MATLAB:Metodi Numerici per zeri di funzioni.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATLAB:Metodi Numerici per zeri di funzioni."

Transcript

1 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Metodi Numerici per zeri di funzioni Metodo delle successive bisezioni Sappiamo che la procedura definita dal metodo delle bisezioni determina una sequenza di intervalli ciascuno dei quali è contenuto nel precedente [a n, b n ] [a n 1, b n 1 ] [a 1, b 1 ] [a 0, b 0 ]; il generico intervallo ha ampiezza pari alla metà di quella dell intervallo precedentemente determinato e contiene lo zero α di f(x) Generalizzando, la procedura costruisce la successione dei punti medi c n = a n 1 + b n 1 2 n 1 e se f(c n ) 0, definisce i nuovi intervalli nel modo seguente [a n, b n ] = { [cn, b n 1 ] se f(c n ) f(b n 1 ) < 0 [a n 1, c n ] se f(a n 1 ) f(c n ) < 0 Vediamo come costruire una funzione Matlab che ci permette di risolvere il problema della ricerca degli zeri di una funzione mediante il metodo delle bisezioni: Innanzitutto definiamo una funzione in un file Matlab che chiamiamo f1m:

2 2 function y=f1(x) y=exp(x)-(2*x)^2; Ora costruiamo la funzione bisezionim in cui viene implementato il metodo delle successive bisezioni: METODO DELLE SUCCESSIVE BISEZIONI PER LA SOLUZIONE DI EQUAZIONI NON LINEARI function [root,nit] = bisezioni(funz,a,b,tol,nmax) DATI DI INPUT: funz = stringa contenente il nome della funzione a,b = estremi dell intervallo in cui si cerca la radice di funz tol = tolleranza nmax = numero massimo di iterate DATI DI OUTPUT: root = soluzione nit = numero di iterate function [root,nit,errv] = bisezioni(funz,a,b,tol,nmax) L istruzione feval ci permette di calcolare il valore della funzione in un punto fa = feval(funz,a); fb = feval(funz,b); if fa*fb > 0 error( ERRORE: la funzione non cambia di segno agli estremi ) end err = 1/eps; nit = 0

3 3 while (err > tol) & (nit <= nmax) c = (a+b)*05; fc = feval(funz,c); if (fc*fa < 0) b = c; fb = fc; else a = c; fa = fc; end nit = nit+1; err = abs(b-a)/max(1,min([abs(a),abs(b)])); errv(nit) = err; end root = c; Eseguiamo la funzione: >> a=-1; >> b=0; >> tol=1e-10; >> nmax=100; >> [root,nit]=bisezioni( f1,a,b,tol,nmax) root = e-01 nit = 36 Possiamo fare altri esempi:

4 4 >> >> a=0; >> b=1; >> [root,nit]=bisezioni( f1,a,b,tol,nmax) root = 71481e-01 nit = 34 >> a=4; >> b=45; >> [root,nit]=bisezioni( f1,a,b,tol,nmax) root = 43066e+00 nit = 37 Ordine di convergenza Il metodo delle bisezioni converge linearmente ad α ed ha costante asintotica pari ad 1, risultando con ciò molto lento 2 Teorema Se le successioni convergono con la stessa velocità, ovvero a 0 < n lim n α <, (1) b n α allora lim n b n+1 α b n α = 1 2

5 In particolare applicando il metodo al calcolo degli zeri di una data funzione, si può osservare che ad ogni iterata si guadagna una cifra binaria e quindi dopo 33 iterate circa si guadagnerà una cifra decimale esatta, essendo 33 log 2 10 Quindi tenendo conto della seguente relazione c n α c c n 1 α possiamo valutare l ordine di convergenza del metodo delle bisezioni nel seguente modo: 5 >> [root,nit,errv]=bisezioni( f1,a,b,tol,nmax) root = e-01 nit = 36 >> p=errv(2:nit)/errv(1:nit-1) p = Columns 1 through e e e e-01 Columns 5 through e e e e-01

6 6 Columns 33 through e e e-01 Il Metodo di Newton Supponiamo che la funzione f(x) abbia derivata non nulla; la funzione iteratrice φ(x) = x f(x)/f (x) definisce il procedimento iterativo x n+1 = x n f(x n) f (x n ) detto metodo di Newton Per costruire una funzione Matlab che ci permette di risolvere il problema della ricerca degli zeri di una funzione mediante il metodo di Newton, innanzitutto definiamo una funzione in un file Matlab che chiamiamo f4m, e poi definiamo anche la derivata prima di f4(x) nel file fj4m: function y=fj4(x) y=tan(x) + 1/(1+x^2); Ora costruiamo la funzione newtm in cui viene implementato il metodo di Newton: METODO DI NEWTON PER LA SOLUZIONE DI EQUAZIONI NON LINEARI function [x0, nit, errv] = newt(funz,jfunz,x0,tol,nmax) DATI DI INPUT funz = stringa contenente il nome della funzione jfunz = stringa contentente il nome della derivata prima x0 = punto iniziale della successione

7 7 tol = tolleranza nmax = numero massimo di iterate DATI DI OUTPUT x0 = soluzione nit = numero di iterate errv = vettore con l errore stimato ad ogni iterata function [x0, nit, errv] = newt(funz,jfunz,x0,tol,nmax) procedimento iterativo nit = 0; err = 1/eps; F = 1/eps; while (err > tol) & ( nit <= nmax) & (norm(f) > tol) xk = x0; JF = feval(jfunz,xk); F = feval(funz,xk); d = -JF\F; x0 = xk + d; err = norm(d)/max([1,min([norm(x0),norm(xk)])]); nit = nit + 1; disp([err nit]) errv(nit) = err; end >> x0=-1; >> tol=1e-10; >> nmax=100; >> [root,nit,errv]=newt( f1, fj1,x0,tol,nmax) 43406e e+00

8 e e e e e e e e e e+00 root = e-01 nit = 6 errv = 43406e e e e e e-15 Ora vediamo come possiamo costruire un formula che ci permette di valutare l ordine di convergenza del metodo di Newton Sappiamo che: e x i+1 x i c x i x i 1 p x i x i 1 c x i 1 x i 2 p Facendo il rapporto tra queste due relazioni e quindi il logaritmo di entrambi i membri otteniamo che: log( x i+1 x i x i x i 1 ) p log( x i x i 1 x i 1 x i 2 )

9 Quindi possiamo valutare l ordine di convergenza del metodo di Newton con la seguente formula: 9 >> p=log2(errv(3:nit)/errv(2:nit-1))/log2(errv(2:nit-1)/errv(1:nit-2)) p = 18192e e e e+00 ESERCIZIO: Determinare gli altri zeri di f1 partendo dai punti iniziali x0 = 1 e x0 = 4 Valutare l ordine di convergenza del metodo Definire le funzioni f2(x) = (x 1) 3 e f3(x) = exp(x 2 ) 1 con relative derivate prime, e determinarne gli zeri con il metodo di Newton Usare diversi punti iniziali, e valutare la bonta dell approssimazione ottenuta Scrivere un programma per il metodo della direzione costante con una semplice modifica di newtm Testarlo Ricordiamo che nel metodo della direzione costante la funzione iteratrice è data da: x n+1 = x n f(x n) g dove g rappresenta il valore della direzione costante Il metodo delle secanti x n+1 = x n x n x n 1 f(x n ) f(x n 1 ) f(x n) f(x n)x n 1 f(x n 1 )x n f(x n ) f(x n 1 ) Questo procedimento iterativo non rientra nella classe dei procedimenti x n+1 = φ(x n ), ma il nuovo punto dipende da due punti precedenti, cioè: x n+1 = φ(x n 1, x n ) e necessita, per poter partire, di due punti iniziali Vediamo come costruire una funzione Matlab che ci permette di risolvere il problema della ricerca degli zeri di una funzione mediante il metodo delle secanti Chiameremo tale funzione secantim:

10 10 METODO DELLE SECANTI PER LA SOLUZIONE DI EQUAZIONI NON LINEARI function [x0, nit, errv] = secanti(funz,x0,x1,tol,nmax) DATI DI INPUT funz = stringa contenente il nome della funzione x0 = punto iniziale della successione x1 = secondo punto iniziale tol = tolleranza nmax = numero massimo di iterate DATI DI OUTPUT x0 = soluzione nit = numero di iterate errv = vettore con l errore stimato ad ogni iterata function [x0, nit, errv] = secanti(funz,x0,x1,tol,nmax) procedimento iterativo nit = 0; err = 1/eps; F0 = feval(funz,x0); while (err > tol) & ( nit <= nmax) & (norm(f0) > tol) xk = x1; x1 = x0; F1 = F0; F0 = feval(funz,xk); x0 = xk - ((xk-x1)/(f0-f1))*f0; err = norm(xk-x0)/max([1,min([norm(x0),norm(xk)])] nit = nit + 1; disp([err nit]) errv(nit) = err; end

11 11 Ora eseguiamo la funzione: >> x0=0; >> x1=x0-f1(x0)/fj1(x0) x1 = -1 >> tol=1e-10; >> namx=100; >> [root,nit,errv]=secanti( f1,x0,x1,tol,nmax) 78412e e e e e e e e e e e e+01 root = e-01

12 12 nit = 37 errv = Columns 1 through e e e e e e-01 Columns 7 through e e e e e e-03 Columns 31 through e e e e e e-07 Column e-11 ESERCIZIO: Determinare gli altri zeri di f1 con x0 = 1 e x0 = 4 Confrontare il numero di iterazioni eseguite con gli altri due metodi

METODI DI PUNTO FISSO

METODI DI PUNTO FISSO METODI DI PUNTO FISSO Sia ϕ : [a, b] R [a, b] continua. Def. α è punto fisso per ϕ se ϕ(α) = α Il metodo di punto fisso è: { x (0) dato x (k+1) = ϕ(x (k) ), per k 0 Scrivere una function per l approssimazione

Dettagli

Metodi per il calcolo degli zeri di funzioni non lineari

Metodi per il calcolo degli zeri di funzioni non lineari Metodi per il calcolo degli zeri di funzioni non lineari N. Del Buono 1 Introduzione Le radici di un equazione non lineare f(x) = 0 non possono, in generale, essere espresse esplicitamente e anche quando

Dettagli

Metodi numerici per zeri di funzioni

Metodi numerici per zeri di funzioni CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari Metodi numerici per zeri di funzioni 1 Metodo delle successive bisezioni Se f(x) C([a, b]) ed f(a) f(b)

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Metodi iterativi per equazioni nonlineari.

Metodi iterativi per equazioni nonlineari. Metodi iterativi per equazioni nonlineari. Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 9 aprile 2016 Alvise Sommariva Introduzione 1/ 14 Introduzione Si supponga sia f

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 - Equazioni non lineari

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 - Equazioni non lineari Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 9 - Equazioni non lineari Data f : R R determinare α R tale che f(α) = 0 Le soluzioni di questo problema vengono dette radici o zeri

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 2 - EQUAZIONI NON LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Elementi introduttivi 2 3 4 Introduzione Problema: trovare le soluzioni di

Dettagli

Equazioni non lineari. Gabriella Puppo

Equazioni non lineari. Gabriella Puppo Equazioni non lineari Gabriella Puppo Equazioni non lineari Passare una function come argomento Metodo di bisezione Metodo di Newton Metodo delle secanti Funzione fzero Passare una function come argomento

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 7

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 7 Complementi di Matematica e Calcolo Numerico A.A. 2015-2016 Laboratorio 7 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare la funzione

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3-24/3/2014

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3-24/3/2014 Complementi di Matematica e Calcolo Numerico A.A. 2012-2013 Laboratorio 3-24/3/2014 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare

Dettagli

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo Capitolo Esercizi a.a. 206-7 Esercizi Esercizio. Dimostrare che il metodo iterativo x k+ = Φ(x k ), k = 0,,..., se convergente a x, deve verificare la condizione di consistenza x = Φ(x ). Ovvero, la soluzione

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni Prof.ssa L. Pezza (A.A. 2017-2018) IV Lezione del 13.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni non

Dettagli

Complementi di Matematica A.A Laboratorio 10

Complementi di Matematica A.A Laboratorio 10 Complementi di Matematica A.A. 2016-2017 Laboratorio 10 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare la funzione predefinita

Dettagli

Ricerca di zeri di equazioni non lineari

Ricerca di zeri di equazioni non lineari Ricerca di zeri di equazioni non lineari Problema (esboa). Si vuole determinare l altezza x della parte sommersa di una boa sferica di raggio R = 0.055m e densità di massa ρ b = 0.6Kg/m 3, posta in acqua

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 2 - EQUAZIONI NON LINEARI Introduzione Problema: trovare le soluzioni di un equazione del tipo f() = 0 Esempio sin a = 0 e = 3 1.0 2.0 0.5

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3 Complementi di Matematica e Calcolo Numerico A.A. 2012-2013 Laboratorio 3 Funzioni Simboliche (inline) Assegnata una funzione del tipo f(x) = (sin(x) + x) 2 vogliamo valutare i valori assunti da f per

Dettagli

Esercizi su polinomio di Taylor, metodi numerici per il calcolo di zeri di funzione e iterazioni di punto fisso

Esercizi su polinomio di Taylor, metodi numerici per il calcolo di zeri di funzione e iterazioni di punto fisso Esercizi su polinomio di Taylor, metodi numerici per il calcolo di zeri di funzione e iterazioni di punto fisso 2 aprile 215 Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ). Richiami

Dettagli

Supponiamo di voler risolvere l equazione lineare scalare:

Supponiamo di voler risolvere l equazione lineare scalare: Capitolo 2 Procedimenti iterativi Molto spesso le leggi della natura sono non lineari. Ne segue la necessità di risolvere equazioni non lineari. Tranne che per polinomi di grado basso, per i quali è possibile

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 4 novembre 2007 Outline 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Equazioni non lineari 1 / 40 Problema Data una

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-23/3/2015

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-23/3/2015 Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 4-23/3/2015 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare

Dettagli

MATLAB: Integrazione

MATLAB: Integrazione 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB: Integrazione Il Matlab contiene le funzioni predefinite quad, quadl e quad8 che calcolano l integrale definito

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2016-2017) IV Lezione del 06.03.2017 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni

Dettagli

data una funzione f, non lineare calcolare le soluzioni dell equazione f(x) = 0 in un intervallo [a,b]

data una funzione f, non lineare calcolare le soluzioni dell equazione f(x) = 0 in un intervallo [a,b] RISOLUZIONE NUMERICA DI EQUAZIONI NON LINEARI PROBLEMA: data una funzione f, non lineare calcolare le soluzioni dell equazione f() = 0 in un intervallo [a,b] 1 f ( ) = log( ) +, (0,10) ξ Esiste una sola

Dettagli

Laboratorio 3-30 settembre 2005

Laboratorio 3-30 settembre 2005 Laboratorio 3-30 settembre 2005 Le funzioni in Octave Le funzioni in Octave vengono memorizzate come una stringa di caratteri (tra apici) >> fun= 1/(1+x^2) La semplice valutazione di fun, funzione di una

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2016-2017 Problemi non lineari Definizione f : R R F : R n R m f (x) = 0 F(x) = 0 In generale si determina

Dettagli

Metodi di Ottimizzazione

Metodi di Ottimizzazione Metodi di Ottimizzazione Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famospaghi, @famoconti http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 Equazioni non lineari Data una funzione consideriamo il problema

Dettagli

Relazione di laboratorio di Analisi Numerica: metodi di ricerca zeri

Relazione di laboratorio di Analisi Numerica: metodi di ricerca zeri Relazione di laboratorio di Analisi Numerica: metodi di ricerca zeri Francesco Genovese, Università di Pavia 8 febbraio 2008 Sommario Questa relazione di laboratorio di Analisi Numerica (corso dell A.A.

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4 - Metodi di Newton e Punto fisso

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4 - Metodi di Newton e Punto fisso Complementi di Matematica e Calcolo Numerico A.A. 2011-2012 Laboratorio 4 - Metodi di Newton e Punto fisso [1] Metodo di Newton Costruire una MATLAB FUNCTION che, dati dall utente: una funzione f una funzione

Dettagli

Calcolo Numerico - Prova Matlab 19 luglio 2013

Calcolo Numerico - Prova Matlab 19 luglio 2013 9 luglio 0 () tempo a disposizione per completare la prova: ora; () lo svolgimento della prova deve essere salvato in file denominati cognomenome#m; () è fatto assoluto divieto di aprire applicazioni diverse

Dettagli

f(x) = x e x, prendere come intervallo iniziale [0, 1] e fissare come precisione ε = 10 8.

f(x) = x e x, prendere come intervallo iniziale [0, 1] e fissare come precisione ε = 10 8. Esercitazione 7 Argomento: Il metodo delle successive bisezioni Scopo: Implementare il metodo delle successive bisezioni per la soluzione di equazioni non lineari. function [alfa,iter]=bisez(f,a,b,epsilon)

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Problema e definizioni Metodo di Newton-Raphson Test d arresto Algoritmo ed esercizi

Dettagli

RISOLUZIONE DI EQUAZIONI NON LINEARI PROBLEMA:

RISOLUZIONE DI EQUAZIONI NON LINEARI PROBLEMA: RISOLUZIONE DI EQUAZIONI NON LINEARI PROBLEMA: data una funzione f, non lineare calcolare le soluzioni dell equazione f(x) = 0 f ( x) = log( x) + x, x (0,0) ξ Esiste una sola soluzione f ( x) = x +, x

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) III Lezione del 12.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 I metodi

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni Esame di Calcolo Numerico per Informatica A.A. 21/11 Proff. S. De Marchi e M. R. Russo 31 agosto 211 Testo e soluzioni L esame consiste di 4 domande aperte e 1 esercizi a risposta multipla. Per gli esercizi

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Bisezione Metodo di Newton-Raphson

Dettagli

Soluzione di Equazioni non lineari

Soluzione di Equazioni non lineari Soluzione di Equazioni non lineari Corso di Calcolo Numerico 20 Marzo 2018 Function in MATLAB Lo scopo di una funzione è quello di prendere in input un certo numero di valori, fare alcune operazioni con

Dettagli

Soluzioni: Laboratorio Calcolo Numerico labor3.pdf

Soluzioni: Laboratorio Calcolo Numerico labor3.pdf Soluzioni: Laboratorio Calcolo Numerico labor3.pdf Esercizio 1 function newtonfun con flag di controllo. function [xv, fxv, n, flag] = newtonfun (f, f1, x0, toll, nmax) NEWTONFUN Metodo di Newton [xv,

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 5: Scrittura su FILE. Soluzione di Equazioni non lineari

Laboratorio di Calcolo Numerico Laboratorio 5: Scrittura su FILE. Soluzione di Equazioni non lineari Laboratorio di Calcolo Numerico Laboratorio 5: Scrittura su FILE. Soluzione di Equazioni non lineari Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 05 Aprile 2017

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) V Lezione del 15.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Metodo di Newton:

Dettagli

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Laboratorio di Calcolo Numerico A.A. 2007-2008 Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Esercizio 1. Risoluzione di sistemi non lineari Si consideri il seguente sistema non

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 4: Functions. Soluzione di Equazioni non lineari

Laboratorio di Calcolo Numerico Laboratorio 4: Functions. Soluzione di Equazioni non lineari Laboratorio di Calcolo Numerico Laboratorio 4: Functions. Soluzione di Equazioni non lineari Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 29 Marzo 2017 Function

Dettagli

1. Sia data la funzione f(x) = x + log x nel proprio insieme di definizione D.

1. Sia data la funzione f(x) = x + log x nel proprio insieme di definizione D. PROVA PRATICA di CALCOLO NUMERICO per Matematica Applicata e Informatica Multimediale Prof. Stefano De Marchi, Dott. Marco Caliari Verona, 08 luglio 2008 Il candidato dovrà scrivere su ogni foglio o file

Dettagli

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]).

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Esempio 1: equazioni polinomiali p N (x)

Dettagli

aprile 2007 dicembre 2000 Metodi iterativi Metodi iterativi dell equazione equazione f(x)=0 per l approssimazione l

aprile 2007 dicembre 2000 Metodi iterativi Metodi iterativi dell equazione equazione f(x)=0 per l approssimazione l Metodi iterativi Metodi iterativi per l approssimazione l delle radici dell equazione equazione f()=0 dicembre 000 aprile 007 Definizione Si chiama RADICE di una equazione a()=b() un numero (reale) u tale

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Bisezione Metodo di

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

g(x) = arctan(1.5x 0.1)

g(x) = arctan(1.5x 0.1) PROVA PRATICA di CALCOLO NUMERICO per Matematica Applicata e Informatica Multimediale Prof. Stefano De Marchi, Dott. Marco Caliari Verona, 27 marzo 2008 Il candidato dovrà scrivere su ogni foglio o file

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni non lineari Sia

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Bisezione Metodo di Newton-Raphson

Dettagli

Calcolo del fattore di convergenza

Calcolo del fattore di convergenza Calcolo del fattore di convergenza Dato uno schema iterativo si ha: lim k x k+1 ξ x k ξ p = M p è l ordine di convergenza del metodo iterativo M è la costante asintotica dell errore o fattore di convergenza.

Dettagli

Metodi per la risoluzione di equazioni non lineari

Metodi per la risoluzione di equazioni non lineari Esercitazione per il corso di Calcolo Numerico Prof. G. Zilli Metodi per la risoluzione di equazioni non lineari Roberto Bertelle Laurea in Ingegneria Aerospaziale a.a.. 2009-2010 2 Indice 1. Testo della

Dettagli

Zeri di funzioni e teorema di Sturm

Zeri di funzioni e teorema di Sturm Zeri di funzioni e teorema di Sturm Enrico Bertolazzi Dipartimento di Ingegneria Meccanica e Strutturale Università degli Studi di Trento via Mesiano 77, I 38050 Trento, Italia EnricoBertolazzi@ingunitnit

Dettagli

Analisi degli errori

Analisi degli errori Analisi degli errori Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Analisi degli errori 1 / 36 Errori Computazionali

Dettagli

1 Esercizi relativi al Capitolo 1

1 Esercizi relativi al Capitolo 1 1 Esercizi relativi al Capitolo 1 1. (a) x = 7; (b) (x) 4 = (32.1) 4 = (14.25) 10 ; (c) x = 5; (d) (200) x = (18) 10 ; x = 3; y = (11330) 8 = (4824) 10 ; (e) x = 2882.125; y = 231002.02; (f) (x) 3 = (12122.1012)

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Laboratorio 5-6 Metodi di Bisezione, Newton e Punto Fisso

Laboratorio 5-6 Metodi di Bisezione, Newton e Punto Fisso Laboratorio 5-6 Metodi di Bisezione, Newton e Punto Fisso 2009 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d autore. Non può essere sfruttato a fini commerciali o di

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile).

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile). SOLUZIONE DI EQUAZIONI NON-LINEARI Molti problemi sono espressi nella forma f(x) = 0 con f(x) funzione non lineare (es. log(x 2 + a) + b cos x = 0, x 5 + ax 3 + b = 0) La determinazione delle radici in

Dettagli

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere

Dettagli

Lezione 5, 5/11/2014

Lezione 5, 5/11/2014 Lezione 5, 5/11/2014 Elena Gaburro, elenagaburro@gmail.com 1 Ordine di convergenza di un metodo Definizione 1.1. Sia {x k } una successione convergente ad α. Consideriamo l errore assoluto in modulo al

Dettagli

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A. 2017-18 1. Scrivere la function Matlab myfun.m che calcoli la funzione e la sua derivata. La function deve ricevere

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Introduzione In molte applicazioni intervengono equazioni che non siamo in grado di risolvere analiticamente, o la cui risoluzione risulta molto complessa e laboriosa. Un importante

Dettagli

Soluzione del laboratorio 11 Metodi di punto fisso e sistemi di equazioni non lineari

Soluzione del laboratorio 11 Metodi di punto fisso e sistemi di equazioni non lineari Soluzione del laboratorio Metodi di punto fisso e sistemi di equazioni non lineari 29 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d autore. Non può essere sfruttato

Dettagli

Metodi Numerici per l Approssimazione degli Zeri di una Funzione

Metodi Numerici per l Approssimazione degli Zeri di una Funzione Metodi Numerici per l Approssimazione degli Zeri di una Funzione Luca Gemignani luca.gemignani@unipi.it 29 marzo 2018 Indice Lezione 1: Il Metodo di Bisezione. 1 Lezione 2: Metodi di Iterazione Funzionale.

Dettagli

Concludiamo questa Appendice, riportando alcuni programmi scritti in linguaggio

Concludiamo questa Appendice, riportando alcuni programmi scritti in linguaggio 0.1. PROGRAMMI MATLAB 1 0.1 Programmi MATLAB Concludiamo questa Appice, riportando alcuni programmi scritti in linguaggio MATLAB, relativi ad algoritmi visti nei capitoli del Testo. Il lettore è incoraggiato,

Dettagli

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A. 2018-19 1. Scrivere la function Matlab myfun.m che valuti la funzione e la sua derivata in corrispondenza delle

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Laboratorio 10 Metodi Bisezione e Newton

Laboratorio 10 Metodi Bisezione e Newton Laboratorio 10 Metodi Bisezione e Newton 2009 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d autore. Non può essere sfruttato a fini commerciali o di pubblicazione editoriale.

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

Problemi di Calcolo Numerico

Problemi di Calcolo Numerico Problemi di Calcolo Numerico Corso di Laurea in Ingegneria Elettronica Corso di Laurea in Ingegneria delle Telecomunicazioni a.a. 2007/2008 2 Zeri di funzioni reali Problema 1 Sia f la funzione definita,

Dettagli

Esercizi proposti di Analisi Numerica

Esercizi proposti di Analisi Numerica Esercizi proposti di Analisi Numerica Silvia Bonettini Dipartimento di Matematica, Università di Ferrara 30 gennaio 2012 1 Conversioni, operazioni di macchina e analisi dell errore 1. Convertire i numeri

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 3: Algoritmi stabili e instabili, Bisezione

Laboratorio di Calcolo Numerico Laboratorio 3: Algoritmi stabili e instabili, Bisezione Laboratorio di Calcolo Numerico Laboratorio 3: Algoritmi stabili e instabili, Bisezione Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 22 Marzo 2017 Vettori in

Dettagli

Laboratorio 2. Calcolo simbolico, limiti e derivate. Metodo di Newton.

Laboratorio 2. Calcolo simbolico, limiti e derivate. Metodo di Newton. Anno Accademico 2007-2008 Corso di Analisi 1 per Ingegneria Elettronica Laboratorio 2 Calcolo simbolico, limiti e derivate. Metodo di Newton. 1 Introduzione al Toolbox simbolico Con le routines del Symbolic

Dettagli

Metodi Numerici Prova di Laboratorio Esami del Stefano Gualandi

Metodi Numerici Prova di Laboratorio Esami del Stefano Gualandi Metodi Numerici Prova di Laboratorio Esami del 2018 Stefano Gualandi October 11, 2018 ii Premessa Questo documento presenta la raccolta dei testi di esame degli appelli del corso di Metodi Numerici, Prova

Dettagli

LEZIONE 5. Esercizio 5.1. Calcolare il limite per x ± delle seguenti funzioni. lim. lim. lim. lim. lim. e x ) x. per x. lim

LEZIONE 5. Esercizio 5.1. Calcolare il limite per x ± delle seguenti funzioni. lim. lim. lim. lim. lim. e x ) x. per x. lim 5 LEZIONE 5 Esercizio 5.1. Calcolare il ite per x ± delle seguenti funzioni. 2x3 3x 2 = x3 (2 3/x) =±. x2 sin x 2 x 4 = x4 (sin x 2 /x 2 1) =. ex x = ex (1 x/e x )=. sin 1 x cos x2 =0, infatti all infinito

Dettagli

Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster

Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Richiami di analisi degli errori. Rappresentazione dei numeri in un calcolatore. Operazioni di macchina.

Dettagli

Calcolo Numerico (A.A ) Esercitazione n. 9. Metodo del punto unito, Metodo di Newton per sistemi

Calcolo Numerico (A.A ) Esercitazione n. 9. Metodo del punto unito, Metodo di Newton per sistemi Calcolo Numerico (A.A. 2012-2013) Esercitazione n. 9 Metodo del punto unito, Metodo di Newton per sistemi 23-04-2013 Esercizio 1.25 L. Gori, M.L. Lo Cascio, F. Pitolli, Esercizi di Calcolo Numerico, II

Dettagli

Analisi Numerica. Francesca Mazzia. a.a. 2006/2007. Integrazione. Dipartimento di Matematica. Università di Bari

Analisi Numerica. Francesca Mazzia. a.a. 2006/2007. Integrazione. Dipartimento di Matematica. Università di Bari Analisi Numerica Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2006/2007 Integrazione 1 Integrazione Problema: approssimare integrali definiti del tipo: a f(x)dx, Scegliamo n + 1

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 3

Laboratorio di Matematica Computazionale A.A Lab. 3 Laboratorio di Matematica Computazionale A.A. 2007-2008 Lab. 3 Funzioni inline Esiste in Matlab una sintassi che permette di definire una funzione direttamente nello spazio di lavoro (ovvero in linea )

Dettagli

Risoluzione di equazioni non lineari

Risoluzione di equazioni non lineari Risoluzione di equazioni non lineari Si considera il problema di determinare la soluzione dell equazione f(x) = 0 ove f(x) è una funzione definita in un intervallo [a, b], chiuso e limitato. Ogni valore

Dettagli

Metodi Numerici (A.A ) Prof. F. Pitolli

Metodi Numerici (A.A ) Prof. F. Pitolli Metodi Numerici (A.A. 2007-2008) Prof. F. Pitolli Appunti delle lezioni su: metodo di Newton in IR n ; equazioni non lineari, metodo di bisezione e metodo di Newton in IR Equazioni non lineari Numerosi

Dettagli

RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE

RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE Introduzione Si vogliano individuare, se esistono, le radici o soluzioni dell equazione f(x)=0. Se f(x) è un polinomio di grado superiore al secondo o se è una

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 24 settembre 2007 Outline 1 M-file di tipo Script e Function Script Function 2 Elementi di programmazione

Dettagli

Programmare con MATLAB c Parte 5 Cicli: for e while

Programmare con MATLAB c Parte 5 Cicli: for e while Programmare con MATLAB c Parte 5 Cicli: for e while Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 La notazione due punti 2 Ciclo: for 3 Ciclo con controllo: while

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11: testo soluzioni Proff. S. De Marchi e M. R. Russo 12 luglio 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11: testo soluzioni Proff. S. De Marchi e M. R. Russo 12 luglio 2011 Esame di Calcolo Numerico per Informatica A.A. 200/: testo soluzioni Proff. S. De Marchi e M. R. Russo 2 luglio 20 L esame consiste di 4 domande aperte e 0 esercizi a risposta multipla. Per gli esercizi

Dettagli

Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 12/07/2012

Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 12/07/2012 Cognome: Nome: Matricola: Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 12/07/2012 ESERCIZIO 1 [10 punti] Si consideri il problema di approssimare le radici α 1 =

Dettagli

Corso di laurea in Matematica Laboratorio di Programmazione e Calcolo Prof. A. Murli. Esercizi di riepilogo - LABORATORIO

Corso di laurea in Matematica Laboratorio di Programmazione e Calcolo Prof. A. Murli. Esercizi di riepilogo - LABORATORIO Cognome: Nome: 1 Matricola: Corso di laurea in Matematica Laboratorio di Programmazione e Calcolo Prof. A. Murli Esercizi di riepilogo - LABORATORIO Creare una directory nominata cognome nome dove cognome

Dettagli