Appunti sul galleggiamento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti sul galleggiamento"

Transcript

1 Appunti sul galleggiamento Prof.sa Enrica Giordano Corso di Didattica della fisica 1B a.a. 2006/7 Ad uso esclusivo degli studenti frequentanti, non diffondere senza l autorizzazione della professoressa

2 Galleggiare/ affondare Concordiamo un significato condiviso per il verbo galleggiare : Un corpo che immerso completamente in un liquido torna a galla, quando si ferma sta a galla (galleggia) Può capitare però che un corpo, che appoggiato sulla superficie di un liquido sta a galla, immerso nel liquido vada a fondo. Per ora studiamo la prima categoria di oggetti, poi torneremo sulla seconda. Cerchiamo una regola generale che ci permetta di stabilire (senza eseguire l esperimento) se l oggetto immerso in acqua (o altro liquido) tornerà a galla o affonderà. Riprendiamo approfondendole due regole note.

3 Legge di Archimede Un oggetto immerso in acqua riceve una spinta dal basso verso l alto pari al peso di un volume di acqua che si può immaginare corrispondere allo spazio occupato dall oggetto immerso. Più in generale: Un corpo immerso in un fluido (liquido o gas) riceve una spinta diretta dal basso verso l alto pari al peso di un volume di fluido uguale al volume immerso del corpo. Perché non usiamo il più tradizionale volume di acqua spostato? Se la spinta di Archimede su un oggetto completamente immerso è maggiore del peso dell oggetto, questo torna a galla e sta a galla, in generale, stando parzialmente in acqua (quanto? ) e parzialmente fuori. I liquidi galleggiano su altri liquidi stando tutti sopra la superficie di separazione.

4 Regola del peso specifico: Un oggetto omogeneo (costituito da un unico materiale) galleggia in un liquido se il peso specifico del materiale è minore di quello del liquido. Ma cosa è esattamente il peso specifico? Qual è il significato dell operazione di calcolo nota dalle scuole precedenti (P/V)? Cosa cambia se l oggetto è fatto di più materiali? Posso prevedere quanti chiodi serviranno a far affondare un tappo di sughero? E quanti tappi a far galleggiare un chiodo? Impariamo a utilizzare i grafici.

5 Riportiamo su una retta dei numeri il peso (misurato nelle unità di misura della massa) di oggetti vari, determinato con un dinamometro (vedi appunti relativi ed esercitazioni di lab) o una bilancia. Su un altra retta riportiamo il volume di quegli stessi oggetti determinato ad esempio per immersione in un liquido contenuto in un cilindro graduato. Quindi disponiamo i due assi perpendicolarmente tra loro, sull asse delle ascisse riportiamo il volume e su quello delle ordinate il peso. Sul piano cartesiano così ottenuto mettiamo un punto in corrispondenza di ciascun oggetto. Gli oggetti fatti di uno stesso materiale risultano essere punti allineati tra loro e con l origine.

6 Stabilisci le unità di misura sui due assi e i valori numerici corrispondenti alle tacche segnate. Quante informazioni è possibile ricavare da questo grafico? Quali?

7 Ad esempio tracciando rette parallele agli assi si possono trovare: La spinta di Archimede su un oggetto che affonda (peso dell acqua pari al volume immerso) Il volume immerso di un oggetto che galleggia (volume dell acqua il cui peso è pari a quello dell oggetto)

8 P 2 P 1 V 1 V 2 Considera i due triangoli rettangoli che stanno sotto la retta rossa e hanno vertice nell origine: Come sono tra loro? Che relazione c è tra i loro lati V 1, V 2, P 1, P 2? Disegna i corrispondenti triangoli sotto la retta blu, cosa cambia? Disegna due triangoli analoghi anche per la retta verde, cosa cambia?

9 La variabile che possiamo calcolare per determinare se un oggetto fatto di un unico materiale galleggia o affonda in acqua è il peso specifico del materiale che possiamo definire come il peso del volume unitario di materiale. Per calcolarlo consideriamo la proporzione: P 1 : P 2 = V 1 : V 2 che lega pesi e volumi di oggetti fatti dello stesso materiale. Poniamo il volume V 2 = 1. Dalle proprietà delle proporzioni si trova che P 1 / V 1 = P 2 / V 2. Quindi dividendo il peso P 1 di un qualsiasi volume V 1 per il numero del volume stesso si trova il peso P 2 del volume unitario. Il numero finale dipende dalle unità di misura scelte per le due variabili. Così il peso specifico dell acqua è 1 se lo misuriamo in Kg/ dm 3, ma è 1000 se lo misuriamo in Kg/ m 3 ; infatti 1 m 3 pieno di acqua pesa 1000 Kg. Il rapporto P/V può essere considerato come la pendenza della retta nel grafico cartesiano (V,P). Se tale pendenza e quindi il numero P/V che la rappresenta è minore di quella dell acqua l oggetto galleggia in acqua.

10 Torniamo agli oggetti fatti da più di un materiale e al caso di oggetti che stanno a galla ma non tornano a galla se vengono immersi nel liquido. Vediamo se anche in questo caso è possibile trovare una regola e quale. Ci sono due possibilità: Oggetti fatti di più materiali Oggetti che stanno a galla solo appoggiati in certe posizioni

11 Le unità di misura sugli assi corrispondono a tappi di sughero (volume) e chiodi di ferro (il peso)

12 Per gli oggetti fatti di due materiali si può tracciare una semiretta equivalente a un materiale omogeneo che si può immaginare costituisca l oggetto misto Oggetti fatti di più materiali

13 Se un oggetto è fatto di due materiali si può trovare la pendenza del materiale equivalente (vedi diapositiva facendo il rapporto tra il peso complessivo dell oggetto (somma dei pesi delle due parti in diverso materiale, ad esempio somma del peso dei chiodi e di quello dei tappi di sughero) e il volume complessivo (somma dei volumi delle due parti in diverso materiale, ad esempio somma del volume dei chiodi e di quello dei tappi di sughero). Per decidere se galleggerà o affonderà in un liquido, si calcola quindi (P tappi + P chiodi )/(V tappi + V chiodi ) e si ottiene la pendenza del segmento che congiunge l origine con il punto corrispondente all oggetto disomogeneo. Si confronta infine questa pendenza con quella della retta del liquido in cui l oggetto viene immerso. Adesso sapresti dire perché una nave sta a galla? E perché immersa va a fondo?

14 La pelle dell acqua è elastica Alcuni oggetti, ad esempio un ago di acciaio, se appoggiati delicatamente sulla superficie dell acqua riescono a stare a galla anche avendo un peso specifico maggiore dell acqua. Questo avviene perché la pelle dell acqua è elastica e si deforma riuscendo ad esercitare una forza (si parla di tensione superficiale, che non ha niente a che vedere con la spinta di Archimede) che bilancia il peso dell ago. Se però l ago è messo di punta, la pelle dell acqua si rompe e l ago affonda. Fate la prova e osservate attentamente la pelle dell acqua intorno all ago ponendo gli occhi all altezza della superficie libera dell acqua.

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

Impariamo a misurare la densità!

Impariamo a misurare la densità! Impariamo a misurare la densità! A cura di Martina Grussu Loredana Orrù Stefania Piroddi Eugenia Rinaldi Chiara Salidu Fabrizio Zucca La densità Si definisce densità il rapporto tra la massa di un corpo

Dettagli

Possiamo vedere in azione questo principio nell impianto frenante delle automobili, o nei ponti idraulici delle officine.

Possiamo vedere in azione questo principio nell impianto frenante delle automobili, o nei ponti idraulici delle officine. La pressione Pressione: intensità della forza F che agisce perpendicolarmente alla superficie S. La formula diretta è: Nota bene che: 1. la pressione è una grandezza scalare, F p = S 2. la forza è espressa

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

ESPERIMENTO : 1 Prendete il chiodo, il tappo di sughero, la candela e un oggetto di pongo presenti nel kit, immergeteli in una bacinella d acqua.

ESPERIMENTO : