Intensita` corrente = E-01 ampere. Fraz. I iniziale emergente = E-03

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Intensita` corrente = E-01 ampere. Fraz. I iniziale emergente = E-03"

Transcript

1 Intensita` corrente = E-01 ampere Fraz. I iniziale emergente = E-03 Velocita` tang. el. = E+05 m/sec Campo elettrico = E+02 volt/m Ampiezza emergente = E+02 volt/m Velocita` dell`onda = E+04 km/h Ampiezza emergente = E+03 volt/m Numero elettroni = E+12 Velocita` dell`onda = E+04 km/h Resistenza lampadina = E+03 ohm Si trascura la dipendenza di R dalla temperatura! Energia fotone = E-09 erg Campo elettrico = E+03 volt/m Rapporto Fe/Fg 2 elettroni = E+43 Lunghezza d`onda = E+04 angstrom Potenza = E-01 W Carica = E-03 C Frequenza dell`onda = E+05 Hz

2 Angolo limite = E+02 gradi Riflessione totale impossibile! E+01 Intensita` corrente = E-01 ampere Velocita` tang. el. = E+05 m/sec Carica = E-03 C Velocita` tang. el. = E+05 m/sec Campo B = E-05 tesla Carica = E-03 C Potenziale elettrico = E+00 volt Intensita` corrente = E-01 ampere Campo elettrico = E+08 V/m Rapporto Fe/Fg prot.--elettr. = E+40 Intensita` corrente = E+00 ampere Campo B = E-05 tesla Distanza immagine = E+00 m Lunghezza d`onda = E-03 cm Lambda De Broglie = E-29 cm

3 Corrente = E-02 ampere Carica = E-02 C Lambda De Broglie (Non rel.) = E-09 m Lambda De Broglie (Relativ.) = E-09 m Numero elettroni = E+12 Vel. finale elettrone = E+06 m/sec Vel. finale elettrone = E+06 m/sec (Caso non relativistico) Forza di Lorentz = E-12 newton Campo elettrico = E+05 volt/m Numero elettroni = E Capacita` equivalente = E+02 nf Numero fotoni = 73 Distanza el.-prot. = E-04 cm Rapporto Fe/Fg prot.--elettr. = E+40 Ampiezza emergente = E+02 volt/m Intensita` luminosa = E-01 W/m** Frequenza onda = E+15 Hz Dimensione immagine = E-02 m Campo elettrico = E+00 volt/m

4 Lambda De Broglie (Class.) = E-09 m Lambda De Broglie (Relat.) = E-09 m En. cinetica max. = E-19 joule Resistivita` = E-08 ohm*m Carica = E-02 C Lambda De Broglie (Non rel.) = E-09 m Lambda De Broglie (Relativ.) = E-09 m Angolo limite = E+02 gradi Lunghezza d'onda = E-04 cm. Numero fotoni = 58 Campo elettrico = E+01 volt/m Intensita` luminosa = E-01 W/m**2 Fraz. I iniziale emergente = E+00 Potenza = E-01 W Campo E = E+10 volt/m Energia fotone = E-11 erg R_eq = E+03 ohm Energia elettrostatica = E+01 joule Intensita` corrente = E-01 ampere

5 Distanza pareti = E+00 m Fraz. I iniziale emergente = E-02 Lavoro = E-19 J Potenza = E-01 W Fraz. I iniziale emergente = E-01 Capacita` equivalente = E+02 nf Energia fotone = E-09 erg Frequenza prima armonica = E+02 Hz Corrente I = E+00 ampere Campo elettrico = E+08 V/m Potenza = E-01 W Intensita` corrente = E+00 ampere Lavoro = E-19 J Rapporto Fe/Fg 2 elettroni = E+43 Carica = E-03 C Campo elettrico = E+02 volt/m Potenza = E-01 W

6 Intensita` corrente = E-01 ampere Energia fotone = E-11 erg Dimensione immagine = E-02 m Lunghezza d`onda = E-03 cm. Corrente = E-03 ampere Resistenza conduttore = E+00 ohm En. cinetica max. = E-18 joule Intensita` corrente = E-01 ampere Rapporto Fe/Fg prot.--elettr. = E+40 Intensita` corrente = E-01 ampere Capacita` condensatore = E-08 F Velocita` tang. el. = E+05 m/sec Fraz. I iniziale emergente = E-01 Potenza = E-01 W Campo E = E+12 volt/m Vel. elettr. (Non rel.) = E+05 m/sec Vel. elettr. (Relat.) = E+05 m/sec Ampiezza emergente = E+02 volt/m

7 Carica = E-03 C Frequenza dell`onda = E+06 Hz Rapporto Fe/Fg 2 elettroni = E Carica = E-04 C Lunghezza d`onda = E-03 cm. Intensita` corrente = E-01 ampere Intensita` luminosa = E-01 W/m**2 Campo elettrico = E+03 volt/m Calore dissipato = E+03 cal Lambda De Broglie (Class.) = E-09 m Lambda De Broglie (Relat.) = E-09 m Fraz. I iniziale emergente = E+00 Intensita` corrente = E-01 ampere Lambda fotoni = E+03 angstrom Lambda De Broglie (Non rel.) = E-09 m Lambda De Broglie (Relativ.) = E-09 m Rapporto Fe/Fg 2 protoni = E Campo elettrico = E+00 volt/m Ampiezza emergente = E+02 volt/m

8 Rapporto Fe/Fg 2 elettroni = E Lunghezza d`onda = E-04 cm. Potenza = E-01 W Lavoro = E-19 J Lunghezza d'onda = E-04 cm. Campo B = E-05 tesla Lunghezza d`onda = E-04 cm Lambda De Broglie = E-29 cm Lavoro = E-19 J Ampiezza emergente = E+02 volt/m Distanza pareti = E+00 m. Distanza immagine = E+00 m Energia elettrostatica = E+01 joule Lunghezza d`onda = E+04 angstrom Vel. finale elettrone = E+06 m/sec Vel. finale elettrone = E+06 m/sec (Caso non relativistico) Energia = E-03 J Lambda De Broglie (Class.) = E-09 m

9 Lambda De Broglie (Relat.) = E-09 m Valor medio della resistenza = E+03 kohm Numero elettroni = E Rapporto Fe/Fg = E+11 Frequenza dell`onda = E+06 Hz Lunghezza focale = E-01 m Vel. luce nel mezzo = E+09 m/sec Carica = E-04 C Lambda De Broglie (Class.) = E-09 m Lambda De Broglie (Relat.) = E-09 m Lunghezza d`onda = E+03 cm. Angolo limite = E+02 gradi Numero fotoni = Distanza pareti = E+00 m. Rapporto Fe/Fg = E+10 Lambda De Broglie (Non rel.) = E-09 m Lambda De Broglie (Relativ.) = E-09 m Energia elettrostatica = E+02 joule Angolo limite = E+02 gradi

10 Dimensione = E-07 m Forza di Lorentz = E-12 newton Frequenza = E+17 Hz Vel. elettr. (Non rel.) = E+06 m/sec Vel. elettr. (Relat.) = E+06 m/sec Capacita` condensatore = E-08 F Campo elettrico = E+08 V/m Intensita` corrente = E-01 ampere Lunghezza d`onda = E-04 cm Energia fotone = E-09 erg Potenza = E-01 W Lunghezza d'onda = E-04 cm. Angolo limite = E+02 gradi Rapporto Fe/Fg = E Lunghezza d`onda = E-04 cm Dimensione immagine = E-02 m Campo elettrico = E+08 V/m

11 Lunghezza d`onda = E+04 angstrom Campo elettrico = E+13 N/C Fraz. I iniziale emergente = E Angolo limite = E+02 gradi Ampiezza emergente = E+02 volt/m Lunghezza focale = E-01 m Rapporto Fe/Fg = E+11 Angolo limite = E+02 gradi Campo magnetico = E+00 T Frequenza dell`onda = E+06 Hz Resistivita` = E-08 ohm*m Posizione immagine = E+01 cm Numero fotoni emessi = E+21 Resistenza conduttore = E+01 ohm Corrente = E+00 ampere Ampiezza emergente = E+02 volt/m Distanza el.-prot. = E-04 cm Velocita` tang. el. = E+05 m/sec

12 Intensita` corrente = E-01 ampere Distanza pareti = E+00 m. Potenziale elettrico = E+00 volt Carica = E-03 C Intensita` corrente = E-01 ampere Energia fotone = E-11 erg Distanza pareti = E+00 m. Campo elettrico = E+07 V/m Carica = E-02 C Valor medio della resistenza = E+02 kohm Ampiezza emergente = E+02 volt/m Lunghezza focale = E-01 m Dimensione immagine = E-02 m Numero elettroni = E+18 Intensita` corrente = E+04 ampere Lunghezza d'onda = E-04 cm. Intensita` corrente = E+03 ampere Campo elettrico = E+07 V/m

13 Lunghezza d`onda = E+04 angstrom Distanza pareti = E+00 m. Corrente I = E-01 ampere Carica = E-02 C Ampiezza emergente = E+01 volt/m R_eq = E+04 ohm Lunghezza d'onda = E-04 cm. Campo elettrico = E+13 N/C Riflessione totale impossibile! E Lambda De Broglie = E-30 cm Numero fotoni emessi = E+21 Intensita` corrente = E-01 ampere Angolo limite = E+02 gradi Ampiezza emergente = E+01 volt/m Dimensione = E-06 m Lunghezza focale = E-01 m Vel. luce nel mezzo = E+09 m/sec

14 Forza di Lorentz = E-12 newton Frequenza dell`onda = E+07 Hz Carica = E-03 C Fraz. I iniziale emergente = E Lavoro = E-19 J Lunghezza d`onda = E+04 angstrom Intensita` luminosa = E-01 W/m** R_eq = E+04 ohm Intensita` luminosa = E-01 W/m**2 Frequenza prima armonica = E+02 Hz Intensita` corrente = E+03 ampere Numero fotoni emessi = E+21 Intensita` luminosa = E-01 W/m** Ingrandimento lineare = E+01 Resistenza lampadina = E+03 ohm Si trascura la dipendenza di R dalla temperatura! Intensita` luminosa = E-02 W/m** Campo E = E+12 volt/m

15 Distanza d = E+00 cm. Fraz. I iniziale emergente = E Intensita` corrente = E+03 ampere Energia fotone = E-09 erg Intensita` corrente = E-01 ampere Frequenza prima armonica = E+02 Hz Intensita` corrente = E-01 ampere Lambda De Broglie = E-30 cm Ingrandimento = E+01 Fraz. I iniziale emergente = E+00 Potenza dissipata = E+01 watt Lunghezza focale = E-01 m Distanza pareti = E+00 m. Vel. luce nel mezzo = E+09 m/sec Lambda De Broglie (Class.) = E-09 m Lambda De Broglie (Relat.) = E-09 m Intensita` corrente = E-01 ampere Carica = E-11 C

16 Angolo limite = E+02 gradi Intensita` corrente = E+03 ampere Dimensione immagine = E-02 m Frequenza dell`onda = E+06 Hz Lunghezza d`onda = E+04 angstrom Intensita` corrente = E-01 ampere

Campo elettrico = E+02 volt/m. Diff. potenziale = E+02 volt. Dimensione = 0.

Campo elettrico = E+02 volt/m. Diff. potenziale = E+02 volt. Dimensione = 0. --------------- 1 -------------- Campo elettrico = 0.4921E+02 volt/m Diff. potenziale = 0.2003E+02 volt Dimensione = 0.1590E-07 m --------------- 2 -------------- Capacita` equivalente = 0.1285E+02 nf

Dettagli

Intensita` corrente = E-01 ampere. Frequenza prima armonica = E+02 Hz. Numero fotoni emessi = 0.

Intensita` corrente = E-01 ampere. Frequenza prima armonica = E+02 Hz. Numero fotoni emessi = 0. --------------- 1 -------------- Intensita` corrente = 0.5083E-01 ampere Frequenza prima armonica = 0.4114E+02 Hz Numero fotoni emessi = 0.1906E+21 --------------- 2 -------------- Intensita` corrente

Dettagli

Lambda fotoni = E+03 angstrom. Corrente = E-01 ampere. Campo elettrico = 0.

Lambda fotoni = E+03 angstrom. Corrente = E-01 ampere. Campo elettrico = 0. --------------- 1 -------------- Lambda fotoni = 0.1264E+03 angstrom Corrente = 0.9941E-01 ampere Campo elettrico = 0.1698E+01 volt/m --------------- 2 -------------- Ingrandimento lineare = -.1484E+01

Dettagli

Posizione immagine = E+01 cm. Intensita` corrente = E-01 ampere. Lunghezza pendolo = 0.

Posizione immagine = E+01 cm. Intensita` corrente = E-01 ampere. Lunghezza pendolo = 0. --------------- 1 -------------- Posizione immagine = -.5481E+01 cm. Intensita` corrente = 0.7974E-01 ampere Lunghezza pendolo = 0.2111E+03 cm --------------- 2 -------------- Campo B = 0.3143E-05 tesla

Dettagli

Lambda fotoni = E+03 angstrom. Campo elettrico = E+13 N/C. Ingrandimento = E+01

Lambda fotoni = E+03 angstrom. Campo elettrico = E+13 N/C. Ingrandimento = E+01 --------------- 1 -------------- Lambda fotoni = 0.6387E+03 angstrom Campo elettrico = 0.1118E+13 N/C Ingrandimento = 0.4358E+01 --------------- 2 -------------- Lambda De Broglie = 0.3132E-09 m Lunghezza

Dettagli

Intensita` luminosa = E-01 W/m**2. Forza di Lorentz = E-12 newton

Intensita` luminosa = E-01 W/m**2. Forza di Lorentz = E-12 newton --------------- 1 -------------- Intensita` luminosa = 0.4234E-01 W/m**2 Forza di Lorentz = 0.2456E-12 newton Rapporto Fe/Fg prot.--elettr. = 0.2269E+40 --------------- 2 -------------- Forza = 0.3451E-06

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli esercizi Compito 1. Formula risolutiva: t = V ρ g h / W con V = volume pozza, ρ = densità assoluta dell'acqua, h = altezza, W = potenza pompa Tempo = 0.1490E+03 s Formula risolutiva: c

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli esercizi numero di compiti dati dal CAPO: 80 numero di soluzioni 480 Compito 1. Formula risolutiva: c = (c 1 +c 2 +c 3 +c 4 +c 5 )/5 Valor medio del calore specifico = 0.211E+04 J/(kg K)

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli esercizi Compito 1. Formula risolutiva: Q = (Q 1 +Q 2 +Q 3 +Q 4 +Q 5 )/5 Valor medio della quantità di calore = 0.556E+02 J Formula risolutiva: C = Q/ΔT con ΔT = variazione temperatura

Dettagli

Compito di Esame di Fisica - Facolta` di Farmacia - A.A. 2014/15 Sede di: Bologna - XXX - parz2 Appello - gg mm 2015 Cognome e Nome... N.Matr...

Compito di Esame di Fisica - Facolta` di Farmacia - A.A. 2014/15 Sede di: Bologna - XXX - parz2 Appello - gg mm 2015 Cognome e Nome... N.Matr... 1 1)Si calcoli la lunghezza d'onda, in Angstrom, di fotoni emessi in transizioni atomiche tra due livelli la cui differenza in energia sia DE = 0.3112E-10 erg. 2)Una membrana di plasma di una cellula ha

Dettagli

Fenomeni elettrici. Modello dell atomo, carica elettrica, forza tra cariche stazionarie. Campo elettrico e potenziale elettrostatico

Fenomeni elettrici. Modello dell atomo, carica elettrica, forza tra cariche stazionarie. Campo elettrico e potenziale elettrostatico Fenomeni elettrici Legge di Coulomb Modello dell atomo, carica elettrica, forza tra cariche stazionarie Campo elettrico e potenziale elettrostatico Campo elettrico, linee di forza, lavoro della forza elettrostatica,

Dettagli

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Programma svolto Lezione 1 Carica elettrica, legge di Coulomb, campo elettrico, potenziale elettrico Breve storia dell elettricità

Dettagli

COGNOME NOME Matr...

COGNOME NOME Matr... COMPITONUMERO1 COGNOME NOME Matr... Ignorare il fatto che dati non sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. L accelerazione di gravitá

Dettagli

Compito di Fisica - Scuola di Farmacia, BioTec e ScMot - A.A. 2017/18 Sede di: Bologna - CTF - parz2 Appello - xx Cognome e Nome... N.Matr...

Compito di Fisica - Scuola di Farmacia, BioTec e ScMot - A.A. 2017/18 Sede di: Bologna - CTF - parz2 Appello - xx Cognome e Nome... N.Matr... 1 1)Un oggetto alto 0.6132E+02 cm e` posto ad una distanza s = 0.2918E+01 cm da una lente sottile con lunghezza focale f = 6.24 cm. Si calcoli la posizione dell'immagine. 2)Si calcoli la corrente continua

Dettagli

MODULO DI FISICA (versione aggiornata 2018)

MODULO DI FISICA (versione aggiornata 2018) Syllabus delle conoscenze per il modulo MODULO DI FISICA (versione aggiornata 2018) PREMESSA Il syllabus del modulo Fisica è volutamente limitato a quanto esposto nei testi delle scuole superiori e gli

Dettagli

Forza = E+01 N. Valor medio del momento di inerzia = E+01 kg*m**2. v_limite = 0.

Forza = E+01 N. Valor medio del momento di inerzia = E+01 kg*m**2. v_limite = 0. --------------- 1 -------------- Forza = 0.2556E+01 N Valor medio del momento di inerzia = 0.2663E+01 kg*m**2 v_limite = 0.2912E-06 m/s --------------- 2 -------------- Velocita` media = 0.1183E+03 micron/s

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli esercizi Compito 1. Formula risolutiva: Peso = m g Peso = 0.213E+10 dyne Formula risolutiva: F = forza peso - spinta idrostatica = (ρ sfera - ρ liquido ) (4/3) π r 3 g con ρ sfera = densità

Dettagli

Innalzamento capillare = E+01 cm. Pressione = E+06 Pa

Innalzamento capillare = E+01 cm. Pressione = E+06 Pa --------------- 1 -------------- Innalzamento capillare = 0.1565E+01 cm Pressione = 0.8588E+06 Pa Valor medio della tensione superficiale = 0.2001E-01 N/m --------------- 2 -------------- Calore specifico

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

SISTEMA INTERNAZIONALE DELLE UNITÀ DI MISURA

SISTEMA INTERNAZIONALE DELLE UNITÀ DI MISURA SI SISTEMA INTERNAZIONALE DELLE UNITÀ DI MISURA SETTE UNITÀ FONDAMENTALI LUNGHEZZA metro m Il metro è la lunghezza uguale a 1.650.763,73 lunghezze d'onda, nel vuoto, della radiazione corrispondente alla

Dettagli

Esercitazione su elettricità

Esercitazione su elettricità Esercitazione su elettricità Due sferette metalliche A e B poste nel vuoto a una distanza di 10 m hanno la stessa carica positiva. Il modulo della forza elettrica che A applica a B è 10 3 N. Calcola la

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 12 Corrente elettrica

Main training FISICA. Lorenzo Manganaro. Lezione 12 Corrente elettrica Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 12 Corrente elettrica Lezione 12 Corrente Elettrico 1. Leggi di Ohm 2. Legge di Joule 3. Leggi di Kirchhoff e circuiti Statistica 30 25 20 15 1.

Dettagli

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29 LEZIONE N. 29 (LA CONDUZIONE ELETTRICA NEI METALLI) Nei metalli gli atomi sono talmente vicini che qualche elettrone esterno viene a trovarsi nel campo elettrico dell atomo più vicino. Per questo motivo

Dettagli

Le unità di misura dell'si

Le unità di misura dell'si Le unità di misura dell'si Unità fondamentali Ogni altra grandezza fisica (e la relativa unità di misura) è una combinazione di due o più grandezze fisiche (unità) di base, od il reciproco di una di esse.

Dettagli

Fisica Main Training Lorenzo Manganaro

Fisica Main Training Lorenzo Manganaro Fisica Main Training 2016-2017 Lorenzo Manganaro 30 25 20 15 1. Ottica geometrica (Snell) 2. Spettro el.m. Veterinaria Ottica e Optometria Odontoiatria Medicina 10 5 0 Vettori Cinematica - generale -

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova di esame del 15/6/ NOME, n. matricola

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova di esame del 15/6/ NOME, n. matricola Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15 Prova di esame del 15/6/2015 - NOME, n. matricola 1) Un gas perfetto monoatomico con n= 2 moli viene utilizzato in una macchina

Dettagli

4πε. Esercizio 1. per r > R A. E = 0 per r R A, E =

4πε. Esercizio 1. per r > R A. E = 0 per r R A, E = Esercizio 1 a) Il campo elettrostatico E all interno e all esterno della sfera di raggio R A deve essere, per simmetria, radiale ed assumere lo stesso valore in ogni punto di una generica sfera concentrica

Dettagli

Quantita` di calore = E+03 cal. `` `` `` = E+10 erg. Calore prodotto = E+06 joule = 0.

Quantita` di calore = E+03 cal. `` `` `` = E+10 erg. Calore prodotto = E+06 joule = 0. --------------- 1 -------------- Quantita` di calore = 0.2311E+03 cal. `` `` `` = 0.9672E+10 erg Calore prodotto = 0.1187E+06 joule = 0.2840E+05 cal Ampiezza del moto = 0.9511E-02 m --------------- 2 --------------

Dettagli

II prova in itinere di Fisica Applicata ( )A

II prova in itinere di Fisica Applicata ( )A Cognome Nome Firma Matricola Gruppo II prova in itinere di Fisica Applicata (13-01-2009)A Domande da 1) a 10): +2.6 punti per risposta esatta e -0.6 punti risposta errata. Domande da 11) a 13): fino a

Dettagli

COMPITO NUMERO 1. COGNOME NOME Matr...

COMPITO NUMERO 1. COGNOME NOME Matr... COMPITO NUMERO 1 COGNOME NOME Matr... Ignorare il fatto che dati non sono presentati con le corrette cifre signi cative. I numeri sono spesso in rappresentazione scienti ca. Il numero di Avogadro è ssato

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

INTENSITÀ DI CORRENTE E LEGGI DI OHM

INTENSITÀ DI CORRENTE E LEGGI DI OHM QUESITI 1 INTENSITÀ DI CORRENTE E LEGGI DI OHM 1. (Da Veterinaria 2014) Un filo di alluminio ha una sezione di 1,0 x 10-6 m 2. Il filo è lungo 16,0 cm ed ha una resistenza pari a 4,0 x 10-3 Ω. Qual è la

Dettagli

Quantita` di calore = E+03 cal. `` `` `` = E+10 erg. Calore prodotto = E+06 joule = 0.

Quantita` di calore = E+03 cal. `` `` `` = E+10 erg. Calore prodotto = E+06 joule = 0. --------------- 1 -------------- Quantita` di calore = 0.2311E+03 cal. `` `` `` = 0.9672E+10 erg Calore prodotto = 0.1187E+06 joule = 0.2840E+05 cal Ampiezza del moto = 0.9511E-02 m --------------- 2 --------------

Dettagli

ISTITUTO SUPERIORE VIA SILVESTRI

ISTITUTO SUPERIORE VIA SILVESTRI ISTITUTO SUPERIORE VIA SILVESTRI SEZ. LICEO SCIENTIFICO ANNO SCOLASTICO 2018 2019 CLASSE III Sez. A PROGRAMMA di FISICA Professor Moauro, Francesco FISICA Le grandezze e il moto: - Unità di misura e Sistema

Dettagli

COGNOME NOME Matr...

COGNOME NOME Matr... COMPITONUMERO1 COGNOME NOME Matr... Ignorare il fatto che dati non sono presentati con le corrette cifre significative. I numeri sono spesso in rappresentazione scientifica. L accelerazione di gravitá

Dettagli

1 I nomi vanno sempre scritti in carattere minuscolo, compresa la lettera iniziale, privi di accenti o altri segni grafici ( ampere, volt, ohm).

1 I nomi vanno sempre scritti in carattere minuscolo, compresa la lettera iniziale, privi di accenti o altri segni grafici ( ampere, volt, ohm). Quante volte è capitato di sentir dire, soprattutto dagli addetti ai lavori vorrei una lampadina da 220 volts (plurale), oppure di ricevere documenti con le unità di misura scritte in modo scorretto (A16,

Dettagli

Cariche e Campi Elettrici

Cariche e Campi Elettrici PROGRAMMA FINALE di FISICA A.S. 2016/2017 5 Liceo Classico LIBRO DI TESTO Parodi, Ostili, Onori Il Linguaggio della Fisica 3 - Linx MODULO N. 1 Cariche e Campi Elettrici U.D. 1 Carica Elettrica e Legge

Dettagli

a.a. di immatricolazione Potenza elettrica tre lampadine identiche sono collegate ad una batteria come in figura. Se si brucia la lampadina A :

a.a. di immatricolazione Potenza elettrica tre lampadine identiche sono collegate ad una batteria come in figura. Se si brucia la lampadina A : Facoltà di FARMACIA Scheda Xa a.a. 2009 2010 ESE del FISICA Cog a.a. di imzione firma N si scrivano le dimensioni fisiche (nel Sistema Internazionale) delle seguenti grandezze: resistività resistenza Potenza

Dettagli

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo I FENOMENI ELETTRICI Carica elettrica Forza di Coulomb Potenziale elettrico Intensità di corrente Leggi di Ohm Resistenza e resistività Effetto termico della corrente Carica elettrica Proprietà elettriche

Dettagli

S ν = c 4 u ν. S ν dν = c 8π h ν e hν. k B T. S λ = 2π λ 5 c2 h

S ν = c 4 u ν. S ν dν = c 8π h ν e hν. k B T. S λ = 2π λ 5 c2 h Corso di Introduzione alla Fisica Quantistica (f) Esercizi: Maggio 2006 (con soluzione) i) Un filamento emette radiazione che ha una lunghezza d onda massima λ Max = 15000 10 8 cm. Considerando di approssimare

Dettagli

MODULI DI FISICA (QUINTO ANNO)

MODULI DI FISICA (QUINTO ANNO) DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI FISICA (QUINTO ANNO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 ELETTROSTATICA 1-2 TRIMESTRE U.D. 1.

Dettagli

I FENOMENI ELETTRICI CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE

I FENOMENI ELETTRICI CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE I FENOMENI ELETTRICI CARICA ELETTRICA FORZA DI COULOMB CAMPO ELETTRICO E POTENZIALE ELETTRICO CORRENTE E LEGGI DI OHM RESISTENZA

Dettagli

SCUOLE STATALI ANNESSE AL CONVITTO NAZIONALE MELCHIORRE DELFICO

SCUOLE STATALI ANNESSE AL CONVITTO NAZIONALE MELCHIORRE DELFICO SCUOLE STATALI ANNESSE AL CONVITTO NAZIONALE MELCHIORRE DELFICO LICEO SCIENTIFICO LICEO COREUTICO SCUOLA PRIMARIA Piazza Dante, 20-64100 TERAMO www.convittodelfico.it - teps04000v@istruzione.it Centralino

Dettagli

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo I FENOMENI ELETTRICI Carica elettrica Forza di Coulomb Campo elettrico Potenziale elettrico Intensità di corrente Leggi di Ohm Resistenza e resistivita Effetto termico della corrente Elettrolisi Carica

Dettagli

Il vettore densità di corrente è solenoidale V=RI

Il vettore densità di corrente è solenoidale V=RI Corrente elettrica Equazione di continuita' r r ρ = J t ρ nel caso stazionario: = 0 e r J r = 0 t J densità di corrente ρ densità di carica Il vettore densità di corrente è solenoidale Leggi di ohm V=RI

