FIBRE OTTICHE Esempio Esempio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FIBRE OTTICHE Esempio Esempio"

Transcript

1 L attenuazione produce una perdita di potenza lungo la fibra. La potenza in uscita è significativamente minore della potenza iniettata. La potenza d uscita o all estremità finale del link dipende dalla potenza iniettata c, dall attenuazione per unità di lunghezza α e dalla lunghezza del tragitto L: o = c 0-α L/0 [mw] o = c α L [db] Esempio: In una fibra viene iniettata un potenza c = 0.6 mw, l attenuazione della fibra è di 6 db/km, mentre la lunghezza è di km. Quanto è la potenza d uscita? o = c 0 -α L/0 = (0.6 mw) 0 [-(6 db/km)( km) /0] = 0 µw = -0 dbm Esempio: In una fibra viene iniettata un potenza c = -8 dbm, l attenuazione della fibra è di 6 db/km, mentre la o richiesta è di 30 dbm. Qual è la lunghezza massima? L = ( c - o ) / α = [(-8 dbm) - (-30 dbm)]/(6 db/km) = 3.67 km --

2 erdite per Curvatura (Bending Losses) Questo tipo di perdite si verifica quando la fibra viene curvata. La curvatura può essere macroscopica (macrobend), cioè visibile dall esterno del cavo, o microscopica (microbend), invisibile dall esterno del cavo. Le curvature tipo macrobend si possono avere su archi estesi, da un quarto di giro ad un giro completo, e si incontrano tipicamente nella posa in opera del cavo, per es. girando un angolo. Le microcurvature sono causate dai processi di fabbricazione, quando la fibra viene sottoposta a stress compressivi. --

3 La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente in fibra. Una formula approssimativa per quantificare le perdite, valida per una fibra multimodale, è la seguente: α + d = α R 3λ + 4πn R 3 dove e sono la potenza prima della curvatura e dopo la curvatura espresse in mw, rispettivamente; R è il raggio di curvatura della fibra, d è il diametro della fibra, α è il profilo del graded-index, è la differenza relativa tra gli indici, n è l indice del cladding e λ la lunghezza d onda della luce iniettata. La formula è valida solo per R >> d, che è vero nel caso di macrobending. -3-

4 erdite di Connessione Questo tipo di perdite si verifica quando c è un punto di connessione tra due fibre, o tra una fibra e un LED o un fotodiodo. Le perdite possono essere basse, per es. quando due fibre sono fuse insieme, o più elevate, per es. accoppiando una fibra ad un LED. Le perdite hanno origine da disadattamento delle proprietà ottiche dei materiali e da cattivo allineamento meccanico. Il disadattamento delle proprietà ottiche tra due mezzi materiali provoca riflessione alla superficie di interfaccia tra i due materiali. La superficie della faccetta terminale della fibra agisce come uno specchio che riflette una frazione della luce. -4-

5 erdite di Connessione Il rapporto tra la potenza incidente e quella trasmessa superficie semiriflettente è dato da: attraverso una = n n n + n dove n e n sono i due indici di rifrazione. Quando n = n, non c è riflessione e =. Maggiore è il disadattamento, maggiore è la potenza riflessa. -5-

6 In caso di eccessivo disadattamento e riflessione, un materiale di adattamento può essere inserito nell air gap. La riflessione viene minimizzata da un materiale con indice: n m = n n er esempio, per ridurre le riflessioni tra un core con indice di rifrazione n =.448 e l aria (n = ), il materiale ideale di adattamento ha indice n m =

7 Un cattivo allineamento meccanico causa perdite, includendo sia la posizione relativa tra le due fibre, sia la differenza di dimensioni tra le due fibre. L allineamento coinvolge quattro gradi di libertà, di cui tre traslazioni (assi x, y, z) e un angolo relativo. La differenza dimensionale può includere il diametro del core, il profilo del core e l eccentricità. -7-

8 -8- FIBRE OTTICHE L efficienza di trasmissione per una fibra step-index in funzione dell offset assiale d è dato da: = a d a d a d arccos, MIN π π er fibre tipo graded-index che hanno d/a < 0.4, cosa che accade nella maggior parte dei casi, le perdite dovute ad offset assiale possono essere approssimate da: a d 3π 8 =

9 L efficienza di trasmissione in funzione della separazione s tra le faccette terminali (s è dell ordine del µm): = MIN, a [ a + s tan( ϑ )] 0ext L efficienza di trasmissione in funzione del cattivo allineamento angolare ϑ (in un connettore o in un giunto) è data da: p q y = = cos = = p π π ( ϑ) p arcsin( p) q y + arcsin( y) ( ) ( cos( ϑ) ) cos ϑc sin( ϑ ) sin( ϑ) c 3 cos ( ϑc ) 3 ( cos ( ϑc ) sin ( ϑ) ) cos ( ϑc )( cos( ϑ) ) sin ( ϑ) cos( ϑ ) sin( ϑ ) sin( ϑ) c c y π π + -9-

10 -30- FIBRE OTTICHE L efficienza di trasmissione, quando il diametro del core di trasmissione d E è maggiore del diametro del core di ricezione d R, è data da: = E R d d, MIN L efficienza di trasmissione, quando il profilo dell indice di rifrazione del core di trasmissione α E è diverso da quello del core di ricezione α R, è data da: ( ) ( ) + + = R E E R, MIN α α α α

11 L efficienza di trasmissione può essere espressa in funzione dell apertura numerica relativa alla fibra in trasmissione NA E e alla fibra in ricezione NA R (se NA R > NA E non ci sono perdite dovute al disadattamento di apertura numerica): NAR = MIN, NAE Esempio: Due fibre, ciascuna con un indice di core di.445, sono accoppiate con un air-gap tra loro. La prima fibra ha NA = 0.54 e la seconda NA = 0.0. Trovare l efficienza di trasmissione. Ci sono due riflessioni, ciascuna per ogni interfaccia (vetro-aria e aria-vetro). er ciascuna riflessione si può scrivere: / = - [(.445 )/( )] = La fibra ricevente ha NA minore della trasmittente, perciò l efficienza legata al disadattamento dell apertura numerica è: / = (0.0/0.5) = L attenuazione totale è: out / in = =

12 Divisori di fascio (splitter), miscelatori (combiner) e altri tipi di multiplexer ottici introducono perdite aggiuntive nel collegamento. Ripartizione della potenza: un ripartitore :N inietta /N della potenza in N fibre (se è : allora per le due fibre in uscita si ha una attenuazione di 3 db). Excess loss: parte della luce viene riflessa fuori dalla fibra è non è più disponibile per la ripartizione (cambio del numero di modi o delle dimensioni fisiche nel giunto, riflessioni all indietro nei punti in cui cambiano le proprietà ottiche della guida). Se le fibre in uscita sono troppe per avere sufficiente potenza in uscita in ognuna delle fibre si aggiunge un amplificatore (ripetitore elettronico o amplificatore a fibra). I combiner miscelano i segnali di più fibre in una fibra ricevente unica. Le perdite avvengono per riflessione nei giunti e per la variazione di dimensioni fisiche. -3-

13 Esempio: uno splitter a 4 vie ha un excess loss di.5 db. La potenza in ingresso è di 0.0 mw. Quanta potenza viene iniettata in ciascuna delle fibre in uscita? La potenza in ingresso è divisa in 4 vie, quindi in ciascuna fibra si ha: 0.0 mw /4 (ovvero -7 dbm - 6 db = -3 dbm). Questa potenza è ulteriormente diminuita di.5 db per l excess loss. Ogni fibra riceve 4.5 dbm di potenza. -33-

14 Gli optical tap sono accoppiatori direzionali. I tap sono utilizzati per collegare le stazioni a dei bus o per prelevare potenza ai fini del monitoraggio della rete. er esempio, possono essere utilizzati per bypassare una stazione malfunzionante. I tap possono dividere la potenza in maniera ineguale: tipici rapporti vanno da 3 db (50%) a 0 db (0%). bypass STAZIONE in main main out -34-

15 La portante ottica è caratterizzata da una lunghezza d onda centrale λ e da una larghezza spettrale σ λ (usualmente corrispondente a 3 db sotto il picco di potenza). Nelle comunicazioni ottiche la lunghezza d onda centrale è tipicamente tra 800 e 600 nm. La frequenza è legata alla larghezza spettrale come segue: λν = c (nel vuoto) Derivando rispetto a ν e λ, rispettivamente, si ottiene: dν = -(c/λ ) dλ, dλ = -(c/ν ) dν er piccole larghezze spettrali, ν = dν e λ = dλ = σ λ. ower (mw) σ λ λ (nm) -35-

16 Esempio: un certo LED funzionante a 80 nm ha una larghezza spettrale di 45 nm. Quale è la corrispondente larghezza di banda nello spazio della frequenza? δν = (c/λ ) dλ = [(3 x 0 8 m/s)/(80 x 0-9 m) ] 45 x 0-9 m δν =.0 x 0 3 Hz Che corrisponde circa al 5.5% della frequenza centrale -36-

17 TRASMETTITORI E RICEVITORI Trasmettitori I trasmettitori convertono impulsi elettrici in una forma adatta per la trasmissione lungo un certo canale. Nel caso delle fibre ottiche, il trasmettitore realizza due funzioni: Converte il segnale di ingresso in una opportuna corrente in un diodo. Converte questa corrente in un segnale ottico. Il trasmettitore contiene un LED o un LD, circuiti di polarizzazione DC e circuiti di modulazione. -37-

18 TRASMETTITORI E RICEVITORI I trasmettitori possono incorporare o meno molte delle funzioni richieste per la realizzazione del collegamento (circuiti integrati VLSI con tutte le sezioni, circuiti integrati separati, realizzazioni a componenti discreti). -38-

19 TRASMETTITORI E RICEVITORI 970: Trasmettitori a componenti discreti. Alla fine degli anni 70 primi circuiti ibridi (componenti discreti + Application Specific Integrated Circuit, ASIC). Codifica (per es. Manchester) in moduli separati. 980: Trasmettitori integrati in circuiti VLSI. Integrazione di LED e LD insieme alle altre sezioni dell IC sullo stesso substrato. Nel 988 la prima applicazione commerciale. Inoltre, aggiunta sullo stesso chip di altre funzionalità, come la codifica 4B/5B, o la conversione parallelo/seriale. 990: Integrazione di altre funzionalità su IC per comunicazioni ottiche, per la trasmissione di dati, video e voce (ISDN etc.). Laser e fotodiodi multipli su singolo chip. Oggi, i trasmettitori sono ancora circuiti ibridi, che contengono in un unico package sia IC che componenti discreti non integrabili come celle eltier (che servono a raffreddare opportune parti del circuito). -39-

20 TRASMETTITORI E RICEVITORI Ligth Emitting Diode e Laser Diode Specifiche per una sorgente di luce adatta alle applicazioni in telecomunicazioni: Dimensioni fisiche della zona di emissione comparabili con quelle del core della fibra (0-00 µm) La luce deve essere facilmente modulabile a partire da un segnale elettrico, anche ad alta velocità. Linearità, per prevenire distorsione armonica e intermodulazione. Alta efficienza di accoppiamento con la fibra Elevata potenza di uscita Dimensioni ridotte e basso peso Basso costo Affidabilità -40-

Sistemi di Telecomunicazione

Sistemi di Telecomunicazione Sistemi di Telecomunicazione Parte 6: Sistemi Ottici Parte 6.4: Esempi di dimensionamento di sistemi ottici Universita Politecnica delle Marche A.A. 2013-2014 A.A. 2013-2014 Sistemi di Telecomunicazione

Dettagli

Power meter Misure di potenza assoluta Misure di potenza relativa. Misure di potenza. F. Poli. 10 aprile F. Poli Misure di potenza

Power meter Misure di potenza assoluta Misure di potenza relativa. Misure di potenza. F. Poli. 10 aprile F. Poli Misure di potenza Misure di potenza F. Poli 10 aprile 2008 Outline Power meter 1 Power meter 2 3 Misure di potenza Misure di potenza = base della metrologia in fibra ottica. Misure di potenza 1 assoluta: necessarie in relazione

Dettagli

Corso di Fondamenti di Telecomunicazioni 1 - INTRODUZIONE

Corso di Fondamenti di Telecomunicazioni 1 - INTRODUZIONE Corso di Fondamenti di Telecomunicazioni 1 - INTRODUZIONE 1 Argomenti della lezione Definizioni: Sorgente di informazione Sistema di comunicazione Segnali trasmissivi determinati e aleatori Architettura

Dettagli

Reti in fibra ottica. Seconda esercitazione Esercizi sul Progetto di Sistemi di Trasmissione

Reti in fibra ottica. Seconda esercitazione Esercizi sul Progetto di Sistemi di Trasmissione Reti in fibra ottica Seconda esercitazione Esercizi sul Progetto di Sistemi di Trasmissione Esercizio Un sistema di trasmissione ottico a singolo span lavora a 2.5 Gbps. Il trasmettitore genera impulsi

Dettagli

Componenti Ottici passivi

Componenti Ottici passivi Componenti Ottici passivi Splitter e coupler ottici (1/3) Si tratta di componenti ottici che permettono di: dividere un segnale ottico in due (o più) repliche (splitter); combinare insieme due (o più)

Dettagli

LARGHEZZA DI BANDA DEL COLLEGAMENTO

LARGHEZZA DI BANDA DEL COLLEGAMENTO LARGHEZZA DI BANDA DEL COLLEGAMENTO Valori tipici di B*L per una fibra step-index sono 5 20 MHz km. Le fibre graded-index hanno valori di B*L più elevati, tipicamente 200 800 MHz km. Le fibre single-mode,

Dettagli

Sorgenti Ottiche, Classificazioni e parametri

Sorgenti Ottiche, Classificazioni e parametri Sorgenti Ottiche, Classificazioni e parametri Classificazione delle sorgenti ottiche (1/5) Ci occuperemo delle sorgenti ottiche, cioè dei dispositivi attivi che emettono radiazione elettromagnetica alla

Dettagli

Richiamare alcuni concetti fondamentali relativi alla luce intesa come onda elettromagnetica.

Richiamare alcuni concetti fondamentali relativi alla luce intesa come onda elettromagnetica. Richiami di Fisica Obiettivo Richiamare alcuni concetti fondamentali relativi alla luce intesa come onda elettromagnetica. Caratteristiche di un onda elettromagnetica: Frequenza e lunghezza d onda Potenza

Dettagli

Mezzi Trasmissivi TELECOMUNICAZIONI. Disturbi e distorsioni in un collegamento

Mezzi Trasmissivi TELECOMUNICAZIONI. Disturbi e distorsioni in un collegamento Dipartimento di Ingegneria dell Informazione, Elettronica e delle Telecomunicazioni Università degli Studi di Roma La Sapienza Mezzi Trasmissivi TELECOMUNICAZIONI Disturbi e distorsioni in un collegamento

Dettagli

MEZZI TRASMISSIVI. I mezzi trasmissivi sono suddivisi in tre categorie:

MEZZI TRASMISSIVI. I mezzi trasmissivi sono suddivisi in tre categorie: MEZZI TRASMISSIVI Nelle reti l unità di misura della velocità di trasmissione è il bit per secondo (indicato con bps o con bit/s) e i suoi multipli (Kbps per migliaia, Mbps per milioni, Gbps per miliardi

Dettagli

IL TEST DEGLI IMPIANTI IN FIBRA OTTICA OLTS e OTDR. FTTx / PON. Nicola Ferrari

IL TEST DEGLI IMPIANTI IN FIBRA OTTICA OLTS e OTDR. FTTx / PON. Nicola Ferrari IL TEST DEGLI IMPIANTI IN FIBRA OTTICA OLTS e OTDR FTTx / PON Nicola Ferrari LA CARATTERIZZAZIONE DELLA FIBRA Caratterizzare la fibra Punto A Punto B Caratterizzare la fibra significa eseguire una estesa

Dettagli

Profs. Roberto Cusani Francesca Cuomo

Profs. Roberto Cusani Francesca Cuomo 1 INFO-COM Dpt. Dipartimento di Scienza e Tecnica dell Informazione e della Comunicazione Università degli Studi di Roma La Sapienza Mezzi Trasmissivi: Complementi TELECOMUNICAZIONI Profs. Roberto Cusani

Dettagli

Dispersione modale. Dispersione modale

Dispersione modale. Dispersione modale Dispersione modale Se determiniamo l allargamento dell impulso per unità di lunghezza della fibra otteniamo l indice di dispersione modale σ ns m km A causa dell allargamento dell impulso la banda di frequenza

Dettagli

Parametro di guida V. V frequenza normalizzata. d = diametro del core λ = lunghezza d onda n = indice di rifrazione N.A. apertura numerico.

Parametro di guida V. V frequenza normalizzata. d = diametro del core λ = lunghezza d onda n = indice di rifrazione N.A. apertura numerico. Parametro di guida V V frequenza normalizzata V = " d! n core # n cladding = " d! N.A. dove d = diametro del core λ = lunghezza d onda n = indice di rifrazione N.A. apertura numerico Parametro di guida

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni 1 - INTRODUZIONE Prof. Giovanni Schembra 1 Argomenti della lezione Definizioni: Sorgente di informazione Sistema di comunicazione Segnali trasmissivi determinati

Dettagli

Vantaggi delle Fibre Ottiche

Vantaggi delle Fibre Ottiche FIBRE OTTICHE Vantaggi delle Fibre Ottiche Bassa attenuazione (circa 0,2 db/km) Alta frequenza di trasmissione (dai GHz ai THz) Immunità ai disturbi elettromagnetici Non generano inquinamento elettromagnetico

Dettagli

Indice. Introduzione 13

Indice. Introduzione 13 Indice Introduzione 13 1 Le guide d onda 17 1.1 I modi di una guida d onda................................ 18 1.2 Calcolo delle funzioni di modo............................... 19 1.3 Potenza trasportata

Dettagli

Data sheet. Home Fibre OPT-TX-DT, OPT-RX-DT Quad, OPT-RX- DT Quattro. Caratteristiche Principali

Data sheet. Home Fibre OPT-TX-DT, OPT-RX-DT Quad, OPT-RX- DT Quattro. Caratteristiche Principali Data sheet Home Fibre OPT-TX-DT, OPT-RX-DT Quad, OPT-RX- DT Quattro L innovativo sistema di distribuzione in Fibra ottica è stato progettato con particolare attenzione alla facilità d installazione dalla

Dettagli

Comunicazioni Elettriche I - Testo 1

Comunicazioni Elettriche I - Testo 1 Comunicazioni Elettriche I - Testo 1 Problema Si consideri un sistema di trasmissione numerico in cui una sorgente genera un flusso binario a velocità f b = 60 kb/s. Tale flusso viene inviato in ingresso

Dettagli

Antenne e Collegamento Radio

Antenne e Collegamento Radio Antenne e Collegamento Radio Trasmissione irradiata Oltre ad essere guidato attraverso le linee di trasmissione, il campo elettromagnetico si può propagare nello spazio (radiazione) Anche la radiazione

Dettagli

INFORMATICA 2015/2016 MEZZI TRASMISSIVI

INFORMATICA 2015/2016 MEZZI TRASMISSIVI INFORMATICA 2015/2016 MEZZI TRASMISSIVI 1 MEZZI TRASMISSIVI 1 - Il cavo di rete 2 - La fibra ottica. 2 CAVO DI RETE Nell ambito delle LAN (Local Area Network) si è assistito negli ultimi anni alla diffusione

Dettagli

Laser Fabry-Perot Distributed Feedback Laser. Sorgenti ottiche. F. Poli. 22 aprile 2008. F. Poli Sorgenti ottiche

Laser Fabry-Perot Distributed Feedback Laser. Sorgenti ottiche. F. Poli. 22 aprile 2008. F. Poli Sorgenti ottiche Sorgenti ottiche F. Poli 22 aprile 2008 Outline Laser Fabry-Perot 1 Laser Fabry-Perot 2 Laser Fabry-Perot Proprietà: sorgente maggiormente utilizzata per i sistemi di telecomunicazione in fibra ottica:

Dettagli

COMPONENTI OTTICI ATTIVI

COMPONENTI OTTICI ATTIVI COMPONENTI OTTICI ATTIVI Sono quei dispositivi necessari per lo scambio di informazioni su fibra ottica ossia per la trasmissione di impulsi luminosi. Si distinguono in convertitori elettro-ottici, convertitori

Dettagli

INTRODUZIONE ALLE RETI. Tipologie di Rete. Perché una rete? Interconnessione di reti

INTRODUZIONE ALLE RETI. Tipologie di Rete. Perché una rete? Interconnessione di reti INTRODUZIONE ALLE RETI Tipologie di Rete Perché una rete? Condividere risorse utilizzo razionale di dispositivi costosi modularità della struttura affidabilità e disponibilità Comunicare tra utenti scambio

Dettagli

Prova scritta di: Reti in fibra ottica e. Complementi di reti in fibra ottica. Compito del 31 gennaio 2003

Prova scritta di: Reti in fibra ottica e. Complementi di reti in fibra ottica. Compito del 31 gennaio 2003 Prova scritta di: Reti in fibra ottica e Complementi di reti in fibra ottica Compito del 31 gennaio 2003 Note: DURATA: 2 ore e 30 minuti E consentita la consultazione del SOLO formulario fornito durante

Dettagli

Il ricevitore supereterodina RX 4MM5 a 5V di alimentazione è in grado di ricostruire sequenze di dati digitali trasmesse in modalità AM OOK.

Il ricevitore supereterodina RX 4MM5 a 5V di alimentazione è in grado di ricostruire sequenze di dati digitali trasmesse in modalità AM OOK. RICEVITORE RX 4MM5 Il ricevitore supereterodina RX 4MM5 a 5V di alimentazione è in grado di ricostruire sequenze di dati digitali trasmesse in modalità AM OOK. Esso è caratterizzato da un elevata sensibilità

Dettagli

Amplificatori ottici. A. Cucinotta Componenti Fotonici

Amplificatori ottici. A. Cucinotta Componenti Fotonici Amplificatori ottici per sistemi WDM A. Cucinotta Componenti Fotonici 1 Sommario Introduzione; Amplificatori ottici a larga banda; Erbium Doped Fiber Amplifiers; Componenti base di un EDFA; Architettura

Dettagli

TRASMETTITORI E RICEVITORI

TRASMETTITORI E RICEVITORI Esempio: Un ricevitore ha un resistore di polarizzazione del valore di 10 kω e una capacità di giunzione del fotodiodo del valore di 4 pf. Il fotodiodo è accoppiato in continua con un amplificatore ad

Dettagli

Fibre e connettori ottici

Fibre e connettori ottici Fibre e connettori ottici La luce come mezzo di comunicazione nel mondo dello sport e dell industria DIAMOND SA / 05-06 / 1 Contenuti Basi fondamentali dell ottica lineare Caratteristiche della fibra ottica

Dettagli

Fibre Ottiche Cavi. Università di Genova Facoltà di Ingegneria. # =1/C! 3.3 µs/km. v = c /! Indice di rifrazione

Fibre Ottiche Cavi. Università di Genova Facoltà di Ingegneria. # =1/C! 3.3 µs/km. v = c /! Indice di rifrazione Università di Genova Facoltà di Ingegneria Reti di Telecomunicazioni e Telemedicina 1 3. Mezzi trasmissivi e cablaggio Prof. Raffaele Bolla Contenuti!Mezzi trasmissivi Fibre Ottiche Cavi! 2 Le onde elettromagnetiche

Dettagli

INTRODUZIONE: PERDITE IN FIBRA OTTICA

INTRODUZIONE: PERDITE IN FIBRA OTTICA INTRODUZIONE: PERDITE IN FIBRA OTTICA Il nucleo (o core ) di una fibra ottica è costituito da vetro ad elevatissima purezza, dal momento che la luce deve attraversare migliaia di metri di vetro del nucleo.

Dettagli

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione.

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione. FAM Serie 6: Fenomeni ondulatori VI C. Ferrari Esercizio 1 Equazione dell iperbole ed interferenza Considera due sorgenti S 1 e S 2 poste sull asse Ox in x = d 2 e x = d 2. 1. Nel piano Oxy determina le

Dettagli

3. Mezzi trasmissivi e cablaggio

3. Mezzi trasmissivi e cablaggio Università di Genova Facoltà di Ingegneria Reti di Telecomunicazioni e Telemedicina 1 3. Mezzi trasmissivi e cablaggio Prof. Raffaele Bolla dist Contenuti!Mezzi trasmissivi Fibre Ottiche Cavi!Cablaggio

Dettagli

Prova di esame di Teoria dei Segnali II modulo

Prova di esame di Teoria dei Segnali II modulo 10 giugno 2009 Prova di esame di Teoria dei Segnali II modulo Candidato: Esercizio A Il ricevitore di un segnale modulato FM con indice β = 2 e frequenza portante f 0 = 100 MHz è caratterizzato da un fattore

Dettagli

La dispersione cromatica: contromisure

La dispersione cromatica: contromisure La dispersione cromatica: contromisure Come estendere il limite? Abbiamo visto dalle slide precedenti che il limite di dispersione a 10 Gbit/s è molto restrittivo persino per sistemi ottimizzati con modulazione

Dettagli

Il livello fisico, responsabile della trasmissione del segnale nei diversi mezzi fisici:

Il livello fisico, responsabile della trasmissione del segnale nei diversi mezzi fisici: Il livello fisico, responsabile della trasmissione del segnale nei diversi mezzi fisici: -lo spettro elettromagnetico; -la modulazione - il teorema di Shannon -la trasmissione guidata Lo spettro elettromagnetico

Dettagli

in lavorazione. Fibre Ottiche 1

in lavorazione. Fibre Ottiche 1 Fibre Ottiche 1 in lavorazione. Caratteristiche generali Sono sottilissimi fili di materiale vetroso (silice) o di nylon, dal diametro di alcuni micron, che trasmettono segnali luminosi su lunghe distanze.

Dettagli

Antenne e propagazione. 1 Fondamenti TLC

Antenne e propagazione. 1 Fondamenti TLC Antenne e propagazione 1 Fondamenti TLC Il mezzo trasmissivo (canale) La descrizione dei mezzi fisici è propedeutica all illustrazione dei diversi sistemi di trasmissione. Il mezzo trasmissivo trasporta

Dettagli

Cosa c è nella lezione. In questa sezione si affronteranno: Reti in fibra ottica. La struttura complessiva. Il trasmettitore ottico

Cosa c è nella lezione. In questa sezione si affronteranno: Reti in fibra ottica. La struttura complessiva. Il trasmettitore ottico Reti in fibra ottica 1/30 Cosa c è nella lezione In questa sezione si affronteranno: La struttura complessiva Il trasmettitore ottico Il ricevitore ottico. 2/30 Reti in fibra ottica 3/30 Schema a blocchi

Dettagli

UNITA DI MISURA LOGARITMICHE

UNITA DI MISURA LOGARITMICHE UNITA DI MISURA LOGARITMICHE MOTIVAZIONI Attenuazione del segnale trasmesso esponenziale con la lunghezza mentre si propaga sulle linee di trasmissione (conduttori metallici) Utilizzando le unità logaritmiche

Dettagli

Mezzi trasmissivi. Cavo rame, fibra ottica, onde radio, onde convogliate

Mezzi trasmissivi. Cavo rame, fibra ottica, onde radio, onde convogliate Mezzi trasmissivi Cavo rame, fibra ottica, onde radio, onde convogliate Mezzo trasmissivo elettrico: cavo Costituito da materiale conduttore (metallo: rame) Il mezzo trasmissivo elettrico ideale ha - Resistenza

Dettagli

Esercizi selezionati per l esame scritto del corso di Fotonica. Laser

Esercizi selezionati per l esame scritto del corso di Fotonica. Laser Esercizi selezionati per l esame scritto del corso di Fotonica Laser Si consideri un laser Nd-YAG con cavità ad anello (vedi figura). Il cristallo Nd-YAG ha lunghezza L = 2.5 cm e R A = R C = 100%. Supponendo

Dettagli

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica 1 I raggi luminosi 1 I raggi luminosi Per secoli si sono contrapposti due modelli della luce il modello corpuscolare (Newton) la luce è un flusso di particelle microscopiche il modello ondulatorio (Christiaan

Dettagli

Campi Elettromagnetici e Circuiti I Adattatori d impedenza

Campi Elettromagnetici e Circuiti I Adattatori d impedenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I Adattatori d impedenza Campi Elettromagnetici

Dettagli

Esercitazione 2: Strutture a 2 e 3 porte

Esercitazione 2: Strutture a 2 e 3 porte Esercitazione : trutture a e porte trutture a porte Isolatori L isolatore, idealmente dalle caratteristiche specificate in Fig. c), è un componente di grandissimo interesse allo scopo di disaccoppiare

Dettagli

Sistemi di Telecomunicazione

Sistemi di Telecomunicazione Sistemi di Telecomunicazione Esercizi ed esempi numerici - Sistemi in cavo / coppie simmetriche Universita Politecnica delle Marche A.A. 2014-2015 A.A. 2014-2015 Sistemi di Telecomunicazione 1/18 Caratteristiche

Dettagli

Corso di DISPOSITIVI E SISTEMI PER LE COMUNICAZIONI IN FIBRA OTTICA

Corso di DISPOSITIVI E SISTEMI PER LE COMUNICAZIONI IN FIBRA OTTICA Università Mediterranea di Reggio Calabria - Facoltà di Ingegneria Corso di DISPOSITIVI E SISTEMI PER LE COMUNICAZIONI IN FIBRA OTTICA Prof. Ing. Riccardo Carotenuto Anno Accademico 2007/2008-1- SOMMARIO

Dettagli

Flussi di dati digitali tipici

Flussi di dati digitali tipici RETI: CENNI Flussi di dati digitali tipici clock Dati con commutazioni frequenti Dati con commutazioni non frequenti -61- RETI: CENNI Dati con commutazioni frequenti sono quelli con un cambio frequente

Dettagli

SISTEMA TRASFERIMENTO CANALE FM MHz in FIBRA OTTICA MONOMODALE Mod. 518

SISTEMA TRASFERIMENTO CANALE FM MHz in FIBRA OTTICA MONOMODALE Mod. 518 SISTEMA TRASFERIMENTO CANALE FM 103.3 MHz in FIBRA OTTICA MONOMODALE Mod. 518 DESCRIZIONE TECNICA La composizione del sistema di trasferimento del segnale FM 103.3 MHz su fibra Ottica monomodale è realizzato

Dettagli

Introduzione alle fibre ottiche

Introduzione alle fibre ottiche Introduzione alle fibre ottiche Struttura delle fibre ottiche Una fibra ottica è sostanzialmente un cilindro (solitamente in vetro) con una parte centrale, detta core, con un indice di rifrazione superiore

Dettagli

In questa sezione si affronteranno i seguenti argomenti: Introduzione agli amplificatoriottici. Amplificatori ottici ad Erbio (EDFA)

In questa sezione si affronteranno i seguenti argomenti: Introduzione agli amplificatoriottici. Amplificatori ottici ad Erbio (EDFA) Reti in fibra ottica 1/64 Cosa c è nella lezione In questa sezione si affronteranno i seguenti argomenti: Introduzione agli amplificatoriottici Amplificatori ottici ad Erbio (EDFA) Caratteristiche EDFA

Dettagli

PONTI RADIO. Generalità

PONTI RADIO. Generalità PONTI RADIO Generalità È un sistema di radiocomunicazione puntopunto che impiega frequenze nel campo delle microonde, in grado di convogliare informazioni telefoniche, televisive e dati ad alta velocità.

Dettagli

Applicazioni e standard internazionali

Applicazioni e standard internazionali Applicazioni e standard internazionali Enti internazionali di standardizzazione Nel campo delle telecomunicazioni, esistono molti enti internazionali di standardizzazione. Nel settore legato alle trasmissioni

Dettagli

INSIEL S.p.A. LIVELLO PROGETTUALE: Specifica Tecnica OGGETTO. Fibre Ottiche. Integrazioni: 27 marzo 2009. Data: 28 marzo 2007 GGETTO:

INSIEL S.p.A. LIVELLO PROGETTUALE: Specifica Tecnica OGGETTO. Fibre Ottiche. Integrazioni: 27 marzo 2009. Data: 28 marzo 2007 GGETTO: LIVELLO PROGETTUALE: Specifica Tecnica Data: 28 marzo 2007 OGGETTO GGETTO: Fibre Ottiche Integrazioni: 27 marzo 2009 Riferimento: INSIEL_ST_FIBREOTTICHE _09 INDICE Indice... 2 1 Generalità... 3 2 Fibra

Dettagli

Corso di Laurea Magistrale in Ingegneria delle Telecomunicazioni Progetto di Sistemi di Trasmissione :

Corso di Laurea Magistrale in Ingegneria delle Telecomunicazioni Progetto di Sistemi di Trasmissione : Corso di Laurea Magistrale in Ingegneria delle Telecomunicazioni Progetto di Sistemi di Trasmissione : 4-07-015 Si consideri un sistema per la ricezione in down-link del segnale satellitare descritto in

Dettagli

[ dbm] = (3 " 0,2 # 50 " 3) dbm = "10 dbm

[ dbm] = (3  0,2 # 50  3) dbm = 10 dbm Esercizi di comunicazioni ottiche (SNR, Q, BER) Es. ) Consideriamo il caso di una linea in fibra ottica lunga 50 km con attenuazione di 0, db/km e dispersione cromatica compensata mediante un modulo di

Dettagli

Cavi BUS. Polígono Indutrial O Rebullón s/n Mos - España -

Cavi BUS. Polígono Indutrial O Rebullón s/n Mos - España - Cavi BUS 0001-0002 di campo in PVC tipo Profibus per posa fissa pag. 56 0003-0017 di campo in PUR Profibus per posa mobile pag. 57 0004 di campo in PVC tipo Interbus per posa fissa pag. 58 0005 di campo

Dettagli

TECNOLOGIE DELLA TRASMISSIONE OTTICA Anno accademico Il sistema di comunicazioni ottiche. Pierpaolo Boffi

TECNOLOGIE DELLA TRASMISSIONE OTTICA Anno accademico Il sistema di comunicazioni ottiche. Pierpaolo Boffi TECNOLOGIE DELLA TRASMISSIONE OTTICA Anno accademico 2007-2008 Il sistema di comunicazioni ottiche Pierpaolo Boffi Tecniche di codifica: ASK format ASK: amplitude-shift keying è tecnica di modulazione

Dettagli

FIBRA OTTICA. A cura di Alessandro Leonardi Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università degli studi di Catania

FIBRA OTTICA. A cura di Alessandro Leonardi Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università degli studi di Catania FIBRA OTTICA A cura di Alessandro Leonardi Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università degli studi di Catania Fibra ottica Minuscolo e flessibile filo di vetro costituito

Dettagli

Segnale Analogico. Forma d onda continua

Segnale Analogico. Forma d onda continua Segnale Analogico Forma d onda continua Rumore Segnale Analogico + Rumore Il rumore si sovrappone al segnale e lo altera, impossibile separare il segnale dal rumore Segnale Digitale Ideale Segnale discreto,

Dettagli

Profili di trasmissione dei filtri interferenziali del telescopio PSPT

Profili di trasmissione dei filtri interferenziali del telescopio PSPT I.N.A.F Osservatorio Astronomico di Roma Profili di trasmissione dei filtri interferenziali del telescopio PSPT Mauro Centrone Fabrizio Giorgi Nota tecnica - 2003 1 Introduzione I filtri interferenziali

Dettagli

Amplificatori ottici per sistemi WDM

Amplificatori ottici per sistemi WDM Università degli Studi di Parma Amplificatori ottici per sistemi WDM Annamaria Cucinotta Dip. Ingegneria dell Informazione 17 Novembre 2005 Annamaria Cucinotta - CFA 1 Sommario Introduzione; Amplificatori

Dettagli

Amplificatori Ottici

Amplificatori Ottici Amplificatori Ottici Amplificazione ottica (1/2) Per controbilanciare l attenuazione della fibra, sono utili gli amplificatori ottici E () t = GE () t + n() t out in Rumore ottico generato dall amplificatore

Dettagli

Simplex unidirezionale es. Televisione, radio. Half duplex bidirezionale ma una direzione per volta es. Ricetrasmittenti

Simplex unidirezionale es. Televisione, radio. Half duplex bidirezionale ma una direzione per volta es. Ricetrasmittenti Tipi di collegamento 4 Trasmissione: diretta nessun dispositivo intermedio tranne ripetitore/amplificatore Prof. Roberto De Prisco TEORIA - Lezione 1 Trasmissione dati Università degli studi di Salerno

Dettagli

La luce. Quale modello: raggi, onde, corpuscoli (fotoni)

La luce. Quale modello: raggi, onde, corpuscoli (fotoni) La luce Quale modello: raggi, onde, corpuscoli (fotoni) Le onde luminose onde elettromagnetiche con frequenza compresa tra 4. 10 14 e 8. 10 la lunghezza d onda e compresa fra 400nm e 750nm 10 14 Hz 14

Dettagli

Trasmissione dati. Dati e segnali Rappresentazione dei dati con segnali elettromagnetici Analogico e digitale

Trasmissione dati. Dati e segnali Rappresentazione dei dati con segnali elettromagnetici Analogico e digitale Prof. Roberto De Prisco TEORIA - Lezione 1 Trasmissione dati Università degli studi di Salerno Laurea e Diploma in Informatica Sommario: parleremo di 2 Dati e segnali Rappresentazione dei dati con segnali

Dettagli

RETI INFORMATICHE PROF. MAURIZIO NALDI ABILITÀ INFORMATICHE

RETI INFORMATICHE PROF. MAURIZIO NALDI ABILITÀ INFORMATICHE RETI INFORMATICHE PROF. MAURIZIO NALDI ABILITÀ INFORMATICHE GESTIRE L INFORMAZIONE creare, acquisire IN elaborare archiviare comunicare presentare, attuare OUT PROCESS tradizionalmente l enfasi è stata

Dettagli

Half duplex bidirezionale ma una direzione per volta es. Ricetrasmittenti

Half duplex bidirezionale ma una direzione per volta es. Ricetrasmittenti Sommario: parleremo di 01.2 Dati e segnali Rappresentazione dei dati con segnali elettromagnetici Analogico e digitale Autunno 2002 Prof. Roberto De Prisco -01: Trasmissione dati Segnali e frequenze Larghezza

Dettagli

Sorgenti a larga banda

Sorgenti a larga banda Sorgenti a larga banda F. Poli 28 aprile 2008 Outline Lampada al tungsteno 1 Lampada al tungsteno 2 3 4 Sorgenti a larga banda Caratteristiche: densità spettrale (= potenza nell unità di banda); range

Dettagli

Principio di Huygens (1678)

Principio di Huygens (1678) Principio di Huygens (1678) Tutti i punti di un fronte d onda possono essere considerati come sorgenti secondarie di onde sferiche; in un generico punto P l onda risultante si può ottenere come sovrapposizione

Dettagli

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza Parte I Problemi Richiami Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza u ν = 8π hν c 3 ν e βhν 1, dove c è la velocità della luce

Dettagli

TRASMETTITORE TX SAW MID 5V

TRASMETTITORE TX SAW MID 5V TRASMETTITORE Il è un modulo trasmettitore SAW di dati digitali che vengono trasmessi alla frequenza di 433,9 MHz con modulazione AM OOK. E dotato di uno stadio di buffer che garantisce sia la potenza

Dettagli

TRASMISSIONE IN FIBRA OTTICA

TRASMISSIONE IN FIBRA OTTICA TRASMISSIONE IN FIBRA OTTICA Storia delle comunicazioni ottiche 84 a.c.: caduta di Troia comunicata a Micene (550km di distanza) attraverso una serie di fuochi allineati 794 d.c.: rete di Chappe collega

Dettagli

TRASMETTITORE TX SAW MID 3V

TRASMETTITORE TX SAW MID 3V TRASMETTITORE Il è un modulo trasmettitore SAW di dati digitali con modulazione AM OOK. E dotato di uno stadio di buffer che garantisce sia la potenza RF che basse armoniche in uscita, consentendo un elevata

Dettagli

Sistemi di Telecomunicazione

Sistemi di Telecomunicazione Sistemi di Telecomunicazione Doppi bipoli rumorosi: esercizi ed esempi numerici Universita Politecnica delle Marche A.A. 2014-2015 A.A. 2014-2015 Sistemi di Telecomunicazione 1/15 Esempio 1 Il segnale

Dettagli

Appendice 1 MODI DI PROPAGAZIONE IN CAVI COASSIALI. b/a. Lunghezza d'onda critica in cavi coassiali per alcuni modi di propagazione ( e r =1 ).

Appendice 1 MODI DI PROPAGAZIONE IN CAVI COASSIALI. b/a. Lunghezza d'onda critica in cavi coassiali per alcuni modi di propagazione ( e r =1 ). Appendice 1 MODI DI PROPAGAZIONE IN CAVI COASSIALI I cavi coassiali oltre al modo di propagazione TEM consentono la propagazione anche con modi tipici delle guide d'onda. Due distinti gruppi di modi sono

Dettagli

Generalità Generalità

Generalità Generalità Effetti non lineari Introduzione Nelle lezioni precedenti abbiamo visto i principali effetti propagativi lineari Abbiamo visto che questi effetti dipendono dalla forma temporale o spettrale del segnale,

Dettagli

Telecomando infrarossi

Telecomando infrarossi Telecomando infrarossi Toppano Michele Trieste, 4 giugno 1999 1 Introduzione IRED (Infrared emitter diode) ovvero diodi che emettono radiazioni comprese nella banda dell infrarosso. Vengono largamente

Dettagli

FDM e TDM. Esempio: 4 sorgenti FDM. frequency. time TDM. frequency. time DIPARTIMENTO DI INFORMATICA. Architetture Multimediali A.A.

FDM e TDM. Esempio: 4 sorgenti FDM. frequency. time TDM. frequency. time DIPARTIMENTO DI INFORMATICA. Architetture Multimediali A.A. FDM e TDM FDM Esempio: 4 sorgenti frequency TDM frequency time time 116 Equivalente automobilistico Quattro ditte (A, B, C, D) si sono costruite una rete stradale privata per la consegna delle merci Gli

Dettagli

Sensori optoelettronici BLA 50A-001-S115 Codice d'ordine: BLA0001

Sensori optoelettronici BLA 50A-001-S115 Codice d'ordine: BLA0001 1) Emettitore, 2) Pannello di comando e visualizzazione, 3) Ricevitore Display/Operation Dispositivo di regolazione Indicatore Tasto (4x) LED verde: tensione di esercizio Segnale CCD - Display Menù di

Dettagli

Serie SH-IA/IC e TH-IA/IC Fotocellule Tipo 2 e Tipo 4

Serie SH-IA/IC e TH-IA/IC Fotocellule Tipo 2 e Tipo 4 caratteristiche Serie e Fotocellule Tipo 2 e Tipo 4 Modelli M18: portata fino a 10 m (con ottica assiale), 5 m (con ottica radiale) Modelli M30: portata fino a 60 m Certificazione EN50100 come dispositivi

Dettagli

3 Rumore termico [PROAKIS, x6.5]

3 Rumore termico [PROAKIS, x6.5] 3 Rumore termico [PROAKIS, x6.5] Il rumore termico è una fonte di disturbo sempre presente qualità di trasmissione di un segnale attraverso dispositivi elettronici. La sua importanza è maggiore quanto

Dettagli

Banco Educazionale Arra MT 1

Banco Educazionale Arra MT 1 Banco Educazionale Arra MT 1 Descrizione Generale Il Sistema didattico Arra Microwave Modello MT-1, è stato progettato per realizzare Corsi di formazione teorica e pratica per Istituti Tecnici, Università

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

I fotodiodi sono componenti che permettono di convertire una potenza ottica in ingresso in una corrente elettrica.

I fotodiodi sono componenti che permettono di convertire una potenza ottica in ingresso in una corrente elettrica. Reti in ibra ottica 1/22 Fotodiodi 1/2 I otodiodi sono componenti che permettono di convertire una potenza ottica in ingresso in una corrente elettrica. i(t) Anche uesti componenti sibasano su giunzioni

Dettagli

USO DELL OSCILLOSCOPIO PER LA MISURA DELLA VELOCITA' DEL SUONO NELL ARIA

USO DELL OSCILLOSCOPIO PER LA MISURA DELLA VELOCITA' DEL SUONO NELL ARIA USO DELL OSCILLOSCOPIO PER LA MISURA DELLA VELOCITA' DEL SUONO NELL ARIA B. Cottalasso R. Ferrando AIF PLS Corso Estivo di Fisica Genova 2009 1 Scopo dell esperimento Ci si propone di misurare la velocità

Dettagli

Antenne e Telerilevamento. Esame

Antenne e Telerilevamento. Esame ESAME DEL 21/05/2001 ESERCIZIO 1 (10 punti) Si progetti un antenna filare a monopolo con top loading per la frequenza di 2 MHz, in modo che presenti una resistenza di irradiazione di 1 Ω. La distribuzione

Dettagli

DISPOSITIVI PER VHF e MICROONDE

DISPOSITIVI PER VHF e MICROONDE ARI Sezione di Parma Conversazioni del 1 Venerdì del Mese DISPOSITIVI PER VHF e MICROONDE Venerdì, 3 marzo 2017, ore 21:15 Carlo, I4VIL HELICAL FILTER HELICAL BAND PASS FILTER - 100 MHz Risposta ampiezza

Dettagli

Ultra Wideband Systems

Ultra Wideband Systems Ultra Wideband Systems Definizione: si definisce Ultra Wideband (UWB) un sistema di radio comunicazione che abbia una banda assoluta (a -10 db) di almeno 500 MHz o, una banda relativa (*) a 0,25 Principio

Dettagli

Esercizio 1 (10 punti)

Esercizio 1 (10 punti) Comunicazioni Elettriche per TLC, 15 Aprile 2010 NOME e COGNOME: MATRICOLA: Si prega di usare fogli separati per i due esercizi 1. Durata: 2 ore 2. Gli statini devono essere consegnati al momento della

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE B B o E o E v z y x B E o B o E T λ t x E = E(x,t) v = B = B(x,t) λ T = λf VELOCITA DELLA LUCE NEL VUOTO nel vuoto (unità S.I.) v c c = 3 10 8 m s 1 velocità

Dettagli

LE FIBRE OTTICHE. Indice generale

LE FIBRE OTTICHE. Indice generale Indice generale LE FIBRE OTTICHE... Sistema di trasmissione con fibre ottiche... Apparato Trasmissivo... Apparato Ricevitore... Trasduttori Ottici in Trasmissione (LED o LD)... Trasduttori Ottici in Ricezione

Dettagli

Circuiti a microonde attivi in regime di grandi segnali

Circuiti a microonde attivi in regime di grandi segnali Circuiti a microonde attivi in regime di grandi segnali In un circuito a microonde che comprende elementi attivi (transistor) pilotati con livelli di potenza non sono trascurabili, si genera distorsione

Dettagli

IW2CEC RX ATV RX ATV -1-

IW2CEC RX ATV RX ATV -1- La soluzione scelta per realizzare il ricevitore è quella proposta da I2ROM ossia un LNB per TV-SAT con oscillatore modificato portando il valore da 9750 MHz a 9400 MHz per operare in banda 10-10.5 GHz

Dettagli

Progettazione di reti locali basate su switch Switched LAN

Progettazione di reti locali basate su switch Switched LAN Progettazione di reti locali basate su switch Switched LAN Contenuti del corso La progettazione delle reti Il routing nelle reti IP Il collegamento agli Internet Service Provider e problematiche di sicurezza

Dettagli

PROGETTAZIONE DIDATTICA ANNUALE

PROGETTAZIONE DIDATTICA ANNUALE ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2018/2019 CLASSE 4 H Disciplina: Telecomunicazioni Docenti:Linguanti Vincenzo Aizzi Marco PROGETTAZIONE DIDATTICA ANNUALE MODULI M 1 Trattamento

Dettagli

P1-01: Trasmissione dati

P1-01: Trasmissione dati Autunno 2002 Prof. Roberto De Prisco -01: Trasmissione dati Università degli studi di Salerno Laurea e Diploma in Informatica Sommario: parleremo di 01.2 Dati e segnali Rappresentazione dei dati con segnali

Dettagli

SISTEMI ELETTRONICI A RF (A.A )

SISTEMI ELETTRONICI A RF (A.A ) SISTEMI ELETTRONICI A RF (A.A. 2016-2017) Docenti: Ing. Pasquale Tommasino Prof. Stefano Pisa Orario Lezioni - Lunedì 12.00-14.00 AULA 6 -Martedì 10:00-12.00 AULA 6 - Mercoledì 12.00-14.00 AULA 6 LABORATORIO

Dettagli