Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo
|
|
|
- Vittore Bellucci
- 10 anni fa
- Visualizzazioni
Transcript
1 Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze dissipative, la massa m si muoverà avanti ed indietro lungo x compiendo un moto oscillatorio periodico. Dalla seconda legge di Newton abbiamo kx = ma Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo d x k + x = 0 dt m L equazione ottenuta è l equazione rappresentativa del moto armonico semplice (MAS) ed è caratterizzata da avere coefficiente unitario per la derivata seconda, essere omogenea ed avere il segno + fra i due termini. A.A. 004/05 Fisica Generale I 1
2 La soluzione di questa equazione risulta essere x ( t) = Acos( ω t +φ ) In cui A e f sono due costanti che dipendono dalle condizioni iniziali del moto (la loro origine sta nel fatto che per risolvere la derivata seconda dobbiamo integrare due volte) e rappresentano rispettivamente l ampiezza massima del moto oscillatorio (A) e la fase iniziale (f), mentre w è la pulsazione ed è legata alle caratteristiche del moto dalla relazione k ω = m Ricordando che la funzione trigonometrica coseno ha periodo π, si ottiene che il moto si ripete dopo un tempo T, detto periodo, che vale π m T = = π ω k Analizziamo ora meglio il significato di quanto appena ricavato A.A. 004/05 Fisica Generale I
3 La figura mostra due moti oscillatori semplici con uguale fase e uguale periodo, la differenza sta nell ampiezza dei moti che è x m per la curva rossa e x m per la curva azzurra. La figura mostra due moti oscillatori semplici con uguale fase e uguale ampiezza, la differenza sta nel periodo dei moti che è T per la curva rossa e T per la curva azzurra (in particolare è T = T ). A.A. 004/05 Fisica Generale I 3
4 La figura mostra due moti oscillatori semplici con uguale ampiezza e uguale periodo, la differenza sta nella fase dei moti che è f = -p/4 per la curva rossa e f = 0 per la curva azzurra. Cerchiamo ora di vedere se la x(t) proposta come soluzione effettivamente soddisfa l equazione del moto trovata. Abbiamo che x ( t ) = A cos ( ω t + φ ) dx = v ( t ) = A ω sin dt d x = a ( t ) = A ω cos dt ( ω t + φ ) ( ω t + φ ) = ω x ( t) Vediamo così che effettivamente la x(t) proposta soddisfa l equazione. Ci resta ora da veder come determinare le costanti A e f presenti in x(t). A.A. 004/05 Fisica Generale I 4
5 Abbiamo già detto che queste due costanti dipendono dalle condizioni iniziali del moto, allora supponiamoche il moto del sistema (molla + massa m) abbia inizio all istante t = 0 con v(0) = 0 e x(0) = x m e introduciamo queste informazioni nelle equazioni appena trovate. x( 0) = xm = Acosφ ( ) xm = A v 0 = 0 = Aω sin φ φ = 0 Vediamo quindi che, con le condizioni iniziali del moto appena date, la legge oraria diviene x( t) = xm cosωt Se invece che da una soluzione con il coseno fossimo partiti da una con la funzione seno, avremmo trovato la medesima ampiezza per il moto, ma una fase iniziale di p/, pari allo sfasamento tra le due funzioni trigonometriche. Analizziamo ora il processo dal punto di vista energetico. Ricordiamo che, non essendoci forze dissipative in gioco, il sistema deve risultare conservativo per quanto riguarda l energia meccanica. A.A. 004/05 Fisica Generale I 5
6 Abbiamo E E E = Ricordando ora che Otteniamo m K p 1 = 1 = mv 1 = kx A E K + E 1 = ma ω 1 = ka cos 1 p = ma ω ωt ( mω sin ωt + k cos ωt) sin sin ωt m ω = k Em = 1 ka ωt + 1 ka cos ωt = L energia ottenuta è una costante che dipende solo dalla molla e dall ampiezza iniziale del moto; essa rappresenta l energia dell oscillatore armonico. A.A. 004/05 Fisica Generale I 6
7 In pratica in funzione della deformazione della molla abbiamo che sia E K che E p hanno un andamento parabolico tale che la loro somma sia sempre costante ed uguale a E m. In questo modo il moto è limitato agli x compresi tra -x m ed x m. Infatti superare questi due punti implica una E K negativa (impossibile). Notiamo che E p = 0 per x = 0 (molla a riposo) mentre E p = E p MAX per x = ± x m ; E K = 0 per x = ± x m e E K = E K MAX per x = 0. Dal punto di vista temporale invece abbiamo la situazione seguente A.A. 004/05 Fisica Generale I 7
8 Esaminiamo ora altri casi di moto armonico semplice (MAS). Iniziamo con il caso del pendolo semplice. Consideriamo il sistema rappresentato in figura e costituito da un corpo, di massa m e dimensioni trascurabili, sospeso ad una trave tramite una fune ideale di lunghezza L. Spostiamo il pendolo dalla verticale, mantenendolo nel piano della pagina, e lasciamolo libero. Il pendolo inizierà ad oscillare attorno alla verticale ed il suo moto, in assenza di attriti, risulta essere periodico. Analizziamo il moto. Sulla massa m agiscono due forze: la forza di gravità F g e la tensione della fune T. Scomponiamo il moto in moto tangenziale ed in moto normale. Analizziamo prima il moto tangenziale cui è dovuta l oscillazione. A.A. 004/05 Fisica Generale I 8
9 Scriviamo la seconda legge di Newton ma T = mg sin θ d θ at = Lα = L dt d θ g + sin θ = 0 dt L Se ora limitiamo il moto alle piccole oscillazioni, cioé consideriamo q 15 o, possiamo approssimare sinθ con θ, quindi d θ g + θ = 0 dt L Otteniamo così che, per piccole oscillazioni, il moto del pendolo semplice è un MAS. La legge oraria del moto del pendolo è ( t ) = θ cos ( ω t φ ) θ 0 + con q 0 e f costanti dipendenti dalle condizioni iniziali del moto. Il periodo del moto risulta indipendente dalla massa del pendolo quindi tutti i pendoli con fune lunga L hanno lo stesso periodo (isocronismo) T = π A.A. 004/05 Fisica Generale I 9 g L
10 Esaminiamo ora il problema dal punto di vista energetico. y 0 y O B C q q 0 L C B Il sistema è conservativo in quanto le forze agenti o sono conservative (forza di gravità) o non compiono lavoro (T è sempre allo spostamento) L mgy y g 0 = mgy 0 mgy = E 1 0 mgy = mv y = B' C' = OC' OB' = L K ( cosθ cosθ ) 0 Infine per la velocità del pendolo si ha v = gl( cosθ cosθ ) In particolare se q 0 = p/, v = gl. Va notato che l espressione trovata per la velocità del pendolo è sempre valida, non essendo ricorsi ad alcuna approssimazione per θ. A.A. 004/05 Fisica Generale I 10 0
11 Vediamo ora cosa avviene in direzione normale. Notiamo innanzitutto che la massa m descrive un arco di circonferenze e pertanto dovrà essere sottoposta ad una forza centripeta. Dalla seconda legge di Newton si ha ma N = T mg cosθ v m = T mg cosθ L v T = m g cosθ + L Quindi la tensione della fune non è costante, ma varia in funzione dell angolo θ. Ricordando ora il risultato ottenuto in precedenza per la velocità del pendolo, abbiamo T = mg( 3cosθ cosθ ) La relazione ottenuta è stata ricavata senza ricorrere all approssimazione di piccole oscillazioni e quindi è sempre valida. 0 A.A. 004/05 Fisica Generale I 11
12 Esempi ed esercizi Un punto materiale di massa m è appeso ad una molla di costante elastica k. Detta x = 0 la posizione dell estremo della molla quando il punto materiale è staccato, la posizione di equilibrio statico vale x S. Si tira il punto materiale fino alla posizione x = x S e lo si abbandona al tempo t = 0 con v 0 = 0. Determinare, per il punto materiale, x(t), v(t), a(t) e il centro di oscillazione. mg m -kx x 0 x S x S Determiniamo innanzitutto la posizione di equilibrio del sistema (le forze dissipative sono trascurabili) mg kx = 0 xs = mg k Quando il sistema è in moto, ad un istante generico è d x m = mg kx dt d x k + x = g dt m A.A. 004/05 Fisica Generale I 1
13 L equazione così ottenuta non è omogenea, tuttavia essa rappresenta un moto armonico semplice di pulsazione w = (k/m). La soluzione di questa equazione sarà la somma della soluzione dell equazione omogenea ad essa associata e di una soluzione particolare x P, costante, data da g/w. g mg x = ω k P = = x S Quindi x P equivale ad x S x ( t) = Acos( ωt + φ) + xp Dalle condizioni iniziali otteniamo per A e f Infine mg x(0) = = Acosφ + k v(0) = 0 = ωa sin φ mg x ( t ) = (1 + cos ω t ) = k mg ω v( t ) = sin ω t k a ( t ) = g cos ω t = ω mg k x( t ) x ( x ( t ) x ) mg k A = φ = 0 S S = x S cos ω t A.A. 004/05 Fisica Generale I 13
14 Il centro di oscillazione è dato dalla posizione di equilibrio statico x S, esso si può determinare ponendo a(t) = 0, oppure cercando il valore massimo della velocità. a( t) = 0 = ω ( x( t) x ) x t centr. oscill. v( t) = v centr. oscill. x = MAX x π = mg k ( tc. o.) = = xs S sin ωt = 1 Infine si può notare che w non dipende dalle condizioni iniziali del moto, come è giusto che sia. m k S A.A. 004/05 Fisica Generale I 14
15 Il pendolo fisico o composto Il pendolo semplice appena trattato è un caso limite, nella realtà si ha a che fare con pendolo in cui la parte massiva è di dimensioni non trascurabili, si parla allora di pendolo fisico o pendolo composto. In questo caso, avendo a che fare con un corpo rigido, dovremo ricorrere alla seconda equazione cardinale. τ = ext Iα Come punto fisso per il calcolo dei momenti è naturale scegliere il punto di sospensione O. L unica forza con un momento diverso da 0 rispetto ad O è la forza di gravità, che risulta essere una forza di richiamo in quanto tende a riportare il corpo rigido alla posizione di equilibrio stabile lungo la verticale. A.A. 004/05 Fisica Generale I 15
16 τ = mghsinθ τ = Iα d θ I dt = mghsinθ Infine, ricorrendo all approssimazione delle piccole oscillazioni (sinθ θ), troviamo d θ mgh + θ = 0 dt I Quindi, nelle ipotesi fatte, il pendolo composto è un oscillatore armonico. Se ora ricordiamo che ogni momento d inerzia può essere visto come il prodotto della massa del corpo rigido per un fattore che dipende solo dalla geometria del corpo (raggio giratore K) elevato al quadrato (I = mk ), otteniamo d θ gh + θ = 0 dt K A.A. 004/05 Fisica Generale I 16
17 Quindi la pulsazione ed il periodo del pendolo composto risultano essere gh ω = e T = π K K gh Il pendolo fisico equivale ad un pendolo semplice avente lunghezza L (lunghezza ridotta). K L'= h Il pendolo di torsione O C La figura qui a lato mostra un pendolo di torsione che ruota tra q m e q m in un piano perpendicolare al filo di sospensione. Il filo esercita un momento sul disco proporzionale al suo coefficiente di torsione c; sia inoltre I il momento d inerzia del disco rispetto all asse OC A.A. 004/05 Fisica Generale I 17
18 d θ I dt d θ + dt = χθ χ θ I Il moto risultante è un moto armonico semplice (va notato che non si è fatta alcuna approssimazione nel ricavare le equazioni del moto) con pulsazione e periodo dati da = 0 ω = χ I et = π I χ Noto quindi il coefficiente di torsione c della fune, è possibile, misurando il periodo, ricavare il momento d inerzia del disco (o del corpo rigido appeso alla fune). A.A. 004/05 Fisica Generale I 18
GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω
GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,
Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale
Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,
Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia
Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione
F 2 F 1. r R F A. fig.1. fig.2
N.1 Un cilindro di raggio R = 10 cm e massa M = 5 kg è posto su un piano orizzontale scabro (fig.1). In corrispondenza del centro del cilindro è scavata una sottilissima fenditura in modo tale da ridurre
Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo
Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione
Oscillazioni: il pendolo semplice
Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per
Esercitazione 5 Dinamica del punto materiale
Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100
Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia
Seminario didattico Ingegneria Elettronica Lezione 5: Dinamica del punto materiale Energia 1 Esercizio n 1 Un blocco di massa m = 2 kg e dimensioni trascurabili, cade da un altezza h = 0.4 m rispetto all
Tonzig Fondamenti di Meccanica classica
224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto
1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];
1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di
Forze come grandezze vettoriali
Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due
ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica
1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio
. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d
Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche
2 R = mgr + 1 2 mv2 0 = E f
Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore
9. Urti e conservazione della quantità di moto.
9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due
bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo
Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.
Forze elastiche e Molla elicoidale versione 1.02 preliminare
Forze elastiche e Molla elicoidale versione 1.02 preliminare MDV April 18, 2015 1 Elasticità L elasticità è la proprietà dei corpi soldi di tornare nella loro forma originale dopo avere subito una deformazione
Modulo di Meccanica e Termodinamica
Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e
Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.
Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.
Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013
Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola
- Onde corpuscolari (di materia) che descrivano il comportamento ondulatorio delle particelle.
Richiami di onde Durante il corso di fisica avete visto che le onde possono dividersi in - Onde meccaniche (come quelle del mare, le onde sismiche, le onde sonore) caratterizzate dalla necessità di un
Note a cura di M. Martellini e M. Zeni
Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 6 Energia e Lavoro Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte
LA FORZA. Il movimento: dal come al perché
LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1
Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie
Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una
Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali
Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo
Spostamento Ampiezza Ciclo Periodo Frequenza
Vibrazioni e onde I corpi elastici sono soggetti a vibrazioni e oscillazioni Il diapason vibra e produce onde sonore Le oscillazioni della corrente elettrica possono produrre onde elettromagnetiche Le
Dinamica: Forze e Moto, Leggi di Newton
Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza
Transitori del primo ordine
Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli
Esercitazione VIII - Lavoro ed energia II
Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito
EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6
EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)
Usando il pendolo reversibile di Kater
Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità
FAM. 1. Sistema composto da quattro PM come nella tabella seguente
Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente
DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi
DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato
FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.
01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)
Matematica e Statistica
Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie
F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.
Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,
a t Esercizio (tratto dal problema 5.10 del Mazzoldi)
1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di
Cap 3.1- Prima legge della DINAMICA o di Newton
Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria
TRAVE SU SUOLO ELASTICO
Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine
FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI
FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI Ing. e-mail: [email protected] http://www.dii.unimore.it/~lbiagiotti
Seconda Legge DINAMICA: F = ma
Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si
pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla:
Oscillatore semplice Vibrazioni armoniche libere o naturali k m 0 x Se il corpo di massa m è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiamo della
Appunti sul galleggiamento
Appunti sul galleggiamento Prof.sa Enrica Giordano Corso di Didattica della fisica 1B a.a. 2006/7 Ad uso esclusivo degli studenti frequentanti, non diffondere senza l autorizzazione della professoressa
Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)
Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre
PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA
Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,
1. Distribuzioni campionarie
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie
IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti
IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti ATTENZIONE Quest opera è stata scritta con l intenzione di essere un comodo strumento di ripasso, essa non dà informazioni
Modelli matematici e realtà:
Piano Lauree Scientifiche Matematica e Statistica 2010-11 Modelli matematici e realtà: sulle equazioni differenziali - prima parte R. Vermiglio 1 1 Dipartimento di Matematica e Informatica - Università
Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano
Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S
Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini
Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Gli scriventi, in qualità di studiosi del generatore omopolare hanno deciso di costruire questo motore per cercare di capire le
Massimi e minimi vincolati
Massimi e minimi vincolati In problemi di massimo e minimo vincolato viene richiesto di ricercare massimi e minimi di una funzione non definita su tutto R n, ma su un suo sottoinsieme proprio. Esempio:
Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura.
ONDE Quando suoniamo un campanello oppure accendiamo la radio, il suono è sentito in punti distanti. Il suono si trasmette attraverso l aria. Se siamo sulla spiaggia e una barca veloce passa ad una distanza
Risultati questionario Forze
Risultati questionario Forze Media: 7.2 ± 3.3 Coeff. Alpha: 0.82 Frequenza risposte corrette Difficoltà domande 18 16 14 12 10 8 6 4 2 0 25% 42% 75% 92% 100% % corrette 100% 90% 80% 70% 60% 50% 40% 30%
CONI, CILINDRI, SUPERFICI DI ROTAZIONE
CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).
GIRO DELLA MORTE PER UN CORPO CHE ROTOLA
0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte
Lavoro di una forza costante
Lavoro ed energia Per spostare un oggetto o per sollevarlo dobbiamo fare un lavoro Il lavoro richiede energia sotto varie forme (elettrica, meccanica, ecc.) Se compio lavoro perdo energia Queste due quantità
DINAMICA. 1. La macchina di Atwood è composta da due masse m
DINAMICA. La macchina di Atwood è composta da due masse m e m sospese verticalmente su di una puleggia liscia e di massa trascurabile. i calcolino: a. l accelerazione del sistema; b. la tensione della
Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:
Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato
Esempi di funzione. Scheda Tre
Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.
EQUILIBRIO DI MERCATO
EUILIBRIO I MERCATO La curva di offerta, come si vedrà meglio, è la quantità di un bene che un agente è disposto ad offrire in corrispondenza di ciascun prezzo di mercato. e ci sono più agenti economici,
Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:
1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al
GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA
8. LA CONSERVAZIONE DELL ENERGIA MECCANICA IL LAVORO E L ENERGIA 4 GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA Il «giro della morte» è una delle parti più eccitanti di una corsa sulle montagne russe. Per
I appello - 24 Marzo 2006
Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,
Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1.
L accelerazione iniziale di un ascensore in salita è 5.3 m/s 2. La forza di contatto normale del pavimento su un individuo di massa 68 kg è: a) 2.11 10 4 N b) 150 N c) 1.03 10 3 N Un proiettile viene lanciato
Esercizi svolti sui numeri complessi
Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =
Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.
Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio
[ ] ] = [ MLT 2. [ 3αx 2ˆ i 3αz 2 ˆ j 6αyz k ˆ ] = MLT 2. [ ] -[ 3αz 2 ˆ j ] = [ MLT 2 [ ] [ ] [ F] = [ N] = kg m s 2 [ ] = ML 1 T 2. [ ][ x 2.
LVORO E ENERGI EX 1 Dato il campo di forze F α(3x ˆ i + 3z ˆ j + 6yz ˆ ): a) determinare le dimensioni di α; b) verificare se il campo è conservativo e calcolarne eventualmente l energia potenziale; c)
Moto sul piano inclinato (senza attrito)
Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto
Dinamica del corpo rigido: Appunti.
Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze
Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)
1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni
CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)
CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare
La misura degli angoli
La misura degli angoli In questa dispensa introduciamo la misura degli angoli, sia in gradi che in radianti, e le formule di conversione. Per quanto riguarda l introduzione del radiante, per facilitarne
Dinamica II Lavoro di una forza costante
Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione
percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.
Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra
Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti
Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 Un punto materiale di massa 5 kg si muove di moto circolare uniforme con velocità tangenziale 1 m/s. Quanto
COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme )
COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme ) 1. Caso dell'osservatore inerziale: l'analisi del problema procede in modo analogo a quanto fatto per la dinamica
Energia potenziale elettrica
Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo
Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.
Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,
Soluzione degli esercizi sul moto rettilineo uniformemente accelerato
Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
Esercizi sul moto rettilineo uniformemente accelerato
Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a
Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.
Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine
Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013
Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito
MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME
6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice
Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica
Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono
EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.
EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema
SOLUZIONI D = (-1,+ ).
SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni
risulta (x) = 1 se x < 0.
Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente
PALI Si distinguono: Nel caso 1 il palo non modifica il moto ondoso, mentre nel caso 2 il moto ondoso è modificato dal palo.
PALI Si distinguono: 1. pali di piccolo diametro se D/L0,05 Nel caso 1 il palo non modifica il moto ondoso, mentre nel caso 2 il moto ondoso è modificato dal palo.
FISICA DELLA BICICLETTA
FISICA DELLA BICICLETTA Con immagini scelte dalla 3 SB PREMESSA: LEGGI FISICHE Velocità periferica (tangenziale) del moto circolare uniforme : v = 2πr / T = 2πrf Velocità angolare: ω = θ / t ; per un giro
Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile
Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2015-2016 A. Ponno (aggiornato al 19 gennaio 2016) 2 Ottobre 2015 5/10/15 Benvenuto, presentazione
ESAME DI STATO 2009/10 INDIRIZZO MECCANICA TEMA DI : MECCANICA APPLICATA E MACCHINE A FLUIDO
ESAME DI STATO 2009/10 INDIRIZZO MECCANICA TEMA DI : MECCANICA APPLICATA E MACCHINE A FLUIDO Lo studio delle frizioni coniche si effettua distinguendo il caso in cui le manovre di innesto e disinnesto