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare la

Dettagli

Meccanica quantistica Mathesis 2016 Prof. S. Savarino

Meccanica quantistica Mathesis 2016 Prof. S. Savarino Meccanica quantistica Mathesis 2016 Prof. S. Savarino Quanti Corpo nero: è un oggetto che assorbe tutta la radiazione senza rifletterla. Come una corda legata agli estremi può produrre onde stazionarie

Dettagli

Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2014

Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2014 Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2014 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

Programmazione Modulare

Programmazione Modulare Programmazione Modulare 2015-16 Indirizzo: BIENNIO Disciplina: FISICA Ore settimanali previste: 3 (2 ore Teoria 1 ora Laboratorio) Classe: 2A 2B- 2C Prerequisiti per l'accesso alla PARTE C: Unità di misura,

Dettagli

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Corrente elettrica Consideriamo il moto non accelerato e con velocità piccole rispetto a quella della luce nel vuoto di un insieme di particelle dotate di carica elettrica: possono ritenersi valide le

Dettagli

Esame di stato 2014_2 2 M.Vincoli

Esame di stato 2014_2 2 M.Vincoli Esame di stato 0_ M.Vincoli . Per semplificare i calcoli, evitando altresì di introdurre immediatamente grandezze numeriche, è utile adottare una notazione semplificatrice, per cui poniamo:, 0 0,,0 0,60

Dettagli

Componenti elettronici

Componenti elettronici A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2016 Componenti elettronici Carlo Vignali, I4VIL Esempi di grandezze esprimibili con numeri reali esprimibili con numeri complessi

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2013

Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2013 Fisica 2 per biotecnologie: Prova scritta 9 Settembre 203 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

Fisica 2 per biotecnologie: Prova in itinere 8 Aprile 2013

Fisica 2 per biotecnologie: Prova in itinere 8 Aprile 2013 Fisica per biotecnologie: Prova in itinere 8 Aprile 03 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati ed eventuali altri fogli richiesti) la seguente tabella: NOME :... Numero

Dettagli

PROGRAMMA DI FISICA. CLASSE: 4^ SEZ.:A Scientifico

PROGRAMMA DI FISICA. CLASSE: 4^ SEZ.:A Scientifico Viale Papa Giovanni XXIII 25 10098 RIVOLI Tel. 0119586756 Fax 0119589270 Sede di SANGANO 10090 via San Giorgio, 10 Tel. e fax 0119087184 SCIENTIFICO LINGUISTICO SCIENZE UMANE ECONOMICO SOCIALE e-mail:

Dettagli

Fisica 2 per biotecnologie: Prova in itinere 26 Maggio 2014

Fisica 2 per biotecnologie: Prova in itinere 26 Maggio 2014 Fisica 2 per biotecnologie: Prova in itinere 26 Maggio 2014 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

Q=costante (indipendente dal dielettrico)

Q=costante (indipendente dal dielettrico) Se in un condensatore viene posto un materiale dielettrico con costante 5 volte maggiore rispetto quella dell aria: Quali grandezze cambiano tra Q, C e V? Q=costante (indipendente dal dielettrico) C =

Dettagli

Fisica Main Training Lorenzo Manganaro

Fisica Main Training Lorenzo Manganaro Fisica Main Training 2016-2017 Lorenzo Manganaro 18 lezioni: 3 blocchi 5+1 Programma: Meccanica (Cinematica Dinamica Energia e lavoro) Termodinamica Elettricità Magnetismo Elettromagnetismo Ottica geometrica

Dettagli

Quanti elettroni occorre rimuovere da una moneta per lasciarle una carica di C?

Quanti elettroni occorre rimuovere da una moneta per lasciarle una carica di C? 21.17 Quanti elettroni occorre rimuovere da una moneta per lasciarle una carica di 1 10-7 C? 21.20 Si calcoli la quantità di carica positiva (in Coulomb) presente in 250 cm 3 d acqua (neutra). 21.21 Qual

Dettagli

Corso di laurea in Informatica Secondo compitino di Fisica Generale Docenti: G. Colò, M. Maugeri 17 giugno 2008

Corso di laurea in Informatica Secondo compitino di Fisica Generale Docenti: G. Colò, M. Maugeri 17 giugno 2008 Firma Laurea ed anno di corso orso di laurea in nformatica Secondo compitino di Fisica Generale Docenti: G. olò, M. Maugeri 7 giugno 008 ognome: Nome: Matricola: Pos: ) La legge di Joule mostra che la

Dettagli

q t i = C s CORRENTE ELETTRICA CORRENTE ELETTRICA LEGGI DI OHM

q t i = C s CORRENTE ELETTRICA CORRENTE ELETTRICA LEGGI DI OHM CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce una corrente elettrica. Il verso della corrente è quello del moto delle cariche positive (opposto a quello delle cariche

Dettagli

1 La corrente elettrica E34. 2 Le leggi di Ohm E38 3 La potenza nei circuiti elettrici E42. 4 Resistività e temperatura E46

1 La corrente elettrica E34. 2 Le leggi di Ohm E38 3 La potenza nei circuiti elettrici E42. 4 Resistività e temperatura E46 Fenomeni elettrostatici 15 la corrente elettrica continua 16 1 Le cariche elettriche E2 2 La legge di Coulomb E4 TECNOLOGIA La gabbia di Faraday E6 3 Il campo elettrico E8 4 Diversi tipi di campo elettrico

Dettagli

Quantita` di calore = E+02 cal. Lato = E+01 cm. Massa d'acqua evaporata = 0.

Quantita` di calore = E+02 cal. Lato = E+01 cm. Massa d'acqua evaporata = 0. --------------- 1 -------------- Quantita` di calore = 0.2125E+02 cal. Lato = 0.3109E+01 cm Massa d'acqua evaporata = 0.4793E+04 kg --------------- 2 -------------- Pressione = 0.5689E+06 dyne/cm**2 Velocita`

Dettagli

Fisica 2 per biotecnologie: Prova scritta 3 Febbraio 2014

Fisica 2 per biotecnologie: Prova scritta 3 Febbraio 2014 Fisica 2 per biotecnologie: Prova scritta 3 Febbraio 2014 Scrivere immeiatamente, ED IN EVIDENZA, sui ue fogli protocollo consegnati (e eventuali altri fogli richiesti) la seguente tabella: NOME :... Numero

Dettagli

COMPETENZE CONOSCENZE ABILITA

COMPETENZE CONOSCENZE ABILITA COMPETENZE CONOSCENZE ABILITA CS2a: Seguire protocolli sperimentali già stabiliti per verificare e/o individuare relazioni tra grandezze fisiche. CS2b: Progettare esperimenti per individuare regolarità

Dettagli

Unità di misura e formule utili. Lezione 6

Unità di misura e formule utili. Lezione 6 Unità di misura e formule utili Lezione 6 Unità di misura Il Sistema Internazionale di unità di misura (SI) nasce dall'esigenza di utilizzare comuni unità di misura per la quantificazione e la misura delle

Dettagli

Modulo 8 Elettromagnetismo

Modulo 8 Elettromagnetismo Elettromagnetismo 1 Modulo 8 Elettromagnetismo 8.1. Elettrostatica: carica, forza e campo. 8.2. Tensione e corrente elettica 8.3. Conduttori e isolanti 8.4. Circuiti elettrici 8.5. Magnetismo 8.6. Onde

Dettagli

Onde(1/2) Onde e suono Lezione 15, 26/11/2018, JW

Onde(1/2) Onde e suono Lezione 15, 26/11/2018, JW Onde(1/2) Onde e suono Lezione 15, 26/11/2018, JW 18.1-18.5 1 1. Onde trasversale Un onda è una perturbazione che si propaga da un posto a un altro. L onda più semplice da visualizzare è un onda trasversale,

Dettagli

Correnti e circuiti. E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Q t.

Correnti e circuiti. E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Q t. 1 Correnti e circuiti Correnti e circuiti corrente: la quantità di carica che attraversa una superficie nell unità di tempo i i Q t lim t 0 Q t dq dt 1 Ampere (A) 1 C/s E' il rapporto tra la quantità di

Dettagli

Programma di Fisica e laboratorio

Programma di Fisica e laboratorio Programma di Fisica e laboratorio Anno Scolastico 2014/15 Classe 2ª A Docenti: Maurizio Melis e Fabrizio Barraco La temperatura Misura della temperatura Le scale termometriche: Celsius, Fahrenheit e Kelvin

Dettagli

Seconda prova di accertamento di Fisica2 * Studenti-Lavoratori Padova, 25 Giugno 2005

Seconda prova di accertamento di Fisica2 * Studenti-Lavoratori Padova, 25 Giugno 2005 Seconda prova di accertamento di Fisica2 * Padova, 25 Giugno 2005 Problema 1- Due conduttori rettilinei paralleli indefiniti, distanti R=0,1 m, sono percorsi dalla stessa corrente I, ma in versi opposti.

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 14/11/2011 - NOME 1) a) Quanto calore è necessario per aumentare la temperatura di una pentola di ferro

Dettagli

PROFILO IN USCITA PER IL TERZO ANNO FISICA Sezioni internazionale Francese-Tedesca ad indirizzo scientifico

PROFILO IN USCITA PER IL TERZO ANNO FISICA Sezioni internazionale Francese-Tedesca ad indirizzo scientifico PROFILO IN USCITA PER IL TERZO ANNO I vettori: componenti cartesiane, algebra dei vettori Il moto nel piano Moto circolare uniforme ed uniformemente accelerato Moto parabolico Il vettore forza Equilibrio

Dettagli

Fisica 2 per biotecnologie: Prova Scritta 30 Gennaio 2012

Fisica 2 per biotecnologie: Prova Scritta 30 Gennaio 2012 Fisica 2 per biotecnologie: Prova Scritta 30 Gennaio 2012 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

SCIENZE SPERIMENTALI: FISICA

SCIENZE SPERIMENTALI: FISICA Esame svizzero di maturità Estate 2012 Cognome e nome:... Gruppo e numero:.... SCIENZE SPERIMENTALI: FISICA Per ottenere la nota 4 occorre acquisire un punteggio equivalente a quello che si otterrebbe

Dettagli

Fisica 2 per biotecnologie: Prova in itinere 16 Aprile 2012

Fisica 2 per biotecnologie: Prova in itinere 16 Aprile 2012 Fisica per biotecnologie: Prova in itinere 16 Aprile 1 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :... Numero

Dettagli

INTRODUZIONE 11 INDICAZIONI PER I PARTECIPANTI AI CORSI ALPHA TEST 19

INTRODUZIONE 11 INDICAZIONI PER I PARTECIPANTI AI CORSI ALPHA TEST 19 INDICE INTRODUZIONE 11 SUGGERIMENTI PER AFFRONTARE LA PROVA A TEST 13 Bando di concorso e informazioni sulla selezione...13 Regolamento e istruzioni per lo svolgimento della prova...13 Domande a risposta

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 25/7/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 25/7/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 25/7/2011 - NOME 1) Un contenitore con un volume iniziale di 0.05 m 3 contiene 2 moli di gas ideale monoatomico

Dettagli

e = 1, C Carica Elettrica

e = 1, C Carica Elettrica Fenomeni elettrici Osservazione: corpi carichi elettricamente si attraggono o respingono; nuova proprietà della materia (carica elettrica) nuova forza di tipo fondamentale (forza elettromagnetica) Carica

Dettagli

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Giugno 2013

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Giugno 2013 Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Giugno 2013 Quesito 1 Quanto vale la componente cartesiana lungo l'asse y del vettore in figura? a) Non

Dettagli

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Attività didattica FISICA [MFN0598] Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Corso di studio: INFORMATICA [008707] Docente titolare del corso: MIGLIORE

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Cognome Nome Matricola DOCENTE Energetica Biomedica DM 270 Elettronica Informazione Informatica DM509 Problema 1 Nel circuito di figura (a) i resistori hanno valori tali che R 1 / = 2 e i condensatori

Dettagli

Esame di Stato 2006 tema n. 2 1 M.Vincoli

Esame di Stato 2006 tema n. 2 1 M.Vincoli Esame di Stato 6 tema n. 1 M.Vincoli 1. L effetto Joule consiste nella dissipazione termica di energia a seguito del passaggio di corrente in un elemento resistivo. Supponiamo di avere un circuito costituito

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 17/02/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 17/02/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13 Prova Scritta del 17/02/2014 - NOME 1) Un cubetto di ghiaccio di m = 5 g e temperatura T g = - 15 C viene gettato in un lago

Dettagli

Esercizi Grandezze, Vettori e Meccanica

Esercizi Grandezze, Vettori e Meccanica Esercizi Grandezze, Vettori e Meccanica 1. Trasformare le seguenti misure nelle unità del S.I.: l = 73.8 km l = 10 6 cm l = 0.34 mm v = 43 km/h v = 20 cm/s v = 3 10 2 mm/s a = 10 km/h 2 a = 10 cm/s 2 ν

Dettagli

Corso di laurea in Informatica Compito di Fisica 23 Giugno 2005 scritto A

Corso di laurea in Informatica Compito di Fisica 23 Giugno 2005 scritto A Firma Triennale Corso di laurea in Informatica Compito di Fisica 23 Giugno 2005 scritto A Quinquennale Cognome: Nome: Matricola: Pos: 1) Precisare dimensioni e unità di misura del flusso magnetico. Risolvere

Dettagli

Indice. Meccanica. Le grandezze fsiche. Il moto in una dimensione. Il moto in due dimensioni. Le forze e l equilibrio III

Indice. Meccanica. Le grandezze fsiche. Il moto in una dimensione. Il moto in due dimensioni. Le forze e l equilibrio III Indice Meccanica 1 2 3 4 Le grandezze fsiche 1 Grandezze fsiche 2 2 Il Sistema Internazionale di Unità 3 3 Notazione scientifca e approssimazioni 5 4 L intervallo di tempo 9 5 La lunghezza 9 6 La massa

Dettagli

ELENCO ANALITICO DEGLI ARGOMENTI

ELENCO ANALITICO DEGLI ARGOMENTI PROGRAMMA PER ESAMI DI IDONEITÀ ALLA CLASSE II FISICA dipartimento e contiene gli argomenti essenziali per l accesso al II anno di corso. INTRODUZIONE ALLA FISICA: GRANDEZZE E MISURE Metodo scientifico,

Dettagli

PROGRAMMA SVOLTO A.S. 2017/2018

PROGRAMMA SVOLTO A.S. 2017/2018 PROGRAMMA SVOLTO A.S. 2017/2018 Materia: Fisica Classe: 3N Insegnante: prof. Sebastiano Porcino Libri di testo: L Amaldi per i licei scientifici. Blu/ Autore Ugo Amaldi - casa editrice Zanichelli MODULO

Dettagli

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza Parte I Problemi Richiami Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza u ν = 8π hν c 3 ν e βhν 1, dove c è la velocità della luce

Dettagli

64. Quali tra le seguenti unità può essere usata per misurare la pressione?

64. Quali tra le seguenti unità può essere usata per misurare la pressione? 63. Siano date 2 lampadine ad incandescenza (di quelle normalmente usate nelle nostre case) A e B, entrambe da 60 W ed entrambe da 220 V. Le collego in parallelo e le alimento a 220 V utilizzando una presa

Dettagli

Peso = E+00 N. Lavoro = E+05 joule. Pressione = E+06 Pa

Peso = E+00 N. Lavoro = E+05 joule. Pressione = E+06 Pa --------------- 1 -------------- Peso = 0.8857E+00 N Lavoro = -0.249E+05 joule Pressione = 0.5266E+06 Pa --------------- 2 -------------- Massa aria = 0.2633E+03 kg Coeff. attrito = 0.1244E+00 Vel. bilia

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE NICOLA MORESCHI. Programmazione didattica annuale

ISTITUTO DI ISTRUZIONE SUPERIORE NICOLA MORESCHI. Programmazione didattica annuale ISTITUTO DI ISTRUZIONE SUPERIORE NICOLA MORESCHI Programmazione didattica annuale Materia: FISICA classi: SECONDO BIENNIO e QUINTO ANNO LICEO SCIENTIFICO a.s. 2017/2018 Finalità e competenze Obiettivo

Dettagli

ESERCIZI DI SCIENZE TIPO ESAME a.s LEVE. Considera una leva di 1 genere lunga 50 cm, ad un estremo della quale viene applicata una

ESERCIZI DI SCIENZE TIPO ESAME a.s LEVE. Considera una leva di 1 genere lunga 50 cm, ad un estremo della quale viene applicata una ESERCIZI DI SCIENZE TIPO ESAME a.s. 2012-2013 LEVE Considera una leva di 1 genere lunga 50 cm, ad un estremo della quale viene applicata una resistenza di 10 kg distante 8 cm dal fulcro. a) Calcola il

Dettagli