Indicizzazione di documenti testuali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Indicizzazione di documenti testuali"

Transcript

1 Indicizzazione di documenti testuali

2 Generazione di un archivio di Documenti Testuali E eseguita off-line necessaria per accelerare il reperimento dei documenti E un processo che esegue le seguenti attività: Localizzazione : inserimento dei documenti nella collezione manuale, semiautomatica, automatica Decodifica Formato: Riduzione del documento a stringhe Indicizzazione : Produce una sintesi del contenuto informativo dei documenti Generazione di struttura dati opportuna : Memorizza in una struttura dati gli indici e i riferimenti ai documenti

3 Come rappresentare i documenti? Tipicamente l indicizzazione genera un insieme di termini indice (possibilmente pesati) come elementi base della rappresentazione formale di un documento (o di una query). Nell IR testuale gli indici possono essere: 1. parole automaticamente estratte dal documento; 2. radici di parole (per esempio class-) automaticamente estratte dal documento. Questa opzione è la più frequente; 3. frasi (ad esempio classificazione di processi industriali ) automaticamente estratte dal documento. Questo tipo di indici non hanno dato risultati migliori di 1 e 2; 4. parole (o frasi) estratte da un vocabolario controllato; 5. (in modo addizionale) metadati (ad esempio titolo, autori, data di creazione ecc. )

4 Indicizzazione automatica di documenti testuali L indicizzazione automatica (automatic indexing) di un documento testuale è il processo che esamina automaticamente gli oggetti informativi che compongono il documento e, utilizzando degli algoritmi appositi, produce una lista di termini indice (index terms). Questa lista può essere utilizzata per una rappresentazione più compatta del contenuto informativo del documento di partenza. Tipicamente: indicizzazione full-text. I termini indice sono utilizzati come surrogati per la rappresentazione del documento originale e, quindi, possono essere utilizzati al suo posto durante la fase di recupero. L uso degli indici semplifica e accelera il recupero (esempio: indice analitico di un libro).

5 Schema del processo di indicizzazione automatica di documenti testuali INPUT OUTPUT Documenti testuali originali Documenti in formato digitale Indicizzazione automatica Termini indice MODULO DI INDICIZZAZIONE Documenti in formato digitale

6 Indicizzazione: output Matrice sparsa! (presenza di molti 0 in ogni colonna) I pesi w possono essere binari o valori reali o interi positivi: sono calcolati in fase di indicizzazione

7 Indicizzazione: esaustività e specificità Finalità: Rappresentare il contenuto semantico di un documento con due obbiettivi: esaustività: assegnare un grande numero di termini indice specificità : termini generici: non sono adatti a distinguere i documenti rilevanti da quelli irrilevanti termini specifici: permettono di reperire pochi documenti, ma la maggior parte di questi è rilevante Modalità: estrazione diretta dal documento intero (full text) o mediante l utilizzo di fonti esterne (es: dizionari controllati) Tecniche associative (tesauri, pseudo-tesauri, clustering)

8 Linguaggio di indicizzazione E il linguaggio usato per descrivere i documenti e le query è definito su un insieme di simboli (Vocabolario) Termini indice sottoinsiemi di parole selezionate per rappresentare i contenuti del documento Derivate dal testo o associate indipendentemente Analisi statistica dei documenti basata sulla frequenza delle occorrenze dei termini nel testo dei documenti Pro - automatizzata, efficiente Contro - potenzialmente inaccurata Ricerca basata su parole chiave liberamente specificate dall utente Ricerca basata su un vocabolario controllato

9 Considerazioni sulla frequenza dei termini Termini funzionali es., "and", "or", "of", "but", la frequenza di questi termini è alta in tutti i documenti Termini indicatori del contenuto parole che identificano i contenuti del documento hanno frequenza variabile nei documento della collezione la loro frequenza è indicativa dell importanza del termine nel rappresentare il contenuto del documento

10 Frequenza dei termini in relazione a Richiamo e Precisione favoriscono il richiamo: i termini ad alta frequenza Tecniche associative di espansione degli indici (tesauri, clustering) la precisione alta è data dalla capacità dell indicizzazione di distinguere i contenuti dei documenti i termini con frequenza elevata servono a favorire la precisione quando la loro frequenza non è alta in tutti i documenti della collezione.

11 Fasi del Processo di Indicizzazione Documenti Analisi Lessicale Eliminazione Stopwords stemming Le fasi del processo di indicizzazione automatica che devono essere attuate in sequenza: 1. Analisi lessicale e selezione delle parole 2. Rimozione delle parole molto comuni o stop-words 3. Riduzione delle parole originali alle rispettive radici semantiche 4. Eventuale pesatura degli elementi dell indice (significatività) 5. Creazione dell indice I sistemi commerciali per il recupero delle informazioni non implementano necessariamente tutte queste funzionalità. Termini indice

12 Analisi lessicale e selezione delle parole E il processo di trasformazione di un flusso di caratteri di input (il testo originario del documento) in un flusso di parole (o tokens ), ovvero in una sequenza di caratteri portatore di uno specifico significato. Nel testo le parole possono essere facilmente identificate grazie alla presenza di spazi, a capo, segni di interruzione, ecc

13 Collezione di documenti: un esempio ID documento Contenuto testuale del documento D 1 Università degli Studi di Bologna. Facoltà di Lettere e Filosofia Corso di laurea in SCIENZE della COMUNICAZIONE D 2 D 3 Libera Università di Lingue Comunicazione IULM; Facoltà di SCIENZE della COMUNICAZIONE e dello Spettacolo Corso di laurea in SCIENZE della COMUNICAZIONE Università degli Studi di Padova Facoltà di Lettere e Filosofia: Corso di laurea: SCIENZE della COMUNICAZIONE

14 Collezione di documenti: un esempio Es: Parole estratte dai documenti (spazi ; :.) D 1 : università degli studi di bologna facoltà di lettere e filosofia corso di laurea in scienze della comunicazione D 2 : libera università di lingue e comunicazione iulm facoltà di scienze della comunicazione e dello spettacolo corso di laurea in scienze della comunicazione D 3 : università degli studi di padova facoltà di lettere e filosofia corso di laurea scienze della comunicazione

15 Riconoscimento di parole (token) Es: Parole estratte dai documenti (spazi ; :. ) Scelte euristiche: aren t aren t, arent,? O Neill Oneill, O Neill? coeditor coeditor, co editor? Hewlett-Packard HewlettPackard, Hewlett Packard? lower case = lowercase? Particolari sequenze: address: URL:http://www.disco.unimib.it Progr. Languages: C++, FORTRAN 90 IP addresses: nomi composti: Volo Los Angeles-San Francisco Volo Los AngelesSan Francisco? - co-editor coeditor NB: si usa lo stesso criterio anche per le query Dipende dalla lingua ad esempio in cinese le parole non sono separate da blank segmentazione di parole mediante uso di vocabolario

16 NORMALIZZAZIONE Conversione in lettere minuscole eliminazione simboli diacritici Normalizzazione date Normalizzazione nomi : Usa usa naïve naive March 1 st /01/07 Bejing peking

17 Rimozione delle Stopword Le parole molto frequenti nell insieme di tutti i documenti portano poca informazione sul contenuto dei singoli documenti. Ad es: computer in una collezione di informatica Tali parole, stop-word, possono essere eliminate dalla lista dei token. Metodi: 1.Analisi statistica frequenza dei termini nella collezione e eliminazione dei termini con basso potere discriminante 2.Termini funzionali (articoli, preposizioni, verbi ausiliari) sono Parole molto frequenti nella lingua in cui sono scritti i documenti 3.note a priori indipendentemente dalla collezione e raccolte in una tabella (stop list per l inglese termini) Ad es: been", a", about", otherwise, the L eliminazione delle stopword permette una riduzione tra il 30% e il 50% dei token Può diminuire la recall es: to be or not to be let it be vengono eliminate NB: La maggior parte dei WEB search engine non identificano le stopword

18 Rimozione delle Stopwords Per la lingua inglese è stata messa a punto una lista di circa 250 parole che sono considerate stop- word. stop- word dell esempio : DEGLI DI E IN DELLA DELLO Parole dell esempio che vengono considerate dopo l eliminazione delle stop-words D 1 : università studi bologna facoltà lettere filosofia corso laurea scienze Comunicazione D 2 : libera università lingue comunicazione iulm facoltà scienze comunicazione spettacolo corso laurea scienze comunicazione D 3 : università studi padova facoltà lettere filosofia corso laurea scienze comunicazione

19 Stemming: Riduzione delle parole alle rispettive radici semantiche L efficacia del retrieval aumenta se la query è espansa con i termini che hanno lo stesso significato di quelli contenuti in essa. Gli algoritmi di Stemming sono procedure di conflation (fusione) che riducono tutte le parole con stessa radice a una singola radice In molte lingue, parole che iniziano allo stesso modo (o che hanno delle sequenze di caratteri in comune) possono avere la stessa origine etimologica. Tali parole hanno un contenuto informativo molto simile. Generalmente rimuovono la parte finale delle parole riducendo tutte le parole affini ad un unica radice (in inglese stem). Es computer, computational, computing e computed comput Is are being am be paint painting painted painter paint Colour colours color different difference differ Computers are painted different colours comput be paint differ color Altri approcci sono basati sulla lemmatizzazione mediante sull uso di dizionari

20 Relazioni tra i termini indice Indicizzazione basata su termini singoli i termini singoli sono spesso ambigui. molti termini singoli sono o troppo specifici o troppo generici. Individuazione di indici composti esperti indicizzatori analisi linguistica (NLP) metodi di espansione dei termini mediante tesauri o clustering dei termini

21 Uso di tesauri per la risoluzione di sinonimia Un tesauro può essere: tematico; in questo caso è una mappa del lessico specifico di un certo dominio della conoscenza in un dato linguaggio; questo è il caso più frequente; generale; in questo caso è una mappa di un intero linguaggio. Per applicazioni di IR, sono stati sviluppati vari tipi di tesauro, tra cui tesauri gerarchici, tesauri clustered, e tesauri associativi.

22 Tesauri Gerachici Elenco classificato dei termini usati in un dato dominio della conoscenza RELAZIONI: sinonimia (RT) Related Term quasi-sinonimia: (UF) Use For Ex UF(hg, mercury (metal)), UF(planet Mercury,mercury (planet)). RELAZIONI DI GERARCHIA generalizzazione (BT) Broader Term specializzazione (NT) Narrower Term I tesauri gerarchici sono stati oggetto di standardizzazioni ISO e ANSI e sono quasi sempre tematici.

23 Clustered tesauri Un tesauro clustered è un grafo di gruppi (o cluster, o synset) di parole. Tra due gruppi collegati da un ramo esiste una correlazione semantica (tipicamente generica, cioè non tipizzata); ogni gruppo e un insieme di parole tra cui esiste una forte correlazione semantica (quasi-sinonimia). In WordNet, il più conosciuto tesauro «clustered» (costruito manualmente), la quasi-sinonimia è l unione di un insieme di relazioni: sinonimia ( stesso nome ; per esempio usa/utilizza); antonimia ( nome opposto ; per esempio pesante/leggero); iponimia ( sotto-nome ; per esempio elefante/animale); meronimia ( parte-nome ; e.g. orecchio/testa); troponimia ( maniera-nome ; e.g. correre/camminare); entailment, anche conosciuto come presupposizione (e.g. divorzio/sposare). I tesauri clustered possono essere generati automaticamente, ma solo nel caso in cui non è fatta alcuna distinzione tra i tipi differenti di relazioni semantiche;

24 Tesauri associativi Vantaggi: Possono essere costruiti in modo completamente automatico, a partire da una collezione di documenti. In questo caso la relazione semantica tra ti e tj rispecchia le caratteristiche della collezione, ed è basata sulla relazione di cooccorrenza (o co-assenza) tra ti e tj. Costruzione di un tesauro associativo : 1. Generazione di una matrice di similarità tra termini sij, usando una funzione appropriata; 2. Applicazione di una soglia z a questa matrice, in modo tale che sij è posto a 0 quando sij z; Il passo critico è ovviamente il Passo 1, per realizzare il quale sono state definite varie tecniche.

25 Analisi statistica dei testi: aumento della precisione Non tutte le parole di un documento lo descrivono con la stessa precisione. I termini indice possono essere assegnati ai documenti della collezione con un dato peso. Associando ai termini un peso si intende tenere conto della significatività (importanza) del termine nel documento. La funzione di pesatura tiene conto della frequenza del termine nel documento e nella collezione. Quando il peso è binario, ai termini viene assegnato: un peso = 1 se presenti in un documento e un peso = 0 se assenti; non si tiene conto della frequenza effettiva del termine nel documento, ma solo della sua eventuale presenza.

26 Indicizzazione con pesatura binaria documenti parole D 1 D 2 D 3 bologna comunicazione corso facoltà filosofia iulm laurea lettere libera lingue padova scienze spettacolo studi università 1 1 1

27 Indice con pesatura in base alla frequenza documenti parole D 1 D 2 D 3 bologna comunicazione corso facoltà filosofia iulm laurea lettere libera lingue padova scienze spettacolo studi università 1 1 1

28 Distribuzione della frequenza in Per ogni parola w funzione del rank f(w) è la frequenza con cui w compare nella collezione r(w) è l indice rank (posizione) di w nella lista ordinata in funzione decrescente di frequenza, es, la parola che appare più comunemente ha un indice di rank uguale a 1 f w ha un rank r e e frequenza f 6 r

29 Legge di Zipf 8 Se le parole w, in una collezione vengono ordinate r(w), in ordine decrescente di frequenza f(w), soddisfano la seguente relazione: r(w) * f(w) = c Collezioni differenti hanno costanti c diverse. Nei testi in lingua inglese, c tende a circa n / 10, ove n è il numero di parole nella collezione. vedi Zipf, G. K., Human Behaviour and the Principle of Least Effort. Adison-Wesley, 1949

30 Analisi di Luhn Potere discriminante delle parole significative (curva di Zipf): capacità delle parole di discriminare il contenuto dei documenti è massima nella posizione intermedia tra i due livelli di cut-off

31 Criteri di indicizzazione basati sull analisi di Luhn Pesatura dei Termini indice: le parole più frequenti assumono un peso di significatività più basso Stop list: Le parole più frequenti vengono eliminate dagli indici (cut-off superiore) Parole significative: Le parle più frequenti e meno frequenti vengono eliminate dagli indici (cut-off superiore e inferiore) 10

32 Significatività dei termini indice E una funzione composta da due fattori: w td = f td * Discr-value t f td frequenza del termine t in d è in relazione alla esaustività, fattore di recall Discr-value t è in relazione alla specificità, fattore di precisione

33 Inverse Document Frequency Inverse Document Frequency (IDF) del termine t j idf j = log N df j ove df j (frequenza del termine t j nei documenti) è il numero di documenti in cui t j appare e N il numero di documenti nella collezione Favorisce la precisione è alta se il termine appare in pochi documenti della collezione

34 Significatività dei termini indice Il peso w td del termine t in un documento d w td = tf td log N df t Dopo aver eliminato le parole funzionali si calcola w td per ogni termine t in ogni documento d Si assegnano ai documenti della collezione tutti i termini con valori alti di w td

35 Significatività dei termini indice normalizzazione rispetto alla lunghezza dei documenti La frequenza assoluta tf td di un termine t cresce con la lunghezza del documento d - Per questo il peso w itd del termine t in un documento d viene normalizzato wtd = tf td maxtf d N log df t maxtf d è la frequenza massima dei termini nel documento d Il primo fattore è la frequenza relativa del termine t in d

36 Conclusione: efficacia dei metodi di indicizzazione automatica Base: indicizzazione automatica basata su singoli termini Utilizzo di un tesauro tematico per raggruppare termini in un settore specifico +10% al +20% Uso di tesauri associativi (pseudo-tesauri) derivati automaticamente in una sottocollezione campione 0% al +10% Uso di frasi di termini ottenute sulla base delle cooccorrenze nei testi +5% al +10%

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

Indicizzazione. Fasi del processo di IR. Indicizzazione: due aspetti. Corpus: Costruzione delle viste logiche dei documenti: Termine indice

Indicizzazione. Fasi del processo di IR. Indicizzazione: due aspetti. Corpus: Costruzione delle viste logiche dei documenti: Termine indice Fasi del processo di IR Indicizzazione Information need text input Pre-process documents Parse Query Index Rank Indicizzazione: due aspetti Costruzione delle viste logiche dei documenti: Per ogni documento

Dettagli

Prime sperimentazioni d'indicizzazione [semi]automatica alla BNCF

Prime sperimentazioni d'indicizzazione [semi]automatica alla BNCF Prime sperimentazioni d'indicizzazione [semi]automatica alla BNCF Maria Grazia Pepe - Elisabetta Viti (Biblioteca nazionale centrale di Firenze) 6. Incontro ISKO Italia Firenze 20 maggio 2013 SOMMARIO

Dettagli

Introduzione all Information Retrieval

Introduzione all Information Retrieval Introduzione all Information Retrieval Argomenti della lezione Definizione di Information Retrieval. Information Retrieval vs Data Retrieval. Indicizzazione di collezioni e ricerca. Modelli per Information

Dettagli

La gestione del documento

La gestione del documento Operatore giuridico d impresa Informatica Giuridica A.A 2002/2003 II Semestre La gestione del documento prof. Monica Palmirani Il documento A differenza del dato il documento è solitamente un oggetto non

Dettagli

Navigazione. per associazione. ipertesti/ipermedia. l utente naviga nello spazio dei documenti alla ricerca dei nodi di interesse

Navigazione. per associazione. ipertesti/ipermedia. l utente naviga nello spazio dei documenti alla ricerca dei nodi di interesse Tipologia dei dati e organizzazione delle informazioni Sistemi di indicizzazione e recupero 5. Database e Information Retrieval per associazione Navigazione ipertesti/ipermedia l utente naviga nello spazio

Dettagli

CORSO DI SISTEMI INFORMATIVI III

CORSO DI SISTEMI INFORMATIVI III CORSO DI SISTEMI INFORMATIVI III Indicizzazione di documenti testuali e di immagini Gloria Bordogna CNR IDPA Via Pasubio 5, c/o POINT, Dalmine (BG) e-mail: gloria.bordogna@idpa.cnr.it Come rappresentare

Dettagli

Information Retrieval Systems

Information Retrieval Systems Information Retrieval Systems Oreste Signore (Oreste.Signore@cnuce.cnr.it) Contenuto Elaborazione automatica dell informazione Aspetti tecnici e semantici I sistemi di Information Retrieval Caratteristiche

Dettagli

RICERCA DELL INFORMAZIONE

RICERCA DELL INFORMAZIONE RICERCA DELL INFORMAZIONE DOCUMENTO documento (risorsa informativa) = supporto + contenuto analogico o digitale locale o remoto (accessibile in rete) testuale, grafico, multimediale DOCUMENTO risorsa continuativa

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Anno accademico 2008-2009 Information Retrieval: Text Categorization Una definizione formale Sia D il dominio dei documenti Sia C = {c 1,,c C } un insieme di categorie predefinite

Dettagli

EMILIO BERTOCCI I LINGUAGGI DI INDICIZZAZIONE

EMILIO BERTOCCI I LINGUAGGI DI INDICIZZAZIONE EMILIO BERTOCCI I LINGUAGGI DI INDICIZZAZIONE 2004 INDICE 1 3 Definizioni 3 2 3 Distinzioni 3 3 4 Soggettari e thesauri 4 4 6 Il Soggettario di Firenze 6 5 8 I sistemi di classificazione 8 1 Definizioni

Dettagli

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testuali

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testuali Text mining ed analisi di dati codificati in linguaggio naturale Analisi esplorative di dati testuali Il text mining: una definizione Data mining per dati destrutturati ovvero documenti codificati in linguaggio

Dettagli

Esplorazioni e visualizzazioni Rocco Tripodi rocco@unive.it

Esplorazioni e visualizzazioni Rocco Tripodi rocco@unive.it Università Ca Foscari di Venezia Linguistica Informatica Mod. 1 Anno Accademico 2010-2011 Esplorazioni e visualizzazioni Rocco Tripodi rocco@unive.it Schema Input Text Teoria informazione Espressioni Regolari

Dettagli

Pedigree Documentazione aggiuntiva Corso di reperimento dell informazione a.a. 2005/2006 prof.sa Maristella Agosti

Pedigree Documentazione aggiuntiva Corso di reperimento dell informazione a.a. 2005/2006 prof.sa Maristella Agosti Pedigree Documentazione aggiuntiva Corso di reperimento dell informazione a.a. 25/26 prof.sa Maristella Agosti Argenton Matteo Buzzi Lorenzo Gatto Giorgio Molinaro Matteo Zorzan Emmanuele Prestazioni

Dettagli

Linguaggi e Paradigmi di Programmazione

Linguaggi e Paradigmi di Programmazione Linguaggi e Paradigmi di Programmazione Cos è un linguaggio Definizione 1 Un linguaggio è un insieme di parole e di metodi di combinazione delle parole usati e compresi da una comunità di persone. È una

Dettagli

Accesso ad archivi sonori

Accesso ad archivi sonori Accesso ad archivi sonori Nicola Orio Dipartimento di Ingegneria dell Informazione IV Scuola estiva AISV, 8-12 settembre 2008 Basi di dati Biblioteche e archivi digitali 2 Sistemi informativi e basi di

Dettagli

Progetto Finale: Modelli semantici dei dati in domini applicativi specifici

Progetto Finale: Modelli semantici dei dati in domini applicativi specifici Progetto Finale: Modelli semantici dei dati in domini applicativi specifici Roberto Basili, Marco Pennacchiotti Corso di Fondamenti di Informatica a.a. 2003-2004 Definizioni Generali e Regole d esame Il

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

Lezioni di Informatica Giuridica

Lezioni di Informatica Giuridica UNIVERSITÀ DEGLI STUDI DI CAMERINO Scuola di Specializzazione in Diritto Civile III anno Anno accademico 2003/2004 Lezioni di Informatica Giuridica Costantino Ciampi - ITTIG/CNR Camerino, 27-28 28 settembre

Dettagli

Lezione 2 Gestione del testo

Lezione 2 Gestione del testo Lezione 2 Gestione del testo Pasquale Savino ISTI - CNR Sommario La gestione dei dati in una Biblioteca Digitale Acquisizione Rappresentazione Indicizzazione Ricerca Conservazione Gestione del testo Gestione

Dettagli

Uno sguardo a Lucene. Diego De Cao, Roberto Basili Web Mining and Information Retrieval a.a. 2010/2011

Uno sguardo a Lucene. Diego De Cao, Roberto Basili Web Mining and Information Retrieval a.a. 2010/2011 Uno sguardo a Lucene Diego De Cao, Roberto Basili Web Mining and Information Retrieval a.a. 2010/2011 Outline Uno sguardo a Lucene Descrizione delle principali caratteristiche Realizzazione di un semplice

Dettagli

Archiviazione ed accesso all'informazione (I. Zangara)

Archiviazione ed accesso all'informazione (I. Zangara) Università degli studi di Catania Archiviazione ed accesso all informazione Archivio Insieme di documenti, dello stesso tipo o di tipi diversi, che per esigenze specifiche informative costituisce una raccolta

Dettagli

Interrogazione strutturata di triple RDF estratte dal linguaggio naturale

Interrogazione strutturata di triple RDF estratte dal linguaggio naturale UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica Interrogazione strutturata di triple RDF estratte dal linguaggio naturale Candidato:

Dettagli

Modulo 1: Motori di ricerca

Modulo 1: Motori di ricerca Contenuti Architettura di Internet Principi di interconnessione e trasmissione World Wide Web Posta elettronica Motori di ricerca Antivirus Personal firewall Tecnologie delle reti di calcolatori Servizi

Dettagli

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio Il Concetto Intuitivo di Calcolatore Fondamenti di Informatica A Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini I Problemi e la loro Soluzione Problema: classe

Dettagli

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testualilezione

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testualilezione Text mining ed analisi di dati codificati in linguaggio naturale Analisi esplorative di dati testualilezione 2 Le principali tecniche di analisi testuale Facendo riferimento alle tecniche di data mining,

Dettagli

Quick Introduction T-LAB 9.1. Strumenti per l Analisi dei Testi. Marzo 2014. Copyright 2001-2014 T-LAB by Franco Lancia All rights reserved.

Quick Introduction T-LAB 9.1. Strumenti per l Analisi dei Testi. Marzo 2014. Copyright 2001-2014 T-LAB by Franco Lancia All rights reserved. T-LAB 9.1 Marzo 2014 Quick Introduction Strumenti per l Analisi dei Testi Copyright 2001-2014 T-LAB by Franco Lancia All rights reserved. Website: http://www.tlab.it/ E-mail: info@tlab.it T-LAB is a registered

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico On AIR s.r.l. Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 5 Tecniche OCR Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com http://www.onairweb.com/corsopr

Dettagli

Librerie digitali. Video. Gestione di video. Caratteristiche dei video. Video. Metadati associati ai video. Metadati associati ai video

Librerie digitali. Video. Gestione di video. Caratteristiche dei video. Video. Metadati associati ai video. Metadati associati ai video Video Librerie digitali Gestione di video Ogni filmato è composto da più parti Video Audio Gestito come visto in precedenza Trascrizione del testo, identificazione di informazioni di interesse Testo Utile

Dettagli

Automatic Text Processing

Automatic Text Processing Automatic Text Processing Ing. Leonardo Rigutini Dipartimento di Ingegneria dell Informazione Università di Siena Via Roma 53 53100 SIENA ITALY rigutini@dii.unisi.it Outlines L era dell informazione Information

Dettagli

aided content analysis)

aided content analysis) T-Lab Stefano Nobile L analisi del contenuto computerizzata (computer aided content analysis) I software in commercio per l analisi l del contenuto computerassistita possono essere distinti in due grandi

Dettagli

TECNOLOGIE INFORMATICHE DELLA COMUNICAZIONE ORE SETTIMANALI 2 TIPO DI PROVA PER GIUDIZIO SOSPESO PROVA DI LABORATORIO

TECNOLOGIE INFORMATICHE DELLA COMUNICAZIONE ORE SETTIMANALI 2 TIPO DI PROVA PER GIUDIZIO SOSPESO PROVA DI LABORATORIO CLASSE DISCIPLINA MODULO Conoscenze Abilità e competenze Argomento 1 Concetti di base Argomento 2 Sistema di elaborazione Significato dei termini informazione, elaborazione, comunicazione, interfaccia,

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI Corso di Laurea in Informatica

UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI Corso di Laurea in Informatica UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI Corso di Laurea in Informatica Costruzione di un thesaurus per gli algoritmi di prossimità semantica DISCo LET

Dettagli

Macchine per l elaborazione dell informazion e. Sistemi di Elaborazione delle Informazioni. Informatica II

Macchine per l elaborazione dell informazion e. Sistemi di Elaborazione delle Informazioni. Informatica II Macchine per l elaborazione dell informazion e Sistemi di Elaborazione delle Informazioni Informatica II Ing. Mauro Iacono Seconda Università degli Studi di Napoli Facoltà di Studi Politici e per l Alta

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

L indicizzazione per soggetto

L indicizzazione per soggetto PROVINCIA DI PADOVA Assessorato alla cultura L indicizzazione per soggetto Biblioteca di Abano Terme 2009 Presentazione di Antonio Zanon, Cristiana Lighezzolo, Chiara Masut (Consorzio Biblioteche Padovane

Dettagli

Linguaggi di programmazione

Linguaggi di programmazione Linguaggi di programmazione Programmazione L attività con cui si predispone l elaboratore ad eseguire un particolare insieme di azioni su particolari dati, allo scopo di risolvere un problema Dati Input

Dettagli

Analisi statistica di dati testuali

Analisi statistica di dati testuali Analisi statistica di dati testuali Prof.ssa D. Fioredistella Iezzi Università di Roma Tor Vergata stella.iezzi@uniroma2.it Studi quantitativi sulla lingua Le tecniche di analisi testuale consentono di

Dettagli

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.

Dettagli

Laboratorio Matematico Informatico 2

Laboratorio Matematico Informatico 2 Laboratorio Matematico Informatico 2 (Matematica specialistica) A.A. 2006/07 Pierluigi Amodio Dipartimento di Matematica Università di Bari Laboratorio Matematico Informatico 2 p. 1/1 Informazioni Orario

Dettagli

Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario

Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario Nell ambito di questa attività è in fase di realizzazione un applicativo che metterà a disposizione dei policy makers,

Dettagli

4, 5 ANNO DELLA SCUOLA PRIMARIA

4, 5 ANNO DELLA SCUOLA PRIMARIA ASCOLTO E PARLATO Intervenire nel dialogo e nella conversazione in modo pertinente. Interagire nello scambio comunicativo formulando domande e risposte adeguate al contesto. Esprimere il proprio punto

Dettagli

MANUALE UTENTE DELLA BIBLIOTECA VIRTUALE

MANUALE UTENTE DELLA BIBLIOTECA VIRTUALE MANUALE UTENTE DELLA BIBLIOTECA VIRTUALE Il sistema di ricerca della biblioteca virtuale permette di accedere in maniera rapida ai materiali didattici di interesse degli studenti presenti all interno del

Dettagli

Metodologia Classica di Progettazione delle Basi di Dati

Metodologia Classica di Progettazione delle Basi di Dati Metodologia Classica di Progettazione delle Basi di Dati Metodologia DB 1 Due Situazioni Estreme Realtà Descritta da un documento testuale che rappresenta un insieme di requisiti del software La maggiore

Dettagli

Modellazione di sistema

Modellazione di sistema Corso di Laurea Specialistica in Ingegneria Informatica Corso di Ingegneria del Software A. A. 2008 - Modellazione di sistema E. TINELLI Contenuti Approcci di analisi Linguaggi di specifica Modelli di

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

L'informazione e la sua codifica

L'informazione e la sua codifica L'informazione e la sua codifica Corso di Informatica CdL: Chimica Claudia d'amato claudia.damato@di.uniba.it Informatica e telecomunicazione Cos è l informatica informatica? lo studio sistematico degli

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

Progettare una basi di dati vuole dire progettare la struttura dei dati e le applicazioni

Progettare una basi di dati vuole dire progettare la struttura dei dati e le applicazioni LA PROGETTAZIONE DI BASI DI DATI Progettare una basi di dati vuole dire progettare la struttura dei dati e le applicazioni La progettazione dei dati è l attività più importante Per progettare i dati al

Dettagli

Modelli di Information Retrieval: I modelli base

Modelli di Information Retrieval: I modelli base Modelli di Information Retrieval: I modelli base Gabriella Pasi 1 Università degli Studi di Milano Bicocca Via Bicocca degli Arcimboldi 8 e-mail: pasi@disco.unimib.it Struttura base di un IRS ARCHIVIO

Dettagli

Programmi. Algoritmi scritti in un linguaggio di programmazione

Programmi. Algoritmi scritti in un linguaggio di programmazione Programmi Algoritmi scritti in un linguaggio di programmazione Sistema operativo:programma supervisore che coordina tutte le operazioni del calcolatore Programmi applicativi esistenti Sistemi di videoscrittura

Dettagli

ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo

ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo INPUT: dati iniziali INPUT: x,y,z AZIONI esempio: Somma x ed y

Dettagli

ARCHIVI E LORO ORGANIZZAZIONI

ARCHIVI E LORO ORGANIZZAZIONI ARCHIVI E LORO ORGANIZZAZIONI Archivio: - insieme di registrazioni (record), ciascuna costituita da un insieme prefissato di informazioni elementari dette attributi (campi) - insieme di informazioni relative

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calcolo delle corrispondenze Affrontiamo il problema centrale della visione stereo, cioè la ricerca automatica di punti corrispondenti tra immagini Chiamiamo

Dettagli

TEORIA sulle BASI DI DATI

TEORIA sulle BASI DI DATI TEORIA sulle BASI DI DATI A cura del Prof. Enea Ferri Cos è un DATA BASE E un insieme di archivi legati tra loro da relazioni. Vengono memorizzati su memorie di massa come un unico insieme, e possono essere

Dettagli

Sistemi Operativi GESTIONE DELLA MEMORIA CENTRALE. D. Talia - UNICAL. Sistemi Operativi 6.1

Sistemi Operativi GESTIONE DELLA MEMORIA CENTRALE. D. Talia - UNICAL. Sistemi Operativi 6.1 GESTIONE DELLA MEMORIA CENTRALE 6.1 Gestione della Memoria Background Spazio di indirizzi Swapping Allocazione Contigua Paginazione 6.2 Background Per essere eseguito un programma deve trovarsi (almeno

Dettagli

Linguaggi per COMUNICARE. Il linguaggio è un sistema codificato di segni che consente la comunicazione, intesa come scambio di informazioni

Linguaggi per COMUNICARE. Il linguaggio è un sistema codificato di segni che consente la comunicazione, intesa come scambio di informazioni Linguaggi per COMUNICARE Il linguaggio è un sistema codificato di segni che consente la comunicazione, intesa come scambio di informazioni Sintassi e semantica dei linguaggi Un informazione può : Essere

Dettagli

Alessandra Raffaetà. Basi di Dati

Alessandra Raffaetà. Basi di Dati Lezione 2 S.I.T. PER LA VALUTAZIONE E GESTIONE DEL TERRITORIO Corso di Laurea Magistrale in Scienze Ambientali Alessandra Raffaetà Dipartimento di Informatica Università Ca Foscari Venezia Basi di Dati

Dettagli

Motori di ricerca. Andrea Marin

Motori di ricerca. Andrea Marin Andrea Marin Università Ca Foscari Venezia SVILUPPO INTERCULTURALE DEI SISTEMI TURISTICI SISTEMI INFORMATIVI E TECNOLOGIE WEB PER IL TURISMO - 1 a.a. 2012/2013 Section 1 Information Retrieval e Motori

Dettagli

Analizzatore lessicale o scanner

Analizzatore lessicale o scanner Analizzatore lessicale o scanner Lo scanner rappresenta un'interfaccia fra il programma sorgente e l'analizzatore sintattico o parser. Lo scanner, attraverso un esame carattere per carattere dell'ingresso,

Dettagli

Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria sede di Modena Corso di Laurea VOD in Ingegneria Informatica

Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria sede di Modena Corso di Laurea VOD in Ingegneria Informatica Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria sede di Modena Corso di Laurea VOD in Ingegneria Informatica PROGETTO E REALIZZAZIONE DELL ALGORITMO DI ANNOTAZIONE AUTOMATICA TUCUXI

Dettagli

Sistemi Informativi Territoriali. Map Algebra

Sistemi Informativi Territoriali. Map Algebra Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori

Dettagli

Progettaz. e sviluppo Data Base

Progettaz. e sviluppo Data Base Progettaz. e sviluppo Data Base! Introduzione ai Database! Tipologie di DB (gerarchici, reticolari, relazionali, oodb) Introduzione ai database Cos è un Database Cos e un Data Base Management System (DBMS)

Dettagli

Come utilizzare il nuovo LEGGI D ITALIA Pubblica Amministrazione

Come utilizzare il nuovo LEGGI D ITALIA Pubblica Amministrazione Come utilizzare il nuovo LEGGI D ITALIA Pubblica Amministrazione 1 Cos è il nuovo Sistema LEGGI D ITALIA Pubblica Amministrazione è la nuova soluzione on line integrata e intelligente, realizzata su misura

Dettagli

CUSTOMER RELATIONSHIP MANAGEMENT:

CUSTOMER RELATIONSHIP MANAGEMENT: LA BICOCCA PER LE IMPRESE CUSTOMER RELATIONSHIP MANAGEMENT: MODELLI E TECNOLOGIE PROGETTO WISPER: ESEMPIO DI CUSTOMER SATISFACTION VITTORIO VIGANO CONSORZIO MILANO RICERCHE MERCOLEDI 22 GIUGNO 2005 Università

Dettagli

Le Basi di dati: generalità. Unità di Apprendimento A1 1

Le Basi di dati: generalità. Unità di Apprendimento A1 1 Le Basi di dati: generalità Unità di Apprendimento A1 1 1 Cosa è una base di dati In ogni modello di organizzazione della vita dell uomo vengono trattate informazioni Una volta individuate e raccolte devono

Dettagli

CERTIFICAZIONE DELLE COMPETENZE: indicatori e livelli

CERTIFICAZIONE DELLE COMPETENZE: indicatori e livelli (1) ASSE DEI LINGUAGGI : ITALIANO CERTIFICAZIONE DELLE COMPETENZE: indicatori e livelli 1. Padroneggia gli strumenti espressivi ed argomentativi indispensabili per gestire l interazione comunicativa verbale

Dettagli

Indice dei contenuti

Indice dei contenuti Gesttiione Knowlledge Base Serrviiziio dii Conttactt Centterr 055055 Manualle dii consullttaziione Indice dei contenuti 1. Introduzione... 4 2. Modalità di accesso alle informazioni... 5 2.1. Accesso diretto

Dettagli

1 Introduzione 1 1.1 Information Retrieval: promesse e problemi... 1 1.2 Presentazione del lavoro... 3 1.3 Sommario... 5

1 Introduzione 1 1.1 Information Retrieval: promesse e problemi... 1 1.2 Presentazione del lavoro... 3 1.3 Sommario... 5 Indice 1 Introduzione 1 1.1 Information Retrieval: promesse e problemi..................... 1 1.2 Presentazione del lavoro................................ 3 1.3 Sommario........................................

Dettagli

PROCESSO DI INDICIZZAZIONE SEMANTICA

PROCESSO DI INDICIZZAZIONE SEMANTICA PROCESSO DI INDICIZZAZIONE SEMANTICA INDIVIDUAZIONE DEI TEMI/CONCETTI SELEZIONE DEI TEMI/CONCETTI ESPRESSIONE DEI CONCETTI NEL LINGUAGGIO DI INDICIZZAZIONE TIPI DI INDICIZZAZIONE SOMMARIZZAZIONE INDICIZZAZIONE

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Metriche di discriminanza e caratteristica. No Author Given

Metriche di discriminanza e caratteristica. No Author Given Metriche di discriminanza e caratteristica No Author Given 1 Contents Metriche di discriminanza e caratteristica........................... 1 No Author Given 1 Teoria sulla capacità discriminante e caratteristica.................

Dettagli

AGGIORNAMENTO AREA SEMANTICA GESTIONE SOGGETTARI

AGGIORNAMENTO AREA SEMANTICA GESTIONE SOGGETTARI Pag. 1 di 9 Manuale Utente Aprile 2013 -MUT-01--Gestione_Soggetto Pag. 2 di 9 INDICE 1. SCOPO DEL DOCUMENTO... 3 2. DESCRIZIONE... 3 3. GESTIONE DI EDIZIONI DIVERSE DEL SOGGETTARIO DI FIRENZE... 3 3.1

Dettagli

Feature Selection per la Classificazione

Feature Selection per la Classificazione 1 1 Dipartimento di Informatica e Sistemistica Sapienza Università di Roma Corso di Algoritmi di Classificazione e Reti Neurali 20/11/2009, Roma Outline Feature Selection per problemi di Classificazione

Dettagli

2.1 Introduzione ai linguaggi di marcatura

2.1 Introduzione ai linguaggi di marcatura Fondamenti di Informatica Sistemi di Elaborazione delle Informazioni Informatica Applicata 2.1 Introduzione ai linguaggi di marcatura Antonella Poggi Anno Accademico 2012-2013 DIPARTIMENTO DI SCIENZE DOCUMENTARIE

Dettagli

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico Processo di risoluzione di un problema ingegneristico 1. Capire l essenza del problema. 2. Raccogliere le informazioni disponibili. Alcune potrebbero essere disponibili in un secondo momento. 3. Determinare

Dettagli

Progetto e realizzazione di un sistema per la generazione di dialoghi in linguaggio naturale

Progetto e realizzazione di un sistema per la generazione di dialoghi in linguaggio naturale Progetto e realizzazione di un sistema per la generazione di dialoghi in linguaggio naturale Candidato: Daniele Mori Relatore: Chiar.mo Prof. Alessandro De Gloria Obiettivo Utilizzare tecniche NLP in contesti

Dettagli

Microsoft SQL Server Integration Services

Microsoft SQL Server Integration Services Sistemi Informativi Dott.ssa Elisa Turricchia Alma Mater Studiorum - Università di Bologna elisa.turricchia2@unibo.it 1 Microsoft SQL Server Integration Services 1 SQL Server Integration Services SSIS

Dettagli

Logica e codifica binaria dell informazione

Logica e codifica binaria dell informazione Politecnico di Milano Corsi di Laurea in Ingegneria Matematica e Ingegneria Fisica Dipartimento di Elettronica ed Informazione Logica e codifica binaria dell informazione Anno Accademico 2002 2003 L. Muttoni

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

COS È UN LINGUAGGIO? LINGUAGGI DI ALTO LIVELLO LA NOZIONE DI LINGUAGGIO LINGUAGGIO & PROGRAMMA

COS È UN LINGUAGGIO? LINGUAGGI DI ALTO LIVELLO LA NOZIONE DI LINGUAGGIO LINGUAGGIO & PROGRAMMA LINGUAGGI DI ALTO LIVELLO Si basano su una macchina virtuale le cui mosse non sono quelle della macchina hardware COS È UN LINGUAGGIO? Un linguaggio è un insieme di parole e di metodi di combinazione delle

Dettagli

Le ontologie nell integrazione dei dati

Le ontologie nell integrazione dei dati Le ontologie nell integrazione dei dati Prof. Letizia Tanca 1 Ontologie Definizione formale e condivisa di un vocabolario di termini e delle relazioni tra essi Relazioni possibili: sinonimia omonimia iponimia

Dettagli

Linguistica Computazionale. Tokenizzazione

Linguistica Computazionale. Tokenizzazione Linguistica Computazionale Tokenizzazione Sai Tokenizzare (~contare : )) iniziamo giocando poi lavoriamo Quanti token (~parole) nella frase C era una volta un pezzo di legno. Sai Tokenizzare (~contare

Dettagli

Richiami di informatica e programmazione

Richiami di informatica e programmazione Richiami di informatica e programmazione Il calcolatore E una macchina usata per Analizzare Elaborare Collezionare precisamente e velocemente una grande quantità di informazioni. Non è creativo Occorre

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Verifica e Validazione (V & V) Software e difetti. Processo di V & V. Test

Verifica e Validazione (V & V) Software e difetti. Processo di V & V. Test Software e difetti Il software con difetti è un grande problema I difetti nel software sono comuni Come sappiamo che il software ha qualche difetto? Conosciamo tramite qualcosa, che non è il codice, cosa

Dettagli

Ingegneria dei Requisiti

Ingegneria dei Requisiti Corso di Laurea Specialistica in Ingegneria Informatica Corso di Ingegneria del Software A. A. 2008 - Ingegneria dei Requisiti E. TINELLI Contenuti I requisiti del software Documento dei requisiti I processi

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Page 1. Evoluzione. Intelligenza Artificiale. Algoritmi Genetici. Evoluzione. Evoluzione: nomenclatura. Corrispondenze natura-calcolo

Page 1. Evoluzione. Intelligenza Artificiale. Algoritmi Genetici. Evoluzione. Evoluzione: nomenclatura. Corrispondenze natura-calcolo Evoluzione In ogni popolazione si verificano delle mutazioni. Intelligenza Artificiale In un ambiente che varia, le mutazioni possono generare individui che meglio si adattano alle nuove condizioni. Questi

Dettagli

Metodi basati sugli autovettori per il Web Information Retrieval

Metodi basati sugli autovettori per il Web Information Retrieval Metodi basati sugli autovettori per il Web Information Retrieval HITS, PageRank e il metodo delle potenze LSI e SVD LSI è diventato famoso per la sua abilità nel permettere di manipolare i termini (all

Dettagli

Introduzione all elaborazione di immagini Part II

Introduzione all elaborazione di immagini Part II Introduzione all elaborazione di immagini Part II Obiettivi delle tecniche di elaborazione di immagini: miglioramento di qualità (image enhancement) ripristino di qualità o restauro (image restoration)

Dettagli

WordNet A lexical Database

WordNet A lexical Database Università degli Studi di Bari Corso di Gestione della Conoscenza d Impresa Anno Accademico 2003-2004 2004 WordNet A lexical Database Dott. Marco Degemmis Ringraziamenti Domenico Ladisa, Caso di studi

Dettagli

L interesse nella macchina di Turing

L interesse nella macchina di Turing Aniello Murano Macchina di Turing universale e problema della fermata 6 Lezione n. Parole chiave: Universal Turing machine Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009

Dettagli

PROGETTAZIONE CONCETTUALE

PROGETTAZIONE CONCETTUALE Fasi della progettazione di basi di dati PROGETTAZIONE CONCETTUALE Parte V Progettazione concettuale Input: specifiche utente Output: schema concettuale (astrazione della realtà) PROGETTAZIONE LOGICA Input:

Dettagli

Concetti di base dell informatica. Facoltà di Lettere e Filosofia anno accademico 2008/2009 secondo semestre

Concetti di base dell informatica. Facoltà di Lettere e Filosofia anno accademico 2008/2009 secondo semestre Concetti di base dell informatica Facoltà di Lettere e Filosofia anno accademico 2008/2009 secondo semestre url per le info del corso http://www.totemonline.com/informatica2/ Introduzione Informazione

Dettagli

Breve descrizione del prodotto

Breve descrizione del prodotto Breve descrizione del prodotto 1. Il software AquaBrowser Library...2 1.1 Le funzioni di Search Discover Refine...3 1.2 Search: la funzione di ricerca e di presentazione dei risultati...3 1.2.1 La configurazione

Dettagli

Istituto Comprensivo di Cologna Veneta Curricolo Scuola Primaria a.s. 2015/2016

Istituto Comprensivo di Cologna Veneta Curricolo Scuola Primaria a.s. 2015/2016 Traguardi per lo sviluppo delle competenze al termine della scuola primaria L allievo partecipa a scambi comunicativi (conversazioni, discussioni, di classe o di gruppi) con compagni e insegnanti rispettando

Dettagli

La Qualità del Web QUALITÀ, ACCESSIBILITÀ E USABILITÀ. Web: Modello di Qualità (Polillo) Web: Modello di Qualità. Qualità: Visualizzazione

La Qualità del Web QUALITÀ, ACCESSIBILITÀ E USABILITÀ. Web: Modello di Qualità (Polillo) Web: Modello di Qualità. Qualità: Visualizzazione La Qualità del Web QUALITÀ, ACCESSIBILITÀ E USABILITÀ Informatica Generale (AA 0-5) Web: Modello di Qualità Web: Modello di Qualità (Polillo) caratteristiche principali grafica autorevolezza accessibilità

Dettagli

Cluster gerarchica. Capitolo

Cluster gerarchica. Capitolo Cluster gerarchica Capitolo 33 Questa procedura consente di identificare gruppi di casi relativamente omogenei in base alle caratteristiche selezionate, utilizzando un algoritmo che inizia con ciascun

Dettagli