Laboratorio 2. Calcolo simbolico, limiti e derivate. Metodo di Newton.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio 2. Calcolo simbolico, limiti e derivate. Metodo di Newton."

Transcript

1 Anno Accademico Corso di Analisi 1 per Ingegneria Elettronica Laboratorio 2 Calcolo simbolico, limiti e derivate. Metodo di Newton. 1 Introduzione al Toolbox simbolico Con le routines del Symbolic Math Toolboxes è possibile utilizzare Matlab con una sintassi molto simile alla simbologia dell analisi. É possibile definire variabili simboliche con il comando sym: >>x=sym( x ) o anche specificando il tipo di variabile: >>x=sym( x, real ) Si possono usare, con lo stesso effetto, i comandi >>syms x >>syms x real Ora possiamo definire funzioni con queste variabili simboliche: >>f=xˆ2-2*x+1 Digitando whos osserviamo che abbiamo creato due sym object. Per ottenere una visualizzazione più leggibile delle funzioni inserite si può utilizzare il comando pretty: >>pretty(f) x 2-2x+ 1 Il comando subs serve per la sostituzione simbolica, cioè per assegnare un valore ad una variabile simbolica. Supponiamo di voler valutare la funzione f definita precedentemente per x = 1: possiamo utilizzare il comando subs in due modi >>subs(f,1) >>subs(f, x,1) 1

2 2 Grafici di funzioni, limiti, derivate Definiamo la variabile simbolica x e la seguente funzione: con i seguenti comandi: f(x) = 2x2 x 2 1 >>x=sym( x ;) >>f=2*xˆ2/(xˆ2-1) È possibile disegnare il grafico di questa funzione senza doverla valutare in un numero discreto di punti, usando il comando ezplot >>ezplot(f) che disegna la funzione sull intervallo standard [ 2π, 2π]; altrimenti si può specificare l intervallo: >>ezplot(f,[-5,5]) Dopo avere definito la variabile simbolica e una funzione possiamo calcolare i limiti con il comando limit. Definiamo f(x) = tan(x), e calcoliamo il limite per x π/2: >>limit(f,x,pi/2) Con Matlab possiamo calcolare il limite sinistro e destro: >>limit(f,x,pi/2, left ) ans= inf >>limit(f,x,pi/2, right ) ans= -inf e anche il limite per x, digitando limit(f,x,inf). Inoltre con il comando diff possiamo calcolare le derivate di funzioni, ad esempio possiamo calcolare la derivata della tangente, definita nell esercizio precedente: >>fx=diff(f,x) fx= 1+tan(x)ˆ2 3 Il metodo di Newton Il metodo di Newton è un metodo iterativo per la ricerca degli zeri di una funzione che costruisce una successione di valori x (n) approssimando localmente la funzione con la sua retta tangente: a partire da un valore iniziale x (0) si costruisce la retta tangente in quel punto, e si calcola il punto x (1) in cui tale retta interseca l asse y = 0, quindi si costruisce la retta tangente in x (1) e si itera. L espressione della retta tangente in un punto x (n) a f è la seguente: 2

3 Figura 1: Alcune iterazioni del metodo di Newton y(x) = f(x (n) ) + f (x (n) )(x x (n) ) (1) Cerchiamo il valore di x per cui la retta tangente interseca l asse y = 0, quindi poniamo y = 0 e otteniamo la successiva approssimazione della soluzione, x (n+1) : x (n+1) = x (n) f(x(n) ) f (x (n) ) (2) purchè f (x (n) ) 0. La 2 è l espressione di un iterazione generica del metodo di Newton. È necessario stabilire un criterio d arresto che decida quando la soluzione è stata approssimata con la precisione desiderata. Esistono diverse scelte: criterio basato sul residuo confronto fra due iterazioni successive Il criterio basato sul residuo arresta il metodo quando il modulo del residuo f(x (n) ) è inferiore ad una tolleranza fissata: f(x (n) ) toll Si può anche arrestare il metodo quando la distanza fra x (n+1) ed x (n) è inferiore ad una tolleranza fissata: x (n+1) x(n) toll Approfondimento: validità del criterio d arresto Osservando la figura 2 si nota che entrambi i criteri di arresto possono fallire. Nella situazione a) in cui f (x e ) << 1 il test sul residuo non è adeguato, infatti f(x (n) ) può essere molto basso con x (n) lontano dalla soluzione. Nella situazione b) in cui f (x e ) >> 1 invece due iterazioni successive possono essere vicine con f(x (n) ) ancora molto diverso da 0. 3

4 Figura 2: Confronto fra i criteri d arresto Figura 3: Algoritmo Scriviamo una funzione che implementi il metodo di Newton sfruttando le funzioni del Toolbox simbolico di Matlab. Deve ricevere in ingresso f, x 0, la tolleranza per l arresto, e un numero massimo di iterazioni per cui arrestare il metodo anche se la soluzione non è stata trovata. Vogliamo che restituisca la soluzione ed il numero di iterazioni effettuate. 4

5 function [sol,nit]=newton(f,x0,toll,maxit); % -newton fx=diff(f); % calcolo la derivata nit=maxit; % nit: numero di iterazioni effettuate; lo cambio quando esco dal ciclo sol=x0; % inizializzo la soluzione k=0; %contatore while (k maxit) % itero fino a raggiungere maxit ff=subs(f,sol); %valuto il residuo if (abs(ff) toll) %se minore di toll nit=k; %salvo il numero di iterazioni break; %ed esco end ffx=subs(fx,sol); %valuto la derivata nel punto sol=sol-ff/ffx; %aggiorno la soluzione k=k+1; %aggiorno il contatore end disp( Sol Newton ) sol disp( Iterazioni Newton ) nit Utilizziamo la funzione scritta per calcolare lo zero di f = x cos(x). Disegnando il grafico, ad esempio con ezplot vediamo che la soluzione esatta si trova fra 0 e π; scegliamo il punto x 0 di conseguenza. >>syms x; >>f=x-cos(x); >>[sol,nit]=newton(f,0,10ˆ-8,200); Otteniamo la soluzione sol= con solo 4 iterazioni. Verifichiamo la soluzione sostituendola nella funzione e osservando che otteniamo (circa) zero: >>subs(f,sol). Se diminuiamo la tolleranza fino a otteniamo la soluzione con 5 iterazioni. Consideriamo ora un altra funzione: g(x) = e x 2x 2. Questa funzione ha tre zeri, uno negativo vicino a -0.5, e due positivi. Osserviamo che partendo da valori diversi di x 0 il metodo converge a soluzioni diverse: con x 0 = 0.3 troviamo con x 0 = 0.4 troviamo

6 con x 0 = 0.7 troviamo con x 0 = 2.2 troviamo , ma con x 0 = 2.1 troviamo di nuovo ! Questo comportamento dipende dal fatto che abbiamo cambi di segno della derivata prima e seconda nell intervallo che contiene le tre soluzioni. Esercizi 1 Introduzione al Toolbox simbolico Dichiarare le variabili simboliche necessarie e definire le seguenti funzioni: a) f(x) = x 2 1 b) g(x) = x 1 x + 2 c) s(t) = 1 + vt at2 Visualizzare le funzioni con il comando pretty. Valutarle nei seguenti punti: a) x = 2 b) x = 2 c) t = 2, a = 9.81, v = 1 (Suggerimento: usare la sintassi subs(f,[t a v],[ ])) Osservare che è possibile valutare le funzioni anche su un vettore di punti ad esempio con il comando >>ff=subs(f,[0:0.1:2]) 2 Grafici di funzioni, limiti, derivate 2.1 Definire la funzione f(x) = 2x 1 x + 2 Disegnarne il grafico, quindi calcolarne il limite destro e sinistro per x 2 ed il limite per x. Utilizzando la funzione retta tangente calcolare e disegnare la retta tangente nel punto x 0 = 0. 6

7 2.2 Definire il rapporto incrementale cos(x + h) cos(x) h dopo avere dichiarato le variabile simboliche x e h. Utilizzarlo per calcolare la derivata di cos(x) attraverso il comando limit. Verificare il risultato ottenuto utilizzando diff. 2.3 Differenziare la funzione f(y) = x 2 sin(y) rispetto a y. 3 Il metodo di Newton 3.1 Costruire un grafico del modulo del residuo corrispondente ad ogni iterazione per la ricerca dello zero della funzione x cos(x) a partire da x 0 = 0, con una tolleranza di Modificare la funzione newton utilizzando come criterio di arresto invece del test sul residuo la distanza fra due iterazioni successive. Rappresentare in un grafico l andamento di questa quantità per ogni iterazione per la funzione dell esercizio precedente. 3.3 Sia data la funzione f = e x 2x 2 ; calcolare i due zeri della sua derivata prima ed utilizzarli come valori iniziali x 0 nella ricerca degli zeri di f. Cosa succede? Perché? 7

Laboratorio 2. Calcolo simbolico, successioni, limiti e derivate

Laboratorio 2. Calcolo simbolico, successioni, limiti e derivate Anno Accademico 2007-2008 Corso di Analisi 1 per Ingegneria Informatica Laboratorio 2 Calcolo simbolico, successioni, limiti e derivate 1 Introduzione al Toolbox simbolico Con le routines del Symbolic

Dettagli

Laboratorio 3. Integrazione numerica

Laboratorio 3. Integrazione numerica Anno Accademico 2007-2008 Corso di Analisi 1 per Ingegneria Elettronica Laboratorio 3 Integrazione numerica Sia f una funzione continua sull intervallo [a, b] numerica con lo scopo di approssimare Introduciamo

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Prove d esame Esercizi con Matlab

Prove d esame Esercizi con Matlab Prove d esame Esercizi con Matlab Andrea Corli 16 settembre 2015 Sono qui raccolti alcuni esercizi relativi a Matlab assegnati nelle prove d esame (dal 2011 al 2014) del Corso di Analisi Matematica I (semestrale,

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 4

Laboratorio di Matematica Computazionale A.A Lab. 4 Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 4 Complementi di Grafica 2D: Sottofinestre In Matlab si possono disegnare più grafici nella stessa finestra, suddividendola in sottofinestre

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

1 Esercizi di Matlab. L operatore : permette di estrarre sottomatrici da una matrice assegnata. Vediamo alcuni esempi.

1 Esercizi di Matlab. L operatore : permette di estrarre sottomatrici da una matrice assegnata. Vediamo alcuni esempi. Esercizi di Matlab L operatore : permette di estrarre sottomatrici da una matrice assegnata. Vediamo alcuni esempi. Esempio Consideriamo la matrice A formata da n = righe e m = colonne M = 5 6 7 8. 9 0

Dettagli

Algoritmi e dintorni: La radice quadrata Prof. Ettore Limoli. Formule iterative

Algoritmi e dintorni: La radice quadrata Prof. Ettore Limoli. Formule iterative Algoritmi e dintorni: La radice quadrata Prof. Ettore Limoli Formule iterative L algoritmo che, comunemente, viene presentato a scuola per l estrazione della radice quadrata è alquanto laborioso e di scarsa

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Laboratorio 5-6 Metodi di Bisezione, Newton e Punto Fisso

Laboratorio 5-6 Metodi di Bisezione, Newton e Punto Fisso Laboratorio 5-6 Metodi di Bisezione, Newton e Punto Fisso 2009 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d autore. Non può essere sfruttato a fini commerciali o di

Dettagli

Fondamenti di Informatica, A.A Compito A

Fondamenti di Informatica, A.A Compito A Fondamenti di Informatica, A.A. 2013-2014 - Compito A 30/07/2014 Prova Pratica L integrale definito di una funzione continua su un intervallo chiuso e limitato può essere calcolato con la regola dei trapezi

Dettagli

LIMITI E DERIVATE DI UNA FUNZIONE

LIMITI E DERIVATE DI UNA FUNZIONE LIMITI E DERIVATE DI UNA FUNZIONE INTRODUZIONE In generale, abbiamo un idea chiara del significato di pendenza quando viene utilizzata in contesti concernenti l esperienza quotidiana, ad esempio quando

Dettagli

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Laboratorio di Calcolo Numerico A.A. 2007-2008 Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Esercizio 1. Risoluzione di sistemi non lineari Si consideri il seguente sistema non

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Criteri di Scelta Finanziaria

Criteri di Scelta Finanziaria 3 Criteri di Scelta Finanziaria 3.1 Introduzione Spesso occorre confrontare operazioni definite su scadenzari diversi. Nel seguito presentiamo due criteri, quello del valore attuale netto (VAN) e quello

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 2 - Introduzione a MATLAB

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 2 - Introduzione a MATLAB Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 2 - Introduzione a MATLAB Che cos è? Programmare con Matlab: Script-files È un file con estensione.m (ad esempio: myfile.m). Contiene

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

Il metodo di Gauss-Newton per le regressioni non-lineari

Il metodo di Gauss-Newton per le regressioni non-lineari Il metodo di Gauss-Newton per le regressioni non-lineari Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Università degli Studi di Perugia Versione on-line: http://www.unipg.it/ onofri/rtutorial/index.html

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Laboratorio 2 Grafici di funzione in Scilab Metodo di Bisezione

Laboratorio 2 Grafici di funzione in Scilab Metodo di Bisezione Laboratorio Grafici di funzione in Scilab Metodo di Bisezione Introduciamo i grafici di funzione in Scilab, attraverso un semplice esercizio. Esercizio Grafico di funzioni.. Definire le seguenti variabili

Dettagli

f(x) = x e x, prendere come intervallo iniziale [0, 1] e fissare come precisione ε = 10 8.

f(x) = x e x, prendere come intervallo iniziale [0, 1] e fissare come precisione ε = 10 8. Esercitazione 7 Argomento: Il metodo delle successive bisezioni Scopo: Implementare il metodo delle successive bisezioni per la soluzione di equazioni non lineari. function [alfa,iter]=bisez(f,a,b,epsilon)

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Algoritmi in C++ (seconda parte)

Algoritmi in C++ (seconda parte) Algoritmi in C++ (seconda parte) Introduzione Obiettivo: imparare a risolvere problemi analitici con semplici programmi in C++. Nella prima parte abbiamo imparato: generazione di sequenze di numeri casuali

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Calcolo del fattore di convergenza

Calcolo del fattore di convergenza Calcolo del fattore di convergenza Dato uno schema iterativo si ha: lim k x k+1 ξ x k ξ p = M p è l ordine di convergenza del metodo iterativo M è la costante asintotica dell errore o fattore di convergenza.

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Bisezione Metodo di Newton-Raphson

Dettagli

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x.

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x. I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Appunti ed esercizi su: La rappresentazione cartesiana di funzioni, equazioni, disequazioni

Appunti ed esercizi su: La rappresentazione cartesiana di funzioni, equazioni, disequazioni LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Appunti ed esercizi su: La rappresentazione cartesiana di funzioni, equazioni, disequazioni 15 aprile 2012 1 Per altri materiali didattici

Dettagli

Esercitazione 6: Metodi iterativi per sistemi lineari.

Esercitazione 6: Metodi iterativi per sistemi lineari. Esercitazione 6: Metodi iterativi per sistemi lineari. Richiami di Teoria Iterazione di Jacobi e Gauss Seidel. I metodi iterativi sono basati sul calcolo della soluzione x del sistema lineare Ax = b come

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Calcolo Numerico (A.A ) Esercitazione n. 9. Metodo del punto unito, Metodo di Newton per sistemi

Calcolo Numerico (A.A ) Esercitazione n. 9. Metodo del punto unito, Metodo di Newton per sistemi Calcolo Numerico (A.A. 2013-2014) Esercitazione n. 9 Metodo del punto unito, Metodo di Newton per sistemi 11-04-2014 Esercizio 1.25 L. Gori, M.L. Lo Cascio, F. Pitolli, Esercizi di Calcolo Numerico, II

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA Matlab: esempi ed esercizi Sommario e obiettivi Sommario Esempi di implementazioni Matlab di semplici algoritmi Analisi di codici Matlab Obiettivi

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

Introduzione al MATLAB c Parte 2 Funzioni

Introduzione al MATLAB c Parte 2 Funzioni Introduzione al MATLAB c Parte 2 Funzioni Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Funzioni matematiche Assegnazione di funzioni 2 Grafico di funzione in

Dettagli

Anno 2. Sistemi di equazioni di secondo grado

Anno 2. Sistemi di equazioni di secondo grado Anno 2 Sistemi di equazioni di secondo grado 1 Introduzione In questa lezione verrà data una definizione di sistema di equazioni di secondo grado, verrà illustrata la loro risoluzione e le applicazioni.

Dettagli

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Calcolo differenziale per funzioni in più variabili.

Calcolo differenziale per funzioni in più variabili. Calcolo differenziale per funzioni in più variabili. Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 14 dicembre 2014 Paola Mannucci e Alvise Sommariva Calcolo

Dettagli

V Esercitazione di Matematica Finanziaria

V Esercitazione di Matematica Finanziaria V Esercitazione di Matematica Finanziaria 25 Novembre 200 Esercizio. Date due operazioni finanziarie (con scadenzari in anni) x = { 40, 7.8, 7.8, 7.8, 7.8, 7.8, 47.8}/t = {0, 0.5,,.5, 2, 2.5, 3}; determinare:

Dettagli

FREEFEM++ Marcello Bellomi. 18 Aprile Università di Verona FREEFEM++

FREEFEM++ Marcello Bellomi. 18 Aprile Università di Verona FREEFEM++ 18 Aprile 2013 Indice 1) Introduzione 2) Esempio base 3) Sintassi 4) Esempio Part I Indroduzione Dettagli iniziali Risolve problemi in 2D e 3D, creato principalmente per risolvere problemi variazionali

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Laboratorio di Matematica Computazionale A.A Laboratorio nr. 6

Laboratorio di Matematica Computazionale A.A Laboratorio nr. 6 Laboratorio di Matematica Computazionale A.A. 2008-2009 - Laboratorio nr. 6 Operazioni su polinomi Matlab offre diverse funzioni per lavorare con i polinomi (per un elenco help polyfun). Matlab non ha

Dettagli

Cammini minimi fra tutte le coppie

Cammini minimi fra tutte le coppie Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)

Dettagli

Aritmetica in Floating Point

Aritmetica in Floating Point Aritmetica in Floating Point Esempio di non associatività Alcune proprietà delle operazioni in aritmetica esatta possono non valere in aritmetica finita in virgola mobile (floating point). Ad esempio:

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster

Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Richiami di analisi degli errori. Rappresentazione dei numeri in un calcolatore. Operazioni di macchina.

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Massimi e minimi relativi in R n

Massimi e minimi relativi in R n Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)

Dettagli

Risoluzione di problemi ingegneristici con Excel

Risoluzione di problemi ingegneristici con Excel Risoluzione di problemi ingegneristici con Excel Problemi Ingegneristici Calcolare per via numerica le radici di un equazione Trovare l equazione che lega un set di dati ottenuti empiricamente (fitting

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 5-6 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 5//5 ) Dato un triangolo, siano a, b le lunghezze di

Dettagli

RENDITE. Ricerca del tasso di una rendita

RENDITE. Ricerca del tasso di una rendita RENDITE Ricerca del tasso di una rendita Un problema che si presenta spesso nelle applicazioni è quello di calcolare il tasso di interesse associato a una rendita quando siano note le altre grandezze 1

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di TEOREMI DEL CALCOLO DIFFERENZIALE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Teorema di Estremi locali Richiamiamo la

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

Lezione 5 (9/10/2014)

Lezione 5 (9/10/2014) Lezione 5 (9/10/2014) Esercizi svolti a lezione Nota 1. La derivata di una funzione. Consideriamo una funzione f(x) : R R e definiamo il rapporto incrementale nel punto x 0 come r(h) = f(x 0 +h) f(x 0

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Introduzione In molte applicazioni intervengono equazioni che non siamo in grado di risolvere analiticamente, o la cui risoluzione risulta molto complessa e laboriosa. Un importante

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

2. Costruire un M function file di Matlab che calcola il valore del

2. Costruire un M function file di Matlab che calcola il valore del Esercizi. 1. Costruire un M function file di Matlab che calcola il valore del polinomio di Chebyshev di grado n in un vettore di punti, usando la formula di ricorrenza a tre termini. Costruire il grafico

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

Rappresentazione dell Informazione

Rappresentazione dell Informazione Rappresentazione dell Informazione Rappresentazione delle informazioni in codice binario Caratteri Naturali e Reali positivi Interi Razionali Rappresentazione del testo Una stringa di bit per ogni simbolo

Dettagli

Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 2004

Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 2004 1 Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 004 Formula di Taylor Generalizziamo la formula che abbiamo introdotto nella sezione 11 del capitolo 5, cercando d approssimare

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. TEN 2008. Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. Lemma 1. Sia n Z. Sia p > 2 un numero primo. (a) n è un quadrato modulo p se e solo se n p 1 2 1 mod p; (b) Sia n 0

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli

I Circuiti combinatori: LOGISIM

I Circuiti combinatori: LOGISIM 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY I Circuiti combinatori: LOGISIM Prof. G. Ciaschetti 1. Le porte logiche Un circuito combinatorio (o sistema combinatorio o rete combinatoria) è un circuito elettrico,

Dettagli

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013 Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo Universitá del Salento, 9 Aprile 2013 1 1 TEMA I Il candidato svolga una ed una sola delle dissertazioni proposte, illustrando sinteticamente

Dettagli

APPLICAZIONI DEL CONCETTO DI DERIVATA

APPLICAZIONI DEL CONCETTO DI DERIVATA ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA APPLICAZIONI DEL CONCETTO DI DERIVATA A. A. 2014-2015 L. Doretti 1 A. Significato geometrico di derivata 1. Dato il grafico di f, utilizzare il

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 2. Determinazione numerica degli zeri di una funzione Si consideri il seguente problema: Data f : [a, b] R, determinare i valori

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

3 Bacini di attrazione

3 Bacini di attrazione 3 Bacini di attrazione Talvolta è utile studiare la dinamica delle successioni generate da espressioni del tipo z k+1 = g(z k ) al variare del valore iniziale z 0. Questo capita ad esempio quando la successione

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli