lasciata aperta una bombola di gas (propano) con un flusso pari a 3,6 dm 3 /s. Ipotizzando la stanza ermeticamente chiusa, determinare il tempo necessario a realizzare una concentrazione pari al limite inferiore di infiammabilità (2,1% v/v). 11. In un laboratorio di analisi si vogliono preparare 2 litri di soluzione acquosa di un sale di mercurio con concentrazione pari a 5 mg/l di Hg, a partire da Hg(Cl)2 (P.M.=270). Determinare la quantità di sale da utilizzare. 12. In un laboratorio di ricerca sulle acque è necessario preparare una soluzione di prova di acqua+benzene allo 0,05% in peso di benzene. Volendo preparare 5 litri di tale soluzione, determinare quanto benzene puro (liquido) è necessario utilizzare. Supponendo di disporre già di una soluzione di 5 litri di acqua+benzene allo 0,02% in peso, calcolare quanto benzene puro si può risparmiare. (ρ benz=0,876 kg/l) 13. Calcolare il ph di una soluzione acquosa di HCl se mescolando 200 ml di tale soluzione con 100 ml di KOH 0,3 M si ottiene una soluzione a ph=11. 14. Calcolare in quale rapporto volumetrico occorre mescolare una soluzione 0,1 M di HNO3 con una 0,2 M di Ca(OH)2 per avere una soluzione a ph=1,3 15. Per neutralizzare 80 l/h di un refluo acquoso acido (avente un ph=2,7) si utilizza una soluzione di acqua e NaOH avente ph=13. Determinare la quantità specifica di NaOH (espressa in g/l) necessaria per preparare tale soluzione e la portata da utlizzare per neutralizare il refluo. 16. Una miscela secca di HCl e aria è ossidata cataliticamente per ottenere cloro. L aria è in eccesso del 30% rispetto ad un alimentazione stechiometrica. Calcolare il peso d aria per kg di acido, la composizione molare del gas entrante e la composizione in uscita nel caso di una conversione del 60%. 17. In un post-combustore termico si brucia ammoniaca con ossigeno puro per formare ossido nitrico (NO) e acqua. Si chiede: a. Se NH3 è alimentata al post-combustore con una portata di 100 kmoli/h, qual è la portata di alimentazione dell O2 (in kmoli/h) che garantisce un eccesso di O2 del 40%? b. Se 50 kg/h di NH3 e 100 kg/h di O2 sono alimentati al post-combustore determinare la massa di NO prodotta (in kg/h) se la reazione procede fino a completamento 18. L acrilonitrile è prodotto per reazione di propilene, ammoniaca ed ossigeno secondo l equazione: C3H6 + NH3 +3/2O2 ===> C3H3N + 3H2O L alimentazione ad un reattore in cui si vuole produrre acrilonitrile contiene 10 moli% di propilene 12 moli% di ammoniaca e 78 moli% di aria (79% azoto 21% ossigeno). Le condizioni operative sono tali per cui sarà ottenuta una conversione frazionaria del 30% del reagente limitante. Si determini: a) quale dei reagenti è quello limitante b) la percentuale presente in eccesso di tutti gli altri reagenti

c) la portata molare dei componenti uscenti con una portata entrante di 100 moli/h 19. Il processo di produzione dell acido nitrico può essere basato sulla ossidazione dell ammoniaca ottenuta per sintesi utilizzando l azoto dell aria e l idrogeno. Il primo passo nel processo di ossidazione di NH3 con O2 ha luogo con l impiego di un catalizzatore di platino e produce ossido di azoto (NO). La reazione è la seguente: 4NH3 + 5 O2 <====> 4NO + 6H2O In un particolare reattore e per particolari condizioni operative si ha una conversione del 90% di NH3 con una portata di alimentazione di 40 moli/h di ammoniaca e 60 moli/h di ossigeno. Si calcolino le portate in uscita del reattore. 20. Un post-combustore termico ha una volumetria in grado di trattare una portata gassosa massima pari a 250 Nm 3 /h. Supponendo di avere un gas inquinato da benzene (C6H6) così composto: N2 90%, O2 2% e C6H6 8%) pari a 260 Nm 3 /h e di volerla bruciare con un eccesso di aria pari al 70%, determinare la portata massima di gas inquinato che è possibile trattare. B Bilanci di Energia 21. Calcolare l entalpia H di 1 kg di vapor d acqua alla temperatura di 180 C e alla pressione di 3,5 atm. (Utilizzare come riferimento: T=0 C; P=1 atm e stato fisico:liquido) 22. Calcolare la quantità di calore ceduta da 1 m 3 di aria a TPS nel raffreddamento da 500 C a - 100, alla pressione costante di 1 atm. 23. Uno scaldabagno domestico, ben isolato termicamente, è riscaldato attraverso un elemento scaldate elettrico di potenza pari a 1,20 kw. Si calcoli il tempo richiesto dall elettrodomestico per portare 25 litri di acqua dalla temperatura di 25,0 C alla temperatura di 45 C 24. Un volume di Propano (C3H8) pari a 0,6 Nm 3, alla temperatura di 45 C, viene bruciato. Ipotizzando un efficienza di reazione pari al 95% e un alimentazione stechiometrica di aria, calcolare la quantità di aria da fornire, il calore sviluppato dalla reazione (a 25 C) e la temperatura finale dei fumi ipotizzando una perdita di calore verso l esterno pari ad 1/4 di quello sviluppato dalla combustione (valutato sempre a 25 C). 25. Una miscela gassosa di 18 n-litri di CxHyNz ed ossigeno, inizialmente alla temperatura di 45 C, viene fatta esplodere. A combustione avvenuta si ottiene una miscela gassosa costituita da 8 n-litri di CO2, 12 n-litri di H2O gas e 4 n-litri di N2. Determinare la formula molecolare del composto, la % volumetrica dell ossigeno della miscela originale e la temperatura finale dei fumi. Ipotizzare una combustione completa ed un sistema adiabatico. 26. Dell Etano (C2H6) viene bruciato con aria in eccesso del 50% rispetto ad un alimentazione stechiometrica; la conversione dell etano è del 90%. La reazione dell etano avviene secondo due reazioni differenti, una di completa ossidazione che porta alla formazione di CO2 e una di ossidazione parziale che porta alla formazione di CO. In uscita il rapporto molare CO2/CO è 3:1. Calcolare la composizione dei fumi in uscita.

27. In un processo di post-combustione vengono bruciati 100 kg/h di ossido di carbonio a 200 C e 1 atm, utilizzando aria secca a 500 C in eccesso del 90% rispetto alla quantità stechiometrica. I prodotti di combustione lasciano il reattore a 1000 C. Calcolare la portata termica nella camera di combustione supponendo che la reazione sia completa. 28. Un gas combustibile con la seguente composizione volumetrica: CO 13%, CO2 9%, CH4 70%, O2 8%, inizialmente a 400 C, viene bruciato con aria stechiometrica alla stessa temperatura. Se i prodotti escono a 600 C, calcolare la quantità di calore rimossa dal sistema per Nm 3 di gas alimentato. 29. Una portata di 115 Nm 3 /min di gas di scarico, la cui composizione è: CH4 = 7,3%; N2 = 75%; O2 = 12% e H2O = 5,7%, dev essere trattato mediante post-combustione. Il sistema è esercito con aria in eccesso del 30%. Determinare la portata d aria da inviare in camera di combustione per realizzare le predette condizioni. Avendo rilevato una temperatura del gas in uscita pari a 400 C, determinare il grado di conversione che si realizza all interno del post-combustore e la portata di tutti i gas in uscita. 30. 552 g di una soluzione acquosa di etanolo al 25% in peso ed alla temperatura di 25 C vengono diluiti con 120 g di acqua pura a 10 C. Nell ipotesi di mescolamento adiabatico, si determini la temperatura della soluzione così ottenuta. 31. Una portata di acqua e glucosio (75 l/h, al 8% in glucosio) dev essere riscaldata da 25 C a 60 C, mediante mescolamento diretto con acqua vapore (T=130 C, P=1 atm). Calcolare la portata di vapore da utilizzare, la portata di acqua liquida finale e la sua concentrazione in glucosio (assumere una densità dell acqua costante e pari a 1 kg/l) 32. Vengono bruciati 100 kg di carbone inizialmente alla Ti=10 C, utilizzando un eccesso d aria del 50%. La composizione del carbone viene di seguito riportata: C = 66%; H2 = 3,5%; S = 1,3%; H2O = 6,3%; Ceneri = 22,9%. Calcolare la temperatura Tout di uscita dei fumi. (Per le ceneri ipotizzare un cp=3,5 kcal/kg C e un PM=44 g/mol) 33. Una caldaia a vapore è alimentata con gas d acqua (miscela equimolare di CO e H2). La portata di gas è pari a 200 Nm 3 /h mentre quella di ossigeno (proveniente dall aria) è in eccesso del 25%; al reattore, però, viene alimentata aria come comburente. La combustione è completa. Determinare: a. La composizione molare dei fumi; b. Sapendo che il gas combustibile e l aria entrano a 25 C, che i fumi escono dalla caldaia a 200 C e che le pareti della caldaia non perdono calore verso l esterno, calcolare la quantità di calore Q (in kcal/h) assorbita dal fascio tubiero in cui si produce il vapore; c. Sapendo che l acqua alimentata in caldaia è a 15 C e che il vapore prodotto è saturo ad 1 atm, calcolare la portata di vapore Qv in kg/h prodotto. 34. Ad una massa di 250 g di acetone alla temperatura di 20 C ed alla pressione di 1 atm viene fornita una quantità di calore pari a 50 Kcal. Determinare la temperatura finale e lo stato del sistema. 35. In un reattore adiabatico avviene l ossidazione termica della SO2; la temperatura dei reagenti è pari a 200 C e la combustione avviene con un eccesso d aria del 30%. Ipotizzando una

temperatura in uscita pari a 800 C e una base di calcolo per le moli di SO2 pari 1 mole/h, calcolare il grado di conversione della reazione. Supponendo di preriscaldare i reagenti in uno scambiatore portandoli alla temperatura di 400 C utilizzando i fumi della combustione, calcolare la temperatura dei fumi in uscita dallo scambiatore e quella finale in uscita dal reattore, in seguito al preriscaldamento dei reagenti, ipotizzando lo stesso grado di conversione. 36. In uno scambiatore di calore avviene il recupero termico dei fumi provenienti da un impianto di termovalorizzazione dei RSU. I fumi entrano alla Tin=950 C ed escono alla Tout=150 C. Il calore scambiato è utilizzato per riscaldare acqua di rete (5 l/h), in ingresso allo scambiatore con una Tacq=25 C. Determinare la temperatura di uscita dell acqua. (Ipotizzare una base di calcolo di 1 mole/h di gas con cpmedio=12,5 cal/mol K). 37. Una corrente di 8 ton/h di acqua inizialmente alla temperatura di 25 C viene riscaldata in uno scambiatore utilizzando vapore d acqua surriscaldato alla temperatura di 150 C. L impianto funziona a pressione atmosferica ed è trascurabile lo scambio di calore verso l esterno. Si vuole che la temperatura dell acqua in uscita sia pari a 40 C. Calcolare la portata di vapore Qv necessaria per effettuare l operazione richiesta, ipotizzando che il vapore esca come liquido saturo. 38. Una corrente di CH4 puro viene inviata ad un bruciatore con aria, entrambi a 25 C e 1 atm. Il reattore opera in condizioni adiabatiche. Ipotizzando un alimentazione stechiometrica di aria e un grado di conversione del 98%, calcolare la composizione dei fumi e la loro temperatura finale. Se volessimo realizzare una temperatura di fiamma pari a 1300 C, nell ipotesi di reazione completa, quale eccesso d aria dovremmo adoperare? (Ipotizzare una base di calcolo di 1 mole/h di combustibile). C Aria umida 39. In un ambiente si misura una temperatura a bulbo secco di 25 C e una temperatura di bulbo bagnato di 14 C determinare umidità relativa, entalpia specifica e umidità specifica in tali condizioni. 40. Una massa di aria umida ha temperatura pari a 22 C e umidità relativa del 30%. Determinare quali sono l umidità specifica, l entalpia specifica, la temperatura di rugiada e la temperatura a bulbo umido. 41. Una massa di 10kg aria umida, che ha inizialmente temperatura pari a 30 C e umidità relativa del 70%, viene raffreddata di 10 C. Determinare quali sono l umidità specifica, l entalpia specifica, l umidità relativa dell aria alla fine della trasformazione e quale è la massa di vapore che eventualmente condensa. 42. Una massa di 5 kg aria umida, con temperatura iniziale di 25 C e umidità relativa iniziale dell 80%, viene raffreddata di 10 C. Determinare: a) l entalpia specifica dell aria umida alla fine della trasformazione; b) la temperatura alla quale inizia il fenomeno della condensazione del vapore d acqua; c) la massa di vapore condensata. 43. Una massa di aria umida, con temperatura iniziale di 25 C e umidità relativa iniziale del

40%, viene saturata adiabaticamente. Alla fine di tale trasformazione la massa d aria si porta in un nuovo stato per il quale si devono determinare la temperatura, l entalpia specifica e l umidità specifica. 44. Una massa di aria umida di 8 kg, con temperatura iniziale di 30 C e umidità relativa iniziale del 30%, viene umidificata isotermicamente fino a che la sua umidità relativa raggiunge il 60%. Determinare gli scambi di massa e energia necessari alla trasformazione. 45. Una massa di aria umida, che ha inizialmente temperatura pari a 30 C e umidità relativa del 70%, viene deumidificata mediante raffreddamento fino a che la sua umidità specifica diminuisce di 4g/kg. Determinare quali sono la temperatura, l umidità relativa e l entalpia dell aria alla fine della trasformazione. 46. Un recipiente chiuso e adiabatico contiene una massa di 4 kg di aria umida alla temperatura di 29 C e con umidità relativa del 20%; determinare la quantità di calore e la quantità di acqua che sono necessari per portare tale massa alla temperatura di 35 C ed all umidità relativa del 30%. D Equilibri liquido-vapore - Condensazione 47. Calcolare le temperature di ebollizione e di rugiada di una miscela metanolo-etanolo al 30% in etanolo, alla pressione totale di 1 atm. 48. Determinare la temperatura di rugiada di un gas avente la seguente composizione: N2= 75%; O2=16%; H2O=6%; NH3=3%. Ipotizzando che la temperatura del gas sia pari a 185 C, determinare il calore da sottrarre per portarlo al punto di rugiada. 49. Una corrente di 100 kg/h di n-esano e etanolo, al 60% in peso di n-esano, deve essere portata da 30 e P=1 atm alla temperatura di ebollizione, utilizzando una corrente di vapor saturo di H2O a 3,5 atm che esce come liquido saturo. Calcolare la portata di vapore 50. Determinare la temperatura di rugiada di una miscela di vapori contenenti il 20% in moli di benzene, il 30% in moli di toluene e il 50% in moli di o-xilene, alla pressione di 1 atm. Supponendo una temperatura dei vapori pari a 200 C, calcolare il calore da sottrarre. 51. Una miscela di 10 kmoli di benzene-toluene al 40% in benzene inviata ad uno scambiatore di calore che opera alla pressione atmosferica. Quanto calore bisogna somministrare per portare la miscela da 25 C ad una condizione di vapor saturo? 52. Per una miscela acqua-etanolo, determinare la composizione della fase vapore in equilibrio con una fase liquida composta dal 30% in moli di etanolo e il 70% da acqua, alla pressione di 1 atm 53. Una miscela di vapore di 15 kmoli contenente il 25% in moli di propano ed il 75% di etano viene compressa e raffreddata a -1,1 C. Quale pressione bisogna applicare per condensare metà del vapore?

54. Una miscela liquido-vapore da 30 kmoli ha una composizione complessiva con 55% in moli di benzene e 45% in moli di toluene, ad una temperatura di 95 C e alla pressione totale di 1 atm. Calcolare: a) la composizione del liquido in equilibrio con il vapore; b) la % di vapore che condensa quando la pressione totale viene aumentata a 1,5 atm 55. Una miscela benzene-toluene (2 kmoli), vapore saturo a 1 atm e 90 C, viene condensata a pressione costante. Supponendo di condensarne il 50%, quanto calore è stato sottratto? 56. Una corrente di aria di 130 Nm 3 /h contenente ammoniaca al 7% in peso dev essere trattata in un condensatore, operante 10 atm, per ridurre la concentrazione di ammoniaca. Supponendo di abbassare la temperatura del gas a 3 C, determinare la concentrazione di ammoniaca residua nel gas in uscita dal processo. Se la corrente ha una temperatura iniziale pari a 120 C, determinare il calore da sottrarre per realizzare il processo 57. Una portata pari a 250 Nm 3 /h di gas formato da Azoto + cloroformio (al 5% in volume) è inviato ad un condensatore operante a pressione atmosferica. Il gas si trova inizialmente alla temperatura di 140 C. Determinare il calore da sottrarre per condensare metà del cloroformio inizialmente presente nel gas. 58. Una corrente di azoto di 40 kmoli/h inquinata da toluene (yt=0,3) deve essere purificata mediante uno scambiatore di calore ad acqua. La corrente entra alla temperatura di 200 C ed esce a 35 C, utilizzando acqua disponibile alla temperatura di 15 C. Avendo fissato una temperatura dell acqua in uscita dal processo pari a 25 C, calcolarne la quantità necessaria. E Scambio termico 59. Uno scambiatore di calore cilindrico è realizzato con tubo di diametro esterno pari a 25 mm. Si vogliono raffreddare 25000 kg/h di una soluzione di alcool etilico al 95% (per il quale cp=0,91 kcal/kg C) da 66 C a 40 C e vogliamo usare 22750 kg/h di acqua liquida disponibile a 10 C. Supponendo che il coefficiente globale di scambio riferito alla superficie esterna del tubo valga 500 kcal/h m 2 C, calcolare la superficie di scambio nei casi di equicorrente e controcorrente. 60. Dell acqua entra in uno scambiatore di calore a doppio tubo, funzionante in controcorrente, a 40 C, con una portata massica di 0.75 kg/s. Essa viene riscaldata da olio avente un calore specifico cp=1883 J/kgK, che attraversa lo scambiatore con una portata massica di 1.5 kg/s, entrando ad una temperatura di 115 C e uscendone ad una di 67 C. L area della superficie di scambio è di 13 m 2 ed il coefficiente globale di scambio termico è 340 W/m 2 K. Determinare la potenza scambiata e le temperature di uscita dell acqua 61. Uno scambiatore di calore di un impianto chimico è usato per riscaldare benzene (cp = 1754 J/kg C) da 25 C a 70 C ad una portata di 2.1 kg/s. Il riscaldamento viene fatto con acqua (cp = 4190 J/kg C) che entra nello scambiatore a 95 C ed esce a 45 C. Si determini la potenza termica scambiata tra i due fluidi e la portata di acqua necessaria per il processo. Nell ipotesi che il coefficiente di scambio termico globale sia pari a 800 W/(m 2 C), calcolare l area della superficie di scambio termico nei due casi equicorrente e controcorrente

62. Uno scambiatore a controcorrente è usato per refrigerare l olio di lubrificazione di una grande turbina a gas di tipo industriale. L acqua usata come refrigerante attraversa il tubo interno con una portata di 0.2 kg/s, mentre l olio viene fatto passare nella regione anulare con una portata di 0.1 kg/s. L olio e l acqua entrano alla temperatura di 100 e 30 C, rispettivamente. Il tubo interno è un tubo in acciaio con un diametro esterno di 26.67 mm ed uno spessore di 1.65 mm, mentre il tubo esterno ha un diametro di 45 mm. Determinare la lunghezza del tubo affinché la temperatura di uscita dell olio sia di 60 C. (Proprietà: per l olio di lubrificazione ad una temperatura media di 80 C corrispondono le seguenti proprietà: cp = 2131 J/(kg K), μ = 3.25 10-2 (Pa s), k = 0.138 W/(mK); per l acqua di refrigerazione ad una temperatura di 30 C corrispondono le seguenti proprietà: cp = 4178 J/(kg K), μ = 725 10-6 (Pa s), k = 0.625 W/(mK), Pr = 4.85; il tubo in acciaio ha una sua conducibilità termica è pari a circa 50 W/(mK)) 63. Si deve progettare uno scambiatore a doppio tubo per raffreddare 3400 kg/h di ammoniaca da 82 C a 38 C. Per il raffreddamento si usa una portata d acqua pari a 4770 kg/h, ad una temperatura di 21 C. Il tubo interno, in cui scorre l ammoniaca, è di acciaio con un diametro esterno di 20 mm ed uno spessore di 1.5 mm, mentre il tubo esterno ha un diametro di 50 mm. Calcolare la superficie di scambio necessaria e la lunghezza dei tubi nei casi di equicorrente e controcorrente. (Proprietà: per l ammoniaca ad una temperatura media di 80 C corrispondono le seguenti proprietà: cp = 2131 J/(kg K), μ = 2.5 10-3 (Pa s), k = 0.538 W/(mK); per l acqua di refrigerazione ad una temperatura di 30 C corrispondono le seguenti proprietà: cp = 4178 J/(kg K), μ = 725 10-6 (Pa s), k = 0.625 W/(mK), Pr = 4.85; il tubo in acciaio ha una sua conducibilità termica è pari a circa 50 W/(mK) F Assorbimento 64. Una miscela di aria e NH3 al 10% in peso è inviata in controcorrente ad una torre di assorbimento in cui l 85% dell NH3 è assorbita in acqua pura, la cui portata è pari al 50% in eccesso rispetto a quella minima. La portata gassosa G è pari a 0,071 m 3 /s e la sua temperatura è di 15,6 C. Per il particolare riempimento utilizzato, Kya = 1,97 (Gmol) 0,8 (Lmol) 0,2 kmol/m 3 s, in cui G ed L sono espresse in kmol/m 2 s. Sapendo che la velocità del gas è pari a 0,46 m/s, dimensionare la colonna. Utilizzare i seguenti dati di equilibrio: xnh3* 5.27 10-3 ynh3* 4.47 10-3 2.07 10-2 3.8 10-2 6.7 10-2 9.2 10-2 0.118 0.148 0.177 2.01 10-2 4 10-2 8 10-2 0.12 0.16 0.22 0.3 65. Una corrente di aria e ammoniaca di 170 m 3 /h con frazione molare di ammoniaca pari a 0.05 dev essere purificata con una operazione di assorbimento in acqua in una colonna a riempimento di diametro 0.305 m. Per l operazione si utilizza acqua pura ad una portata pari al doppio della minima (L = 2Lmin) e anelli Raschig di ceramica da 1.5 pollici. Alle condizioni operative di 25 C e 1 atm l equilibrio liquido-gas dell ammoniaca può essere espresso attraverso la legge di Henry: y = 1.414x.

a) Calcolare l altezza della colonna per ottenere una frazione molare nell aria in uscita pari a 4 10-4. Calcolare le perdite di carico totali attraverso l intero letto a riempimento. b) Nell esercizio della colonna così progettata si registra una frazione molare di ammoniaca dell aria in uscita è pari a 1.5 10-4. Calcolare l altezza effettiva dell unità di trasferimento. 66. Una corrente di 1000 kg/h di aria con un contenuto del 4% in massa di H2S deve essere trattata con acqua pura in una colonna impaccata con selle Berl da 25 mm in modo da ottenere una corrente in di gas in uscita con al massimo 7 ppm di H2S. La temperatura di esercizio è di 10 C a cui corrisponde una costante di Henry m=y/x=3.67. Usando un rapporto di portate pari a 2 volte il minimo. Calcolare l altezza e il diametro della colonna se le altezze dell unità di trasferimento nelle due fasi sono espresse dalle seguenti relazioni: HoG =HG + (mg /L ) HL HL = 0.27L 0.28 HG 0.24G 0.25 L -0.4 dove HL ed HG sono in metri, L e G sono in kg/s m2 e G ed L sono i flussi molari. 67. Una colonna di assorbimento a riempimento di diametro 0.6 m e altezza 6 m deve essere utilizzata per portare la frazione molare di SO 2 da 3 10-2 a 5 10-4 in una corrente di aria e SO 2 di 600 kg/h a pressione atmosferica e alla temperatura di 25 C. Il riempimento della colonna è formato da selle di Berl da 1 inch la cui altezza unitaria di trasferimento può essere calcolata attraverso le seguenti correlazioni: HoG =HG + (9.34G /L ) HL HL = 0.55L 0.3 HG 0.3G 0.3 L -0.4 In cui HL ed HG sono in metri, L e G sono in kg/s m2 e G ed L sono i flussi molari. a) Verificare che una portata di acqua pura di 4300 kg/h sia sufficiente a realizzare l operazione di assorbimento richiesta considerando che per il sistema H2O-SO2 la legge di Henry y = 9.34x, ove x e y sono le frazioni molari nel liquido e nel gas. b) Calcolare le perdite di carico in colonna. c) Nel caso in cui la portata d acqua indicata al punto a) sia insufficiente, calcolare di quanto occorre aumentarla. 68. Una colonna alta 14 m con diametro 1,6 m è attraversata da una portata di gas di 250 kmoli/h e in controcorrente da una portata di liquido di 40 kmoli/h. Il riempimento è costituito da selle Berl da 1 inch per le quali vale la relazione Kya = 1,04 (G) 0,8 (L) 0,2 kmol/m 3 s, in cui G ed L sono espresse in kmol/m 2 s. Il gas entrante contiene una frazione molare di acetone pari a 0,02. Il liquido entrante è puro in acetone e la relazione di equilibrio è del tipo y*=0,125 x. Verificare la frazione molare di acetone nella corrente di gas in uscita. 69. Si vuole rimuovere il 90% della SO2 presente in una corrente d aria di 120 Nm 3 /h con una concentrazione di 3000 ppm di SO2. Potendo disporre di un acqua avente una temperatura pari a 30 C e una concentrazione iniziale di SO2 pari a 1 mg/l, dimensionare una torre di assorbimento a riempimento utilizzando anelli Rashig da 1,5 inch. 70. Una corrente di aria contenente 6500 ppm di alcool butilico (butanolo) dev essere tratta in una colonna di assorbimento a riempimento, utilizzando Pall rings da 1,5 inch. Supponendo di utilizzare acqua pura con una portata pari a 2,5 il valore minimo, dimensionare la colonna ipotizzando la rimozione del 95% del alcool butilico inizialmente presente. La colonna opera a 25 C e 1 atm.