Laboratorio 3. Integrazione numerica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio 3. Integrazione numerica"

Transcript

1 Anno Accademico Corso di Analisi 1 per Ingegneria Elettronica Laboratorio 3 Integrazione numerica Sia f una funzione continua sull intervallo [a, b] numerica con lo scopo di approssimare Introduciamo formule di quadratura I(f) = b a f(x) dx 1 Il metodo del punto medio Per approssimare l integrale di f sfruttiamo innanzitutto l additività dell integrale Suddividiamo l intervallo [a, b] in Nsottointervalli I k = [x k 1, x k ], k = 1, N di ampiezza b a N, con x 0 = a, x N = b; possiamo scrivere I(f) = I k f(x) dx In ogni intervallo I k possiamo approssimare f con un polinomio f, quindi con una funzione facile da integrare La scelta più semplice è usare il polinomio di grado zero che interpola f nel punto medio di ogni sottointervallo: f = f( x k ), x k = x k 1 + x k, k = 1, N 2 In questo modo otteniamo la formula del punto medio composito: Poniamo H = b a N : I C P M(f) = I C P M(f) = H (b a) f( x k ) N f( x k ) Se f è derivabile con continuità fino al secondo ordine vale la seguente relazione per l errore di integrazione: 1

2 Figura 1: Formula del punto medio composito dove ξ [a, b] Significa che I(f) I C P M(f) = b a 24 H2 f (ξ) I(f) I C P M(f) b a 24 H2 max f (ξ) (1) l errore diminuisce quadraticamente con il passo H, cioè il metodo ha accuratezza 2 Inoltre possiamo affermare che la formula del punto medio ha grado di esattezza 1, cioè integra esattamente polinomi di grado 1 (se la derivata seconda è nulla l errore è identicamente nullo) Scriviamo un programma Matlab che implementi il metodo del punto medio composito Deve ricevere in ingresso la funzione da integrare, gli estremi dell intervallo ed il numero di sottointervalli; inoltre può ricevere dall utente il valore esatto dell integrale per calcolare l errore Il comando nargin conta gli argomenti in input function [I]=p medio(f,a,b,n,i ex); H=(b-a)/N; I=0; % inizializzo a zero il valore dell integrale for i=1:n 2

3 xx=a+h*(i-1)+h/2; % p ff=subs(f,xx); % valuto f medio dell intervallo k-simo I=I+ff*H; % sommo il k-simo contributo disp( Il valore dell integrale è ) I if (nargin==5) err=abs(i ex-i) % il modulo dell errore disp( L errore è) err fxx=diff(diff(f)); % la derivata seconda maxerr=(b-a)/24*hˆ2*max(abs(subs(fxx,[a:(b-a)/100:b]))) % calcolo il massimo errore disp( Il max errore atteso è ) maxerr Utilizzando la function scritta calcoliamo l integrale di f = x sin(x) sull intervallo [0, π] Sappiamo che il risultato esatto è π >>syms x >>f=x*sin(x) >>[I]=p medio(f,0,pi,10,pi); Otteniamo I = 31545, con un errore di 00130, inferiore al massimo atteso L errore massimo atteso si ottiene dalla 1 Osserviamo che dimezzando il passo H l errore si riduce di un fattore 4: con N = 20 infatti otteniamo I = 31448, con un errore pari a Verifichiamo il grado di esattezza del metodo integrando una funzione lineare, r = 3x + 1, sull intervallo [0, 1] Osserviamo che anche con un solo intervallo (N = 1) otteniamo il risultato esatto cioè 25 >>r=3*x+1 >>[I]=p medio(r,0,1,1); 2 Il metodo dei trapezi La formula del trapezio composito si ottiene approssimando f in ogni sottointervallo con il polinomio di grado 1 che interpola f nei nodi x k 1 e x k : I C T (f) = H 2 (f(x k ) + f(x k 1 )) = H N 1 2 [f(a) + f(b)] + H f(x k ) In questo caso per l errore abbiamo la seguente uguaglianza: 3

4 Figura 2: Formula del trapezio composito composito Significa che I(f) I C T (f) = b a 12 H2 f (ξ) I(f) I C T (f) b a 12 H2 max f (ξ) (2) Anche il metodo dei trapezi ha accuratezza 2 e ordine di esattezza 1 Scriviamo un programma Matlab che implementi il metodo del punto medio composito Deve ricevere in ingresso la funzione da integrare, gli estremi dell intervallo ed il numero di sottointervalli; inoltre può ricevere dall utente il valore esatto dell integrale per calcolare l errore Il comando nargin conta gli argomenti in input function [I]=trapezi(f,a,b,N,I ex); H=(b-a)/N; I=0; % inizializzo a zero il valore dell integrale for i=1:n x1=a+h*(i-1) x2=a+h*i; f1=subs(f,x1); % valuto f in x1 f2=subs(f,x2); % valuto f in x2 4

5 I=I+H/2*(f1+f2); % sommo il k-simo contributo disp( Il valore dell integrale è ) I if (nargin==5) err=abs(i ex-i) % il modulo dell errore disp( L errore è) err fxx=diff(diff(f)); % la derivata seconda maxerr=(b-a)/24*hˆ2*max(abs(subs(fxx,[a:(b-a)/100:b]))) % calcolo il massimo errore disp( Il max errore atteso è ) maxerr Utilizzando la function scritta calcoliamo l integrale di f = x sin(x) sull intervallo [0, π] Sappiamo che il risultato esatto è π >>syms x >>f=x*sin(x) >>[I]=trapezi(f,0,pi,10,pi); Otteniamo I = 31157, con un errore di 00259, inferiore al massimo atteso L errore massimo atteso si ottiene dalla 2 ed doppio rispetto al metodo del punto medio Osserviamo che dimezzando il passo H l errore si riduce di un fattore 4: con N = 20 infatti otteniamo I = 31351, con un errore pari a Verifichiamo il grado di esattezza anche di questo metodo integrando r = 3x+1, sull intervallo [0, 1] Osserviamo che anche con un solo intervallo (N = 1) otteniamo il risultato esatto cioè 25 >>r=3*x+1 >>[I]=trapezi(r,0,1,1); 1 Esercizi Modificare la function p medio per calcolare l integrale evitando il ciclo for Suggerimento: calcolare il vettore dei punti medi, utilizzare il comando sum 2 Calcolare utilizzando il metodo del punto medio composito l integrale sull intervallo [0, π] delle due funzioni sin 2 (x) e sin 2 (10x) Se utilizziamo lo stesso numero di sottointervalli per quale delle due otteniamo l errore minore e perch, sapo che l integrale esatto è π/2 in entrambi i casi? 5

6 3 Vogliamo calcolare l integrale di f = x 2 sull intervallo [0, 1] Calcolare utilizzando le relazioni 1 e 2 il numero minimo di sottointervalli necessario per calcolare l integrale con un errore inferiore a 10 4 con i due metodi 4 Consideriamo la funzione f = x sin(x), da integrare su [0, π] Produrre per i due metodi (punto medio e trapezi) un grafico dell errore all aumentare del numero di sottointervalli (eventualmente in scala logaritmica - comando loglog) 5 Approfondimento Modificare il metodo dei trapezi sostituo f con il suo polinomio interpolatore di grado 1 nei nodi di Gauss che sono, nell intervallo k-simo: otteno la formula: γ k 1 = x k 1 + (1 1 3 ) H 2 γ k = x k 1 + ( ) H 2 I C Gauss = H 2 f(γ k 1 ) + f(γ k ) Verificare che il metodo ottenuto ha accuratezza 4 e ordine di esattezza pari a 3 in quanto vale: cioè I(f) I C Gauss = b a H4 f (4) (ξ) I(f) I C Gauss b a H4 max( f (4) (ξ) ) 6

Soluzione del laboratorio 13 Formule di quadratura

Soluzione del laboratorio 13 Formule di quadratura Soluzione del laboratorio 13 Formule di quadratura 2009 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d autore. Non può essere sfruttato a fini commerciali o di pubblicazione

Dettagli

Laboratorio 2. Calcolo simbolico, limiti e derivate. Metodo di Newton.

Laboratorio 2. Calcolo simbolico, limiti e derivate. Metodo di Newton. Anno Accademico 2007-2008 Corso di Analisi 1 per Ingegneria Elettronica Laboratorio 2 Calcolo simbolico, limiti e derivate. Metodo di Newton. 1 Introduzione al Toolbox simbolico Con le routines del Symbolic

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 5 - INTEGRAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Integrazione numerica: formule di Newton-Cotes semplici 2 3 Introduzione

Dettagli

Corso di Analisi Numerica - AN410. Parte 5: formule di quadratura. Roberto Ferretti

Corso di Analisi Numerica - AN410. Parte 5: formule di quadratura. Roberto Ferretti Corso di Analisi Numerica - AN410 Parte 5: formule di quadratura Roberto Ferretti UNIVERSITÀ DEGLI STUDI ROMA TRE Formule di quadratura interpolatorie: teoria generale Formule di Newton Cotes semplici

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti

Dettagli

Prove d esame Esercizi con Matlab

Prove d esame Esercizi con Matlab Prove d esame Esercizi con Matlab Andrea Corli 16 settembre 2015 Sono qui raccolti alcuni esercizi relativi a Matlab assegnati nelle prove d esame (dal 2011 al 2014) del Corso di Analisi Matematica I (semestrale,

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico 1. Dato il problema ai valori iniziali f (t) = f(t) + cos t f(0) = 1, (ii) determinarne la soluzione numerica per 0 t 2π utilizzando il metodo di 2. Calcolare analiticamente e numericamente la media della

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Introduzione Il calcolo di integrali si presenta assai di frequente nelle applicazioni della matematica, ad esempio come misura dell area sottesa da una curva, o alla lunghezza di

Dettagli

Corso di Calcolo Scientifico

Corso di Calcolo Scientifico I Modulo del corso integrato di Calcolo Dott.ssa Maria Carmela De Bonis a.a. 2012-13 Approssimazione di Funzioni In molti problemi matematici emerge l esigenza di dover approssimare una funzione f C k

Dettagli

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 4 - DERIVAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Calcolo numerico delle derivate 2 3 Introduzione Idea di base L idea di base

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Approssimazione di funzioni In molti problemi

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Interpolazione. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Interpolazione. Lucia Gastaldi. DICATAM - Sez. di Matematica, Interpolazione Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Interpolazione 2 Interpolazione polinomiale Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

2. Costruire un M function file di Matlab che calcola il valore del

2. Costruire un M function file di Matlab che calcola il valore del Esercizi. 1. Costruire un M function file di Matlab che calcola il valore del polinomio di Chebyshev di grado n in un vettore di punti, usando la formula di ricorrenza a tre termini. Costruire il grafico

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Calcolo Integrale Nello studio del calcolo differenziale si è visto come si può associare ad una funzione la sua derivata. Il calcolo integrale si occupa del problema inverso: data una funzione f è possibile

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

Laboratorio 10 Metodi Bisezione e Newton

Laboratorio 10 Metodi Bisezione e Newton Laboratorio 10 Metodi Bisezione e Newton 2009 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d autore. Non può essere sfruttato a fini commerciali o di pubblicazione editoriale.

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

Integrazione con metodo Monte Carlo

Integrazione con metodo Monte Carlo 28 Ottobre 2010 Outline 1 Integrazione numerica I metodi deterministici di integrazione numerica (come Simpson, trapezi, e in generale Newton-Cotes) lavorano tipicamente con campionature uniformi del dominio.

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del 9.8.2. Data l equazione x x = (a) Mostrare che essa ammette una e una sola soluzione

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame

Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame 1 Cognome: Nome: Matricola: Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame 1. Si consideri il sistema aritmetico f. p. a precisione

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Metodi iterativi per equazioni nonlineari.

Metodi iterativi per equazioni nonlineari. Metodi iterativi per equazioni nonlineari. Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 9 aprile 2016 Alvise Sommariva Introduzione 1/ 14 Introduzione Si supponga sia f

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Zeri di funzioni e teorema di Sturm

Zeri di funzioni e teorema di Sturm Zeri di funzioni e teorema di Sturm Enrico Bertolazzi Dipartimento di Ingegneria Meccanica e Strutturale Università degli Studi di Trento via Mesiano 77, I 38050 Trento, Italia EnricoBertolazzi@ingunitnit

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

SVILUPPI DI TAYLOR Esercizi risolti

SVILUPPI DI TAYLOR Esercizi risolti Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4 - Polinomi e Interpolazione polinomiale

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4 - Polinomi e Interpolazione polinomiale Complementi di Matematica e Calcolo Numerico A.A. 2013-2014 Laboratorio 4 - Polinomi e Interpolazione polinomiale Polinomi e vettori Matlab non prevede un oggetto particolare di tipo polinomio, ma rappresenta

Dettagli

Le Funzioni di Bessel

Le Funzioni di Bessel Le Funzioni di Bessel Serie di Laurent del prodotto Siano f, g : C due funzioni olomorfe in un anello := {z C r < z z 0 < R}, r < R. Allora f(z)g(z) è olomorfa in e quindi si potrà scrivere come una serie

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1 www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 7 - QUESTIONARIO QUESITO Definito il numero E come: E = xe x dx, dimostrare che risulta: x e x dx = e E esprimere x e x dx in termini di e ed E. Cerchiamo

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

Interpolazione di Funzioni

Interpolazione di Funzioni Interpolazione di Funzioni N. Del Buono 1 Introduzione Uno dei problemi che piu frequentemente si incontrano nelle applicazioni è la costruzione di una approssimazione di una funzione data f mediante funzioni

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

INTERPOLAZIONE POLINOMIALE

INTERPOLAZIONE POLINOMIALE Capitolo 5 INTERPOLAZIONE POLINOMIALE Un problema che frequentemente si presenta in matematica applicata è quello dell approssimazione di funzioni, che consiste nel determinare una funzione g, appartenente

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Annamaria Mazzia. Corso di Metodi Numerici per l Ingegneria dispense e altro materiale su

Annamaria Mazzia. Corso di Metodi Numerici per l Ingegneria dispense e altro materiale su Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione degli angoli conico di taglio ed elicoidale di taglio di una cremagliera Annamaria Mazzia Dipartimento di Metodi

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Tale metodo richiede la valutazione della funzione G(r,s) in un certo numero, n, di "punti di integrazione" nel dominio di definizione. Il numero di tali punti condiziona la precisione della approssimazione.

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

6 + 2Q = 30 4Q. da cui: Q = 4 Sostituendo Q nella funzione di domanda (o nella funzione di offerta), si ottiene: p = 14

6 + 2Q = 30 4Q. da cui: Q = 4 Sostituendo Q nella funzione di domanda (o nella funzione di offerta), si ottiene: p = 14 Esercizio 4.1 L esercizio propone funzioni di domanda e offerta (in forma inversa) e richiede di calcolare il surplus sociale. Occorre innanzitutto calcolare prezzo e quantità di equilibrio, date dall

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster

Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Richiami di analisi degli errori. Rappresentazione dei numeri in un calcolatore. Operazioni di macchina.

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli