Metodi statistici per le ricerche di mercato

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi statistici per le ricerche di mercato"

Transcript

1 Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per la comunicazione d'impresa» A proposito di rappresentatività del campione La rappresentatività di un campione è la sua conformità, ad alcune caratteristiche della popolazione. Un campione scelto casualmente è uno dei campioni possibili estraibili dall universo dei campioni, pertanto il suo grado di rappresentatività, è solo probabile. La casualità rende infatti più probabile che il campione riproduca in media le caratteristiche della popolazione, a meno di errori imputabili sia al fatto che si analizza solo una parte di quest ultima (errore campionario) sia ad altri tipi di errore (non campionari) che intervengono nell intero processo di indagine. Tuttavia se la casualità di un campione è un requisito indispensabile di rappresentatività statistica non è però un requisito sufficiente. 1

2 Errori e rilevazioni parziali Non campionari (esempi): Errore di copertura: le liste utilizzate della popolazione statistica sono incomplete. Errore di non-risposta: esclusione o auto-esclusione dei casi Errore dovuto all intervistatore. Campionari derivano dal fatto che si analizza un particolare sotto-insieme della popolazione. I valori rilevati sul campione sono una «stima» di quelli della popolazione, che presenta un errore. Se il campione è probabilistico la stima degli errori campionari viene effettuata mediante la teoria dei campioni: sono note infatti alcune relazioni che legano gli «stimatori» dell universo dei campioni ai parametri della popolazione. Che cosa è l universo dei campioni E l insieme dei campioni possibili di n unità che si possono estrarre da una popolazione attraverso una operazione di selezione. Adottando il criterio di estrazione casuale, il numero di campioni estraibili da una popolazione è determinato dal numero dei diversi modi nei quali le unità statistiche si possono combinare nel comporre il campione. Se la popolazione è infinita si possono estrarre un numero infinito di campioni. Se la popolazione è finita, di dimensione N, e si estraggono campioni di dimensione n, il loro numero dipende dal tipo di estrazione effettuata. Se ad esempio abbiamo N=100 e vogliamo estrarre un campione di 2 unità, in base al calcolo delle probabilità possiamo ottenere Con reinserimento o bernoulliana: N n = N 2 = = campioni Senza reinserimento o esaustiva tenendo conto dell ordine: D Nn = N!/(N-n)!= 100*99= campioni Senza reinserimento o esaustiva non tenendo conto dell ordine: C Nn = N!/ n!(n-n)!=100*99/2= campioni 2

3 Distribuzioni Pagina 26 Glossario Probabilità e variabile casuale Per un campione casuale ciascun possibile valore di una variabile osservata ha una probabilità di verificarsi La probabilità di un osservazione è la proporzione di volte in cui essa dovrebbe verificarsi in una lunghissima frequenza di osservazioni (impostazione frequentista) Se ad esempio la proporzione di minori che fa uso di alcol è nella popolazione pari a 0,7, allora la probabilità che un minore scelto a caso dalla stessa popolazione faccia uso di alcol sarà pari a 0,7. Variabile casuale: variabile che definisce ciascun possibile risultato di un osservazione assieme alla probabilità con cui si può verificare. La somma delle probabilità di ciascun risultato è uguale a

4 Distribuzione di probabilità E l insieme dei possibili risultati e le corrispondenti probabilità di una variabile casuale X. La distribuzione di probabilità di una variabile discreta assegna una probabilità (numero compreso tra 0 e1) a ciascun valore 0 P(y) 1 La somma delle probabilità di tutti i possibili valori è uguale a 1. La distribuzione di probabilità di una variabile continua assegna una probabilità (numero compreso tra 0 e1) a intervalli di valori. La probabilità che un valore cada in ciascun intervallo è compresa tra 0 e 1. La probabilità associata all intervallo che contiene tutti i possibili valori è pari a 1. Pagina 28 La distribuzione delle medie campionarie : il Teorema del limite centrale Sui numerosi campioni estraibili da una popolazione possono essere calcolate diverse statistiche utilizzabili per stimare i parametri della popolazione da cui sono estratti. L insieme delle medie di tutti i possibili campioni costituisce la distribuzione campionarie delle medie. Secondo il teorema del limite centrale: se si estraggono ripetuti campioni di dimensione n da un universo a distribuzione normale con media e varianza ², la distribuzione delle medie campionarie sarà normale con media e varianza ²/n. 4

5 La distribuzione campionaria delle medie campionarie : La legge dei grandi numeri In altre parole. Sia per l estrazione con ripetizione, sia per quella senza ripetizione, la media dei valori medi campionari è uguale alla media della popolazione, dunque è una stima corretta, centrata e non distorta della media della popolazione. La varianza della distribuzione campionaria delle medie rappresenta l errore medio (errore standard) che si commette nello stimare la media della popolazione mediante quella del campione. Operativamente però si opera con un solo campione e non con tutti i campioni estraibili da una popolazione! Si dovrà dunque stabilire se e di quanto la media del campione differisce da quella della popolazione. Ciò è possibile perché sappiamo quale è la distribuzione delle medie campionarie per n>30: la distribuzione normale. 5

6 Esempio La popolazione è di dimensione N=4 La distribuzione della variabile X=numero di diabetici nelle famiglie di una popolazione statistica osservata è la seguente: unità 1: u1 presenta il valore 1 unità 2: u2 presenta il valore 2 unità 3: u3 presenta il valore 3 unità 4: u4 presenta il valore 4 La distribuzione di X nella popolazione ha =2.5 e =1.118 Supponiamo di estrarre un campione di dimensione n=2 Quanti sono i campioni possibili in questo caso? Se la scelta è con ripetizione (con reimmissione) Se la scelta è senza ripetizione (senza reimmissione) o in blocco Pagina 32 Scelta con ripetizione Campioni estraibili=n n = 4 2 = 16 Campioni Dati media Campionari u1 e u1 (1;1) 1.0 u1 e u2 (1;2) 1.5 u1 e u3 (1;3) 2.0 u1 e u4 (1;4) 2.5 u2 e u1 (2;1) 1.5 u2 e u2 (2;2) 2.0 u2 e u3 (2;3) 2.5 u2 e u4 (2;4) 3.0 u3 e u1 (3;1) 2.0 u3 e u2 (3;2) 2.5 u3 e u3 (3;3) 3.0 u3 e u4 (3;4) 3.5 u4 e u1 (4;1) 2.5 u4 e u2 (4;2) 3.0 u4 e u3 (4;3) 3.5 u4 e u4 (4;4) 4.0 Pagina 33 6

7 Distribuzione campionaria della media campionaria Pagina 34 Scelta in blocco (senza ripetizione) Campioni estraibili=n!/ n!(n-n)!= (4*3*2*1)/(2*1)(2*1)=6 Campioni Dati media Campionari u1 e u2 (1;2) 1.5 u1 e u3 (1;3) 2.0 u1 e u4 (1;4) 2.5 u2 e u3 (2;3) 2.5 u2 e u4 (2;4) 3.0 u3 e u4 (3;4) 3.5 Pagina 35 7

8 Distribuzione campionaria della media campionaria Media Campionaria FA P TOT 6 1 Pagina 36 Riepilogando: Pagina 37 8

9 Ci stiamo riferendo a tre distribuzioni La distribuzione normale o di Gauss E una distribuzione teorica di notevole interesse pratico per le sue proprietà matematiche utilizzabili nell ambito dell inferenza statistica. Si ricorre a queste proprietà quando una variabile casuale continua (detta anche aleatoria o stocastica, poiché può assumere valori diversi in dipendenza da qualche fenomeno aleatorio ) è distribuita normalmente. Caratteristiche: è continua, ha una forma campanulare e simmetrica le sue misure di posizione centrale (media, moda e mediana) coincidono; è asintotica rispetto all asse delle ascisse, assume valori compresi tra - e + Presenta due punti di flesso in corrispondenza di ±1 è completamente caratterizzata dai due parametri µ e σ2; L area sottesa alle porzione di curva che si trova tra la media e l ordinata in corrispondenza dello scarto quadratico medio è costante; in particolare - il 68.26% dell area totale è compreso tra µ±1 - il 95.44% tra µ±2 - il 99,73% tra µ±3 9

10 Utilità della distribuzione normale nell inferenza Fattore di correzione o di esaustività. Al crescere di N può essere trascurato. La distribuzione normale standardizzata Oltre alle porzioni di area sottese alla curva citate precedentemente, possiamo conoscere quelle comprese tra il valore medio e qualsiasi altro valore, o tra due valori qualsiasi, utilizzando apposite tavole. Le tavole sono calcolate riferendosi ad una distribuzione normale standardizzata che ha media 0 e varianza pari a 1 Per utilizzare le tavole è necessario standardizzare i valori della nostra distribuzione, mediante la seguente relazione: ( ) z X 10

11 TAVOLA A Un numero della tavola indica la porzione di area sottesa dalla curva da - a z. Ad esempio l area sottesa fino a z=2 è di 0,97725 ossia del 97,73% dell area totale. TAVOLA B A volte si trova un altra tavola in cui ogni numero indica la porzione di area sottesa dalla curva da z=0 e una altro valore di z 0. Ad esempio l area sottesa da z=0 a fino a z=2 è di 0,4772 ossia del 47,72% dell area totale. Usare la tavola A o la B è indifferente basta tener conto del significato dei valori riportati 11

12 Uso delle tavole : esempio 1- tavola A e B Supponiamo di voler conoscere l area compresa tra la media=0 e z=1,96. Nella colonna dei punti z, si scendere fino a trovare z=1,9 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,06. Il punteggio che troveremo in quel punto è 0,9750 ed indica la porzione di area compresa tra - e z=1,96. Poiché l area sotto la curva a sinistra del valore corrispondente alla media=0,00 è 0,5000, l area tra la media e z =1,96 sarà 0,9750-0,5000=0,4750 L area compresa è del 47,50% Usando la tavola B avremmo ottenuto il medesimo risultato, più velocemente! 44 Uso delle tavole : esempio 2 tavola A Supponiamo di voler conoscere l area a destra del punto z=1,96. Nella colonna dei punti z, si scendere fino a trovare z=1,9 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,06. Il punteggio che troveremo in quel punto è 0,9750 ed indica la porzione di area compresa tra - e z=1,96. Poiché l area totale è uguale a 1, l area che resta alla destra del punto z=1,96 sarà (1,0000-0,9750) =0,025. L area a destra di z=1,96 sarà del 2,5% 12

13 Uso delle tavole : esempio 3 tavola B Supponiamo di voler conoscere l area compresa tra z=-1 e z=+1 Nella colonna dei punti z, si scendere fino a trovare z=1 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,00. Il punteggio che troveremo in quel punto è 0,3413 ed indica la porzione di area compresa tra z=0 e z=1. Per trovare il valore compreso tra z=-1 e z=+1 possiamo moltiplicare per 2, in virtù della simmetria della distribuzione. (0,3413*2)=0,6826 L area compresa è del 68,26% 46 Uso delle tavole : esempio 4 Supponiamo di voler conoscere l area compresa tra z=0,54 e z=0,35. Per trovare l area compresa tra - e z=0,54, nella colonna dei punti z, si scendere fino a trovare z=0,5 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,04. Il punteggio che troveremo in quel punto è 0,7054. Per trovare l area compresa tra - e z=0,35, nella colonna dei punti z, si scendere fino a trovare z=0,3 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,05. Il punteggio che troveremo in quel punto è 0,6368. Per trovare l area compresa tra z=0,54 e z=0,35 basterà sottrarre i due valori: 0,7054-0,6368=0,0686. L area compresa è del 6,9% 47 13

14 Esercizio La spesa media per prodotti telefonici nella popolazione statistica considerata, che si distribuisce in modo normale, è di 350 euro con uno scarto quadratico medio di 50. Estraendo un campione probabilistico di 150 individui si ottiene una spesa media di 359 euro. Quale è la probabilità di ottenere un campione che ha una spesa media maggiore di quella trovata nel campione estratto? E inferiore o uguale? Facendo riferimento alla distribuzione delle medie campionarie la spesa media di tutti i possibili campioni di 150 unità estraibili dalla popolazione si distribuisce normalmente con media: E(x ) =µ =350 errore medio : Var (x ) = / n =4,082 Come procedere 1. Trovare il valore medio e l errore standard delle medie campionarie 2. Calcolare il valore standardizzato 3. Disegnare la distribuzione normale 4. Calcolare la probabilità sulla tavola della distribuzione normale 5. Trarre le conclusioni z= ,082 = 2,20 La probabilità di ottenere un campione con media -inferiore o uguale a 359 è 0,9861 -superiore 359 è di 0,0139 Esercizio Il prezzo di un prodotto sul mercato risulta, da indagini precedenti, essere di 125 euro con uno scarto quadratico medio di 30. Estraendo un campione probabilistico di 60 negozi si ottiene un prezzo medio di 130 euro. Quale è la probabilità di ottenere un campione casuale di negozi che vendono il prodotto ad un prezzo superiore o uguale? Quale è la probabilità di ottenere un campione con dei negozi che vendono il prodotto a 123 euro o meno? Z= ,87 = 1,29 La probabilità di ottenere un campione con media -superiore o uguale a 130 è (1-0,9015)=0,0984 -inferiore o uguale a 123 è (1-0,6985)=0,3015 Z= ,87 = -0,52 14

15 Stima puntuale e stima intervallare Stimatore: statistica campionaria impiegata per stimare un parametro della popolazione Stima: è il singolo valore dello stimatore ottenuto applicando lo stimatore ai dati di uno specifico campione Stima puntuale: singolo valore che rappresenta la migliore previsione del valore di un parametro della popolazione Stima intervallare: intervallo di valori che contengono la stima puntuale, all interno del quale ricade il vero valore del parametro della popolazione Pagina 50 Stima puntuale Attribuire un preciso valore numerico al parametro incognito del carattere nella popolazione Procedura Si individua uno stimatore per il parametro Il valore dello stimatore sul campione osservato costituisce la stima puntuale (il valore che si può attribuire) del parametro incognito del carattere nella popolazione Pagina 51 15

16 Statistica media campionaria Pagina 52 Proprietà di uno stimatore Un buon stimatore È centrato intorno al parametro che deve stimare Ha il più piccolo errore standard possibile Proprietà Non distorsione: la media dello stimatore è uguale al valore incognito del parametro Efficienza: tra gli stimatori non distorti del parametro, lo stimatore ha variabilità minima Consistenza: all aumentare della numerosità del campione, aumenta la probabilità che lo stimatore differisca dal valore vero del parametro meno di una quantità piccola fissata arbitrariamente Pagina 53 16

17 Stimatori di media, varianza e proporzione x 1 n xi n i 1 Media campionaria: stimatore della media; è corretto, efficiente, consistente Varianza campionaria corretta: stimatore della varianza; è corretto, efficiente, consistente Proporzione campionaria: stimatore della proporzione; è corretto, efficiente e consistente Pagina 54 Stima ad intervalli: gli intervalli di confidenza Come si stabilisce se il valore medio di un campione è una buona stima di quello della popolazione? Si fa riferimento agli intervalli di confidenza: intervalli di valori, definiti da un estremo inferiore e superiore e costruiti a partire dalla media del campione, entro i quali possiamo ritenere che con una certa probabilità, sia inclusa la media della popolazione. La probabilità che il valore vero del parametro della popolazione cada nell intervallo si definisce livello di fiducia e si indica con (1 - α) α (denominato livello di significatività) è la probabilità che il parametro si trovi al di fuori dell intervallo di confidenza. Se il livello di fiducia è (1- α)=95% α =5% Se il livello di fiducia è (1- α)=99% α =1% 17

18 Intervallo di confidenza per la media con noto xx z σ n μ x + z σ n ; A partire dalla media del campione costruiamo un intervallo di valori sottraendo e sommando z /2 moltiplicato per l errore standard. z /2 è il valore, detto critico, a cui corrisponde un area cumulata della distribuzione normale standardizzata pari a (1- /2 ). Ciò vuol dire che se vogliamo avere un livello di fiducia del 95%, dobbiamo individuare sulle tavole della curva normale il valore z che ci consente di ottenere attorno al valore medio della distribuzione il 95% dei casi, lasciando a destra dell area il 2,5% e a sinistra il 2,5%: (1,00-0,025=0,975) Questo valore è z=±1,96 Esercizio Se vogliamo avere un livello di fiducia del 99%, quale è il valore critico di z? Come procedere 1. Calcolare /2= (1-0,99)/2=0, Cercare sulla tavola della curva normale standardizzata (tav.a) l area pari a (1- /2 )=(1-0,005)=0, Individuare il valore di z corrispondente. 4. Disegnare la curva normale 18

19 Per facilitarci il compito: In statistica in genere si ritiene accettabile un rischio di non più del 5%. Pertanto i livelli di fiducia utilizzati sono quelli di almeno il 95% ossia di (1- ) 0,95, a cui corrisponde appunto un livello di significatività 0,05. Si ritengono accettabili dunque valori di Sign= 0,05, che risultano associati a valori di Z /2 1,96 Esercizio: stima ad intervallo A un campione casuale semplice di 80 clienti è stato chiesto di attribuire un punteggio da 1 a 100 a un prodotto immesso sul mercato nell ultimo anno. Il valore medio del punteggio è stato 74. Sapendo che lo scarto quadratico medio del punteggio nella popolazione è di 2,5, stimare il punteggio medio del prodotto nella popolazione di riferimento, calcolando l intervallo di confidenza al 95%, al 99% e al 99,73%. Come procedere 1. Individuare il valore di z corrispondente a (1- /2 ) 2. Utilizzare il valore z per costruire gli intervalli di confidenza xx z σ n μ x + z σ n 1 α = 95% z /2 =1, ,96 (2,5/ 80 ) μ 74+1,96 (2,5/ 80) 73,45 μ 74,55 1 α = 99% z /2 =2, ,58 (2,5/ 80 ) μ 74+2,58 (2,5/ 80) 73,28 μ 74,72 1 α = 99,73% z /2 = (2,5/ 80 ) μ 74+3 (2,5/ 80) 73,16 μ 74,84 19

20 Esercizio: stima ad intervallo (segue) Possiamo dunque affermare che a partire dal punteggio medio rilevato nel campione di 74, il punteggio medio attribuito dalla popolazione dei clienti al prodotto è compreso tra : 73,45 e 74,55, con un livello di fiducia del 95% e con una probabilità del 5% che sia esterno a questo intervallo. 73,28 e 74,72, con un livello di fiducia del 99% e con una probabilità del 1% che sia esterno a questo intervallo. 73,16 e 74,84 con un livello di fiducia del 99,73% e con una probabilità dello 0,27% che sia esterno a questo intervallo. Esercizio: stima ad intervallo Quale sarebbero gli intervalli di confidenza al 95%, al 99% e al 99,73% se, fermo restando tutti gli altri dati ( e x), il campione fosse stato di 150 unità? xx z σ n μ x + z σ n n = 80 ; 1 α = 95% 73,45 μ 74,55 1 α = 99% 73,28 μ 74,72 σ n = 0,2795 n=150 ; 1 α = 95% 74 1,96* 0,2041 ) μ 74+1,96*0,2041) 73,60 μ 74,40 1 α = 99% σ n = 0, ,58 * 0,2041 μ 74+2,58*0, ,47 μ 74,53 1 α = 99,73% 73,16 μ 74,84 1 α = 99,73% ,2041 μ 74+3*0, ,39 μ 74,61 20

21 Osserviamo che Più alto è il livello di fiducia, più ampio è l intervallo di confidenza e quindi la possibilità che contenga il vero valore del parametro Infatti, a parità di n, più alto è 1 α più grande è lo z-score più ampio è l intervallo A parità di livello di fiducia: più grande è il campione, cioè n, più piccolo è l errore standard dello stimatore, minore è l ampiezza dell intervallo e dunque la precisione della stima Scegliendo un livello di fiducia 1 α ci si attende che l 1 α % dei campioni di medesima ampiezza n fornisca una stima del parametro tale che l intervallo di confidenza attorno a tale stima contenga il vero valore del parametro Tuttavia non si sa con certezza se tale intervallo contiene effettivamente il vero valore del parametro: il livello di sgnificatività indica la probabilità che il vero valore cada fuori dall intervallo di confidenza. Pagina 62 Esercizio: stima ad intervallo Su un campione casuale semplice di 196 negozi è stato rilevato un volume di vendite settimanale di 25 mila euro. Sapendo che lo scarto quadratico medio del volume di vendite nella popolazione è di 1500 euro, stimare il volume di vendite settimanale medio nella popolazione di riferimento, con un livello di fiducia del 95%, e del 99%. Come procedere 1.Individuare il valore di z /2 corrispondente a ciascun livello di fiducia 2-Utilizzare il valore z /2 per costruire gli intervalli di confidenza (1- )=0,95 z /2 =1, ,96 (1500/14) ,96(1500/14) xx z σ n μ x + z σ n (1- )=0,99 z /2 =2, ,58 (1500/14) ,58(1500/14) 24723, ,43 21

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2017-2018 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2015-2016 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2018-2019 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Verifica delle ipotesi

Verifica delle ipotesi Statistica inferenziale Stima dei parametri Verifica delle ipotesi Concetti fondamentali POPOLAZIONE o UNIVERSO Insieme degli elementi cui si rivolge il ricercatore per la sua indagine CAMPIONE Un sottoinsieme

Dettagli

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

05. Errore campionario e numerosità campionaria

05. Errore campionario e numerosità campionaria Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stimatore media campionaria Il tempo in minuti necessario a un certo impiegato dell anagrafe

Dettagli

INTRODUZIONE ALLA STATISTICA PER LA RICERCA IN SANITA

INTRODUZIONE ALLA STATISTICA PER LA RICERCA IN SANITA INTRODUZIONE ALLA STATISTICA PER LA RICERCA IN SANITA IRCBG 19027 Modulo Dal campione alla popolazione: l'inferenza e l'intervallo di confidenza IRCCS Burlo Garofolo Formazione, Aula A via dell Istria

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

LE DISTRIBUZIONI CAMPIONARIE

LE DISTRIBUZIONI CAMPIONARIE LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2016-2017 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Tipi di variabili. Indici di tendenza centrale e di dispersione

Tipi di variabili. Indici di tendenza centrale e di dispersione Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)

Dettagli

Contenuto del capitolo

Contenuto del capitolo Capitolo 8 Stima 1 Contenuto del capitolo Proprietà degli stimatori Correttezza: E(Stimatore) = parametro da stimare Efficienza Consistenza Intervalli di confidenza Per la media - per una proporzione Come

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

Statistica Applicata all edilizia: Stime e stimatori

Statistica Applicata all edilizia: Stime e stimatori Statistica Applicata all edilizia E-mail: orietta.nicolis@unibg.it 15 marzo 2011 Statistica Applicata all edilizia: Indice 1 2 Statistica Applicata all edilizia: Uno dei problemi principali della statistica

Dettagli

Parametri e statistiche. Parametri e statistiche. Distribuzioni campionarie. Popolazione Parametri Valori fissi, Statistiche o Stimatori.

Parametri e statistiche. Parametri e statistiche. Distribuzioni campionarie. Popolazione Parametri Valori fissi, Statistiche o Stimatori. Parametri e statistiche Popolazione Parametri Valori fissi, spesso non noti Campione Statistiche o Stimatori Variabili casuali, le cui determinazioni dipendono dalle particolari osservazioni scelte Parametri

Dettagli

Tecniche di sondaggio

Tecniche di sondaggio SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale Tecniche di sondaggio 24/1/2006 Nomenclatura Indicheremo con P una popolazione, con N la sua numerosità, con k la sua etichetta e con

Dettagli

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione del corso di Statistica Prof. Domenico Vistocco Alfonso Iodice D Enza May 30, 007 1 Esercizio Si consideri una popolazione caratterizzata dai numeri, 3, 6, 8, 11. Si considerino tutti i possibili

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

DISTRIBUZIONI DI CAMPIONAMENTO

DISTRIBUZIONI DI CAMPIONAMENTO DISTRIBUZIONI DI CAMPIONAMENTO 12 DISTRIBUZIONE DI CAMPIONAMENTO DELLA MEDIA Situazione reale Della popolazione di tutti i laureati in odontoiatria negli ultimi 10 anni, in tutte le Università d Italia,

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA PSICOMETRIA Corso di laurea triennale (classe 34) DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONE DI PROBABILITA I possibili risultati di un esperimento costituiscono uno spazio campionario di n eventi A ciascun

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2017-2018 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2016-2017 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 7: Basi di statistica

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 7: Basi di statistica Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini Lezione 7: Basi di statistica Campione e Popolazione Estrazione da una popolazione (virtualmente infinita) di

Dettagli

Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1

Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1 Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:

Dettagli

Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota)

Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota) STATISTICA (2) ESERCITAZIONE 5 26.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota) Il responsabile del controllo qualità di un azienda che

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Intervalli di confidenza Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

x ;x Soluzione Gli intervalli di confidenza possono essere ottenuti a partire dalla seguente identità: da cui si ricava: IC x ;x = +

x ;x Soluzione Gli intervalli di confidenza possono essere ottenuti a partire dalla seguente identità: da cui si ricava: IC x ;x = + ESERCIZIO 6.1 Si considerino i 0 campioni di ampiezza n = estratti da una popolazione X di N = 5 elementi distribuiti normalmente, con media µ = 13,6 e σ = 8,33. A partire dalle 0 determinazioni della

Dettagli

Intervallo di confidenza.

Intervallo di confidenza. Intervallo di confidenza annarita.vestri@uniroma1.it campione inferenza popolazione Media Riportare sempre anche la deviazione standard Stima puntuale di Media, dev.standard, numerosità Qualche semplice

Dettagli

STATISTICA INDUTTIVA: STIMA DI PARAMETRI STIMA PUNTUALE

STATISTICA INDUTTIVA: STIMA DI PARAMETRI STIMA PUNTUALE S.S.I.S TOSCANA F.I.M. -II anno STATISTICA INDUTTIVA: STIMA DI PARAMETRI STIMA PUNTUALE PROBLEMA 1 Vogliamo valutare la percentuale p di donne fumatrici tra le donne in età fertile. Procediamo all estrazione

Dettagli

Dispensa di Statistica

Dispensa di Statistica Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza

Dettagli

APPUNTI DI STATISTICA INFERENZIALE. Avalle Fulvia, maggio 2014, ITSOS MARIE CURIE CLASSI 4A BIO e 4B BIO

APPUNTI DI STATISTICA INFERENZIALE. Avalle Fulvia, maggio 2014, ITSOS MARIE CURIE CLASSI 4A BIO e 4B BIO APPUNTI DI STATISTICA INFERENZIALE Avalle Fulvia, maggio 2014, ITSOS MARIE CURIE CLASSI 4A BIO e 4B BIO PREREQUISITI VARIABILE ALEATORIA (QUANTITATIVA): è una funzione che associa un numero reale ad ogni

Dettagli

( ) ( ) ( e la probabilità che si verifichi un evento compreso tra c e b a < c < b sarà data da:

( ) ( ) ( e la probabilità che si verifichi un evento compreso tra c e b a < c < b sarà data da: e la probabilità che si verifichi un evento compreso tra c e b a < c < b sarà data da: p ( ) ( c < X < b) f ( x) LA VC NORMALE O GAUSSIANA Una vc si dice normale o gaussiana (da Gauss che la propose come

Dettagli

Teoria e tecniche dei test

Teoria e tecniche dei test Teoria e tecniche dei test Lezione 9 LA STANDARDIZZAZIONE DEI TEST. IL PROCESSO DI TARATURA: IL CAMPIONAMENTO. Costruire delle norme di riferimento per un test comporta delle ipotesi di fondo che è necessario

Dettagli

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità CORSO DI LAUREA IN INFERMIERISTICA LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità Lezioni di Statistica VARIABILITA Si definisce variabilità la proprietà di alcuni fenomeni di assumere

Dettagli

Distribuzione normale

Distribuzione normale Distribuzione normale istogramma delle frequenze di un insieme di misure relative a una grandezza che varia con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata

Dettagli

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. Esercizio 1 Un chimico che lavora per una fabbrica di batterie, sta cercando una batteria

Dettagli

STATISTICA A K (60 ore)

STATISTICA A K (60 ore) STATISTICA A K (60 ore) Marco Riani mriani@unipr.it http://www.riani.it STIMA PUNTUALE (p. 55) Il parametro è stimato con un unico valore Esempio: stima della share di un programma TV = % di spettatori

Dettagli

RICHIAMI DI CALCOLO DELLE PROBABILITÀ

RICHIAMI DI CALCOLO DELLE PROBABILITÀ UNIVERSITA DEL SALENTO INGEGNERIA CIVILE RICHIAMI DI CALCOLO DELLE PROBABILITÀ ing. Marianovella LEONE INTRODUZIONE Per misurare la sicurezza di una struttura, ovvero la sua affidabilità, esistono due

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA Lezione n.11 - Principi dell inferenza statistica - Campionamento - Distribuzione campionaria di una media e di una proporzione - Intervallo di confidenza di una media e di

Dettagli

deve utilizzarsi la variabile t ν,α/2 , dove n è il numero di gradi di libertà pari al numero delle misure diminuito di 1 (ν=n-1).

deve utilizzarsi la variabile t ν,α/2 , dove n è il numero di gradi di libertà pari al numero delle misure diminuito di 1 (ν=n-1). Indice 1. Frequenza e Probabilità. Parametri Statistici 3. Curva di Gauss 4. isure poco numerose: t di student nel caso non sia possibile effettuare un numero di misure adeguato (n

Dettagli

Dato che i risultati ottenuti tramite campioni casuali ed esperimenti comparativi sono legati al caso, non possiamo essere certi che le nostre

Dato che i risultati ottenuti tramite campioni casuali ed esperimenti comparativi sono legati al caso, non possiamo essere certi che le nostre Campione Dato che i risultati ottenuti tramite campioni casuali ed esperimenti comparativi sono legati al caso, non possiamo essere certi che le nostre conclusioni siano corrette. Quello che possiamo fare

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n. 5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

Statistica 1- parte II

Statistica 1- parte II Statistica 1- parte II Esercitazione 2 Dott.ssa Antonella Costanzo 18/02/2016 Esercizio 1. IC media incognita, varianza nota Una fabbrica A produce matite colorate. Una prova su 100 matite scelte a caso

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali A.A 2009-2010 Esercitazione E Scopo dell esercitazione Applicazioni del teorema del limite centrale. Rappresentazione delle incertezze

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Introduzione L insieme di tutte le unità statistiche che compongono il fenomeno collettivo considerato costituisce l universo statistico o, semplicemente, universo. L insieme costituito

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

Distribuzioni campionarie

Distribuzioni campionarie 1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità B

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità B Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità B Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

Teorema del Limite Centrale

Teorema del Limite Centrale Teorema del Limite Centrale Teorema. Sia data una popolazione numerica infinita di media µ e deviazione standard σ da cui vengono estratti dei campioni casuali formati ciascuno da n individui, con n abbastanza

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 5 Abbiamo visto: Modelli probabilistici nel continuo Distribuzione uniforme continua Distribuzione

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 6 Abbiamo visto: Definizione di popolazione, di campione e di spazio campionario Distribuzione

Dettagli

Argomenti della lezione: Campionamento Stima Distribuzione campionaria Campione Popolazione Sottoinsieme degli elementi (o universo) dell '

Argomenti della lezione: Campionamento Stima Distribuzione campionaria Campione Popolazione Sottoinsieme degli elementi (o universo) dell ' Lezione 2 Argomenti della lezione: La statistica inferenziale: concetti di base Campionamento Stima Distribuzione campionaria Popolazione (o universo) Insieme di tutti gli elementi cui si rivolge il ricercatore

Dettagli

Teoria e tecniche dei test. Concetti di base

Teoria e tecniche dei test. Concetti di base Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2017/2018 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Intervalli di confidenza Marco Pietro Longhi Probabilità e Statistica

Dettagli

STATISTICA ESERCITAZIONE

STATISTICA ESERCITAZIONE STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 Variabili casuali (o aleatorie) 2 / 19 Disponendo di metodi corretti per raccogliere i dati e costruire i campioni data una popolazione, i valori numerici

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 3) 1 / 34

DISTRIBUZIONI DI PROBABILITA (parte 3) 1 / 34 DISTRIBUZIONI DI PROBABILITA (parte 3) 1 / 34 Distribuzione Binomiale 2 / 34 La più importante distribuzione di probabilità per variabili casuali discrete è la distribuzione binomiale. Questa distribuzione

Dettagli

Statistica Metodologica

Statistica Metodologica Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: silvia.figini@unipv.it Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media

Dettagli

Gli intervalli di confidenza. Intervallo di confidenza per la media (σ 2 nota) nel caso di popolazione Gaussiana

Gli intervalli di confidenza. Intervallo di confidenza per la media (σ 2 nota) nel caso di popolazione Gaussiana Statistica Lez. 1 Gli intervalli di confidenza Intervallo di confidenza per la media (σ nota) nel caso di popolazione Gaussiana Sia X una v.c Gaussiana di media µ e varianza σ. Se X 1, X,..., X n è un

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati 1 CONCETTI DI BASE DI STATISTICA ELEMENTARE 2 Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Per la presenza di errori casuali,

Dettagli

Elementi di Psicometria (con laboratorio software 1)

Elementi di Psicometria (con laboratorio software 1) Elementi di Psicometria (con laboratorio software 1) 05-La verifica delle ipotesi con le medie dei campioni (v. 1.0, 15 aprile 2019) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Intervalli di confidenza Marco Pietro Longhi C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica a.s. 2018/2019 Marco Pietro Longhi Prob. e Stat. 1

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2015-2016 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

07/01/2016. Scalisi - Tecniche Psicometriche LA VERIFICA DELLE IPOTESI. La verifica delle ipotesi. Popolazioni e campioni

07/01/2016. Scalisi - Tecniche Psicometriche LA VERIFICA DELLE IPOTESI. La verifica delle ipotesi. Popolazioni e campioni LA VERIFICA DELLE IPOTESI Popolazioni, campioni, parametri ed indicatori 1 2 3 Popolazioni e campioni Viene definita popolazione o universo l insieme completo di tutti gli elementi che hanno in comune

Dettagli

Corso in Statistica Medica

Corso in Statistica Medica Corso in Statistica Medica Introduzione alle tecniche statistiche di elaborazione dati Intervalli di confidenza Dott. Angelo Menna Università degli Studi di Chieti G. d Annunziod Annunzio Anno Accademico

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

SOLUZIONI ESERCITAZIONE NR. 8 Test statistici

SOLUZIONI ESERCITAZIONE NR. 8 Test statistici SOLUZIONI ESERCITAZIONE NR. 8 Test statistici ESERCIZIO nr. 1 Un campione casuale di dieci pazienti di sesso maschile in cura per comportamenti aggressivi nell ambito del contesto familiare è stato classificato

Dettagli

Teorema del Limite Centrale

Teorema del Limite Centrale Teorema del Limite Centrale Problema. Determinare come la media campionaria x e la deviazione standard campionaria s misurano la media µ e la deviazione standard σ della popolazione. È data una popolazione

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore

PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore medio, Errore quadratico medio (eqm), Deviazione standard,

Dettagli

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )=

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )= VARIABILI ALEATORIE CONTINUE Esistono parecchi fenomeni reali per la cui descrizione le variabili aleatorie discrete non sono adatte. Per esempio è necessaria una variabile aleatoria continua ovvero una

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017

Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017 Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 3/5/017 Contents 1 Intervalli di confidenza 1 Intervalli su un campione 1.1 Intervallo di confidenza per la media................................

Dettagli

INTERVALLI DI CONFIDENZA e TEST D IPOTESI 1 / 30

INTERVALLI DI CONFIDENZA e TEST D IPOTESI 1 / 30 INTERVALLI DI CONFIDENZA e TEST D IPOTESI 1 / 30 Intervallo di confidenza: media 2 / 30 Supponiamo di considerare la media campionaria X e assumiamo che Intervallo di confidenza: media 2 / 30 Supponiamo

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 09-Campione e popolazione vers. 1.0 (31 ottobre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Esercitazione 8 maggio 2014

Esercitazione 8 maggio 2014 Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un

Dettagli

lezione 4 AA Paolo Brunori

lezione 4 AA Paolo Brunori AA 2016-2017 Paolo Brunori dove eravamo arrivati - abbiamo individuato la regressione lineare semplice (OLS) come modo immediato per sintetizzare una relazione fra una variabile dipendente (Y) e una indipendente

Dettagli

Richiami di inferenza statistica Strumenti quantitativi per la gestione

Richiami di inferenza statistica Strumenti quantitativi per la gestione Richiami di inferenza statistica Strumenti quantitativi per la gestione Emanuele Taufer Inferenza statistica Parametri e statistiche Esempi Tecniche di inferenza Stima Precisione delle stime Intervalli

Dettagli

Richiami di inferenza statistica. Strumenti quantitativi per la gestione. Emanuele Taufer

Richiami di inferenza statistica. Strumenti quantitativi per la gestione. Emanuele Taufer Richiami di inferenza statistica Strumenti quantitativi per la gestione Emanuele Taufer Inferenza statistica Inferenza statistica: insieme di tecniche che si utilizzano per ottenere informazioni su una

Dettagli

Corso di STATISTICA EGA - Classe 1 aa Docenti: Luca Frigau, Claudio Conversano

Corso di STATISTICA EGA - Classe 1 aa Docenti: Luca Frigau, Claudio Conversano Corso di STATISTICA EGA - Classe 1 aa 2017-2018 Docenti: Luca Frigau, Claudio Conversano Il corso è organizzato in 36 incontri, per un totale di 72 ore di lezione. Sono previste 18 ore di esercitazione

Dettagli

Variabili aleatorie. Variabili aleatorie

Variabili aleatorie. Variabili aleatorie Variabili aleatorie Distribuzione binomiale Si supponga che uno studente affronti un esame composto da domande chiuse. Una sola delle 5 alternative di risposta proposta per ciascuna domanda è vera Supponiamo

Dettagli

distribuzione normale

distribuzione normale distribuzione normale Si tratta della più importante distribuzione di variabili continue, in quanto: 1. si può assumere come comportamento di molti fenomeni casuali, tra cui gli errori accidentali; 2.

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

Università del Piemonte Orientale. Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia. Corso di Statistica Medica

Università del Piemonte Orientale. Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia. Corso di Statistica Medica Università del Piemonte Orientale Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia Corso di Statistica Medica Le distribuzioni teoriche di probabilità La distribuzione Normale (o di

Dettagli

ESERCIZIO 1 Si considerino n v.c. Xi (i = 1,, n) tra loro indipendenti e somiglianti con media 10 e varianza 4. Si determini:

ESERCIZIO 1 Si considerino n v.c. Xi (i = 1,, n) tra loro indipendenti e somiglianti con media 10 e varianza 4. Si determini: ESERCIZIO 1 Si considerino n v.c. Xi (i = 1,, n) tra loro indipendenti e somiglianti con media 10 e varianza 4. Si determini: VALORE ATTESO Variabile casuale SOMMA delle n variabili Variabile casuale MEDIA

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 7: Basi di statistica

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 7: Basi di statistica Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini e Leonardo Bertini Lezione 7: Basi di statistica Campione e Popolazione Estrazione da una popolazione (virtualmente

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli