Laboratorio 3. Integrazione numerica
|
|
|
- Ambrogio Nigro
- 9 anni fa
- Visualizzazioni
Transcript
1 Anno Accademico Corso di Analisi 1 per Ingegneria Elettronica Laboratorio 3 Integrazione numerica Sia f una funzione continua sull intervallo [a, b] numerica con lo scopo di approssimare Introduciamo formule di quadratura I(f) = b a f(x) dx 1 Il metodo del punto medio Per approssimare l integrale di f sfruttiamo innanzitutto l additività dell integrale Suddividiamo l intervallo [a, b] in Nsottointervalli I k = [x k 1, x k ], k = 1, N di ampiezza b a N, con x 0 = a, x N = b; possiamo scrivere I(f) = I k f(x) dx In ogni intervallo I k possiamo approssimare f con un polinomio f, quindi con una funzione facile da integrare La scelta più semplice è usare il polinomio di grado zero che interpola f nel punto medio di ogni sottointervallo: f = f( x k ), x k = x k 1 + x k, k = 1, N 2 In questo modo otteniamo la formula del punto medio composito: Poniamo H = b a N : I C P M(f) = I C P M(f) = H (b a) f( x k ) N f( x k ) Se f è derivabile con continuità fino al secondo ordine vale la seguente relazione per l errore di integrazione: 1
2 Figura 1: Formula del punto medio composito dove ξ [a, b] Significa che I(f) I C P M(f) = b a 24 H2 f (ξ) I(f) I C P M(f) b a 24 H2 max f (ξ) (1) l errore diminuisce quadraticamente con il passo H, cioè il metodo ha accuratezza 2 Inoltre possiamo affermare che la formula del punto medio ha grado di esattezza 1, cioè integra esattamente polinomi di grado 1 (se la derivata seconda è nulla l errore è identicamente nullo) Scriviamo un programma Matlab che implementi il metodo del punto medio composito Deve ricevere in ingresso la funzione da integrare, gli estremi dell intervallo ed il numero di sottointervalli; inoltre può ricevere dall utente il valore esatto dell integrale per calcolare l errore Il comando nargin conta gli argomenti in input function [I]=p medio(f,a,b,n,i ex); H=(b-a)/N; I=0; % inizializzo a zero il valore dell integrale for i=1:n 2
3 xx=a+h*(i-1)+h/2; % p ff=subs(f,xx); % valuto f medio dell intervallo k-simo I=I+ff*H; % sommo il k-simo contributo disp( Il valore dell integrale è ) I if (nargin==5) err=abs(i ex-i) % il modulo dell errore disp( L errore è) err fxx=diff(diff(f)); % la derivata seconda maxerr=(b-a)/24*hˆ2*max(abs(subs(fxx,[a:(b-a)/100:b]))) % calcolo il massimo errore disp( Il max errore atteso è ) maxerr Utilizzando la function scritta calcoliamo l integrale di f = x sin(x) sull intervallo [0, π] Sappiamo che il risultato esatto è π >>syms x >>f=x*sin(x) >>[I]=p medio(f,0,pi,10,pi); Otteniamo I = 31545, con un errore di 00130, inferiore al massimo atteso L errore massimo atteso si ottiene dalla 1 Osserviamo che dimezzando il passo H l errore si riduce di un fattore 4: con N = 20 infatti otteniamo I = 31448, con un errore pari a Verifichiamo il grado di esattezza del metodo integrando una funzione lineare, r = 3x + 1, sull intervallo [0, 1] Osserviamo che anche con un solo intervallo (N = 1) otteniamo il risultato esatto cioè 25 >>r=3*x+1 >>[I]=p medio(r,0,1,1); 2 Il metodo dei trapezi La formula del trapezio composito si ottiene approssimando f in ogni sottointervallo con il polinomio di grado 1 che interpola f nei nodi x k 1 e x k : I C T (f) = H 2 (f(x k ) + f(x k 1 )) = H N 1 2 [f(a) + f(b)] + H f(x k ) In questo caso per l errore abbiamo la seguente uguaglianza: 3
4 Figura 2: Formula del trapezio composito composito Significa che I(f) I C T (f) = b a 12 H2 f (ξ) I(f) I C T (f) b a 12 H2 max f (ξ) (2) Anche il metodo dei trapezi ha accuratezza 2 e ordine di esattezza 1 Scriviamo un programma Matlab che implementi il metodo del punto medio composito Deve ricevere in ingresso la funzione da integrare, gli estremi dell intervallo ed il numero di sottointervalli; inoltre può ricevere dall utente il valore esatto dell integrale per calcolare l errore Il comando nargin conta gli argomenti in input function [I]=trapezi(f,a,b,N,I ex); H=(b-a)/N; I=0; % inizializzo a zero il valore dell integrale for i=1:n x1=a+h*(i-1) x2=a+h*i; f1=subs(f,x1); % valuto f in x1 f2=subs(f,x2); % valuto f in x2 4
5 I=I+H/2*(f1+f2); % sommo il k-simo contributo disp( Il valore dell integrale è ) I if (nargin==5) err=abs(i ex-i) % il modulo dell errore disp( L errore è) err fxx=diff(diff(f)); % la derivata seconda maxerr=(b-a)/24*hˆ2*max(abs(subs(fxx,[a:(b-a)/100:b]))) % calcolo il massimo errore disp( Il max errore atteso è ) maxerr Utilizzando la function scritta calcoliamo l integrale di f = x sin(x) sull intervallo [0, π] Sappiamo che il risultato esatto è π >>syms x >>f=x*sin(x) >>[I]=trapezi(f,0,pi,10,pi); Otteniamo I = 31157, con un errore di 00259, inferiore al massimo atteso L errore massimo atteso si ottiene dalla 2 ed doppio rispetto al metodo del punto medio Osserviamo che dimezzando il passo H l errore si riduce di un fattore 4: con N = 20 infatti otteniamo I = 31351, con un errore pari a Verifichiamo il grado di esattezza anche di questo metodo integrando r = 3x+1, sull intervallo [0, 1] Osserviamo che anche con un solo intervallo (N = 1) otteniamo il risultato esatto cioè 25 >>r=3*x+1 >>[I]=trapezi(r,0,1,1); 1 Esercizi Modificare la function p medio per calcolare l integrale evitando il ciclo for Suggerimento: calcolare il vettore dei punti medi, utilizzare il comando sum 2 Calcolare utilizzando il metodo del punto medio composito l integrale sull intervallo [0, π] delle due funzioni sin 2 (x) e sin 2 (10x) Se utilizziamo lo stesso numero di sottointervalli per quale delle due otteniamo l errore minore e perch, sapo che l integrale esatto è π/2 in entrambi i casi? 5
6 3 Vogliamo calcolare l integrale di f = x 2 sull intervallo [0, 1] Calcolare utilizzando le relazioni 1 e 2 il numero minimo di sottointervalli necessario per calcolare l integrale con un errore inferiore a 10 4 con i due metodi 4 Consideriamo la funzione f = x sin(x), da integrare su [0, π] Produrre per i due metodi (punto medio e trapezi) un grafico dell errore all aumentare del numero di sottointervalli (eventualmente in scala logaritmica - comando loglog) 5 Approfondimento Modificare il metodo dei trapezi sostituo f con il suo polinomio interpolatore di grado 1 nei nodi di Gauss che sono, nell intervallo k-simo: otteno la formula: γ k 1 = x k 1 + (1 1 3 ) H 2 γ k = x k 1 + ( ) H 2 I C Gauss = H 2 f(γ k 1 ) + f(γ k ) Verificare che il metodo ottenuto ha accuratezza 4 e ordine di esattezza pari a 3 in quanto vale: cioè I(f) I C Gauss = b a H4 f (4) (ξ) I(f) I C Gauss b a H4 max( f (4) (ξ) ) 6
Soluzione del laboratorio 13 Formule di quadratura
Soluzione del laboratorio 13 Formule di quadratura 2009 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d autore. Non può essere sfruttato a fini commerciali o di pubblicazione
Laboratorio 2. Calcolo simbolico, limiti e derivate. Metodo di Newton.
Anno Accademico 2007-2008 Corso di Analisi 1 per Ingegneria Elettronica Laboratorio 2 Calcolo simbolico, limiti e derivate. Metodo di Newton. 1 Introduzione al Toolbox simbolico Con le routines del Symbolic
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di 5 - INTEGRAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Integrazione numerica: formule di Newton-Cotes semplici 2 3 Introduzione
Corso di Analisi Numerica - AN410. Parte 5: formule di quadratura. Roberto Ferretti
Corso di Analisi Numerica - AN410 Parte 5: formule di quadratura Roberto Ferretti UNIVERSITÀ DEGLI STUDI ROMA TRE Formule di quadratura interpolatorie: teoria generale Formule di Newton Cotes semplici
Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie
Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I
Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni
Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)
ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB
Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti
Prove d esame Esercizi con Matlab
Prove d esame Esercizi con Matlab Andrea Corli 16 settembre 2015 Sono qui raccolti alcuni esercizi relativi a Matlab assegnati nelle prove d esame (dal 2011 al 2014) del Corso di Analisi Matematica I (semestrale,
Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)
Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo
Corso di Analisi Matematica. Polinomi e serie di Taylor
a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli
Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico
1. Dato il problema ai valori iniziali f (t) = f(t) + cos t f(0) = 1, (ii) determinarne la soluzione numerica per 0 t 2π utilizzando il metodo di 2. Calcolare analiticamente e numericamente la media della
Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica
DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,
Integrazione numerica
Integrazione numerica Introduzione Il calcolo di integrali si presenta assai di frequente nelle applicazioni della matematica, ad esempio come misura dell area sottesa da una curva, o alla lunghezza di
Corso di Calcolo Scientifico
I Modulo del corso integrato di Calcolo Dott.ssa Maria Carmela De Bonis a.a. 2012-13 Approssimazione di Funzioni In molti problemi matematici emerge l esigenza di dover approssimare una funzione f C k
Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico
Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere
Esercizio 1. Esercizio 2
Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di 4 - DERIVAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Calcolo numerico delle derivate 2 3 Introduzione Idea di base L idea di base
Corso di Calcolo Numerico
Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Approssimazione di funzioni In molti problemi
Le derivate parziali
Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire
Interpolazione. Lucia Gastaldi. DICATAM - Sez. di Matematica,
Interpolazione Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Interpolazione 2 Interpolazione polinomiale Polinomi Valutazione di un polinomio Algoritmo di Horner
2. Costruire un M function file di Matlab che calcola il valore del
Esercizi. 1. Costruire un M function file di Matlab che calcola il valore del polinomio di Chebyshev di grado n in un vettore di punti, usando la formula di ricorrenza a tre termini. Costruire il grafico
Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010
Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove
Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini
Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,
Raggiungibilità, Controllabilità, Osservabilità e Determinabilità
Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione
Calcolo integrale. Regole di integrazione
Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su
Calcolo integrale: esercizi svolti
Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione
Calcolo Integrale. F (x) = f(x)?
3 Calcolo Integrale Nello studio del calcolo differenziale si è visto come si può associare ad una funzione la sua derivata. Il calcolo integrale si occupa del problema inverso: data una funzione f è possibile
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
Campi conservativi e forme esatte - Esercizi svolti
Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme
Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a
Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a
Laboratorio 10 Metodi Bisezione e Newton
Laboratorio 10 Metodi Bisezione e Newton 2009 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d autore. Non può essere sfruttato a fini commerciali o di pubblicazione editoriale.
Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1
Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =
Integrazione con metodo Monte Carlo
28 Ottobre 2010 Outline 1 Integrazione numerica I metodi deterministici di integrazione numerica (come Simpson, trapezi, e in generale Newton-Cotes) lavorano tipicamente con campionature uniformi del dominio.
Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti
Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)
a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;
ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti
Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del
Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del 9.8.2. Data l equazione x x = (a) Mostrare che essa ammette una e una sola soluzione
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame
1 Cognome: Nome: Matricola: Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame 1. Si consideri il sistema aritmetico f. p. a precisione
1 Successioni di funzioni
Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione
Calcolo di integrali definiti utilizzando integrali dipendenti da parametri
Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da
Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti
Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
Metodi iterativi per equazioni nonlineari.
Metodi iterativi per equazioni nonlineari. Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 9 aprile 2016 Alvise Sommariva Introduzione 1/ 14 Introduzione Si supponga sia f
0.1 Condizione sufficiente di diagonalizzabilità
0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali
Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia
Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto
Zeri di funzioni e teorema di Sturm
Zeri di funzioni e teorema di Sturm Enrico Bertolazzi Dipartimento di Ingegneria Meccanica e Strutturale Università degli Studi di Trento via Mesiano 77, I 38050 Trento, Italia EnricoBertolazzi@ingunitnit
Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni
Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx
SVILUPPI DI TAYLOR Esercizi risolti
Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1
Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4 - Polinomi e Interpolazione polinomiale
Complementi di Matematica e Calcolo Numerico A.A. 2013-2014 Laboratorio 4 - Polinomi e Interpolazione polinomiale Polinomi e vettori Matlab non prevede un oggetto particolare di tipo polinomio, ma rappresenta
Le Funzioni di Bessel
Le Funzioni di Bessel Serie di Laurent del prodotto Siano f, g : C due funzioni olomorfe in un anello := {z C r < z z 0 < R}, r < R. Allora f(z)g(z) è olomorfa in e quindi si potrà scrivere come una serie
Serie di Fourier - Esercizi svolti
Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di
COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1
www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 7 - QUESTIONARIO QUESITO Definito il numero E come: E = xe x dx, dimostrare che risulta: x e x dx = e E esprimere x e x dx in termini di e ed E. Cerchiamo
Soluzioni dei problemi della maturità scientifica A.S. 2007/2008
Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto
Interpolazione di Funzioni
Interpolazione di Funzioni N. Del Buono 1 Introduzione Uno dei problemi che piu frequentemente si incontrano nelle applicazioni è la costruzione di una approssimazione di una funzione data f mediante funzioni
y 3y + 2y = 1 + x x 2.
Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere
Calcolo Numerico con elementi di programmazione
Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni
Forme indeterminate e limiti notevoli
Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino
Teorema delle Funzioni Implicite
Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)
ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE
ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,
Argomento 6 Derivate
Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =
INTERPOLAZIONE POLINOMIALE
Capitolo 5 INTERPOLAZIONE POLINOMIALE Un problema che frequentemente si presenta in matematica applicata è quello dell approssimazione di funzioni, che consiste nel determinare una funzione g, appartenente
Integrazione numerica
Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura
Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014
Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice
Corso di Matematica per la Chimica
Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x
Annamaria Mazzia. Corso di Metodi Numerici per l Ingegneria dispense e altro materiale su
Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione degli angoli conico di taglio ed elicoidale di taglio di una cremagliera Annamaria Mazzia Dipartimento di Metodi
METODO DEGLI ELEMENTI FINITI
Tale metodo richiede la valutazione della funzione G(r,s) in un certo numero, n, di "punti di integrazione" nel dominio di definizione. Il numero di tali punti condiziona la precisione della approssimazione.
ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI
ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c
6 + 2Q = 30 4Q. da cui: Q = 4 Sostituendo Q nella funzione di domanda (o nella funzione di offerta), si ottiene: p = 14
Esercizio 4.1 L esercizio propone funzioni di domanda e offerta (in forma inversa) e richiede di calcolare il surplus sociale. Occorre innanzitutto calcolare prezzo e quantità di equilibrio, date dall
Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011
Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono
COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005
Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per
Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster
Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Richiami di analisi degli errori. Rappresentazione dei numeri in un calcolatore. Operazioni di macchina.
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
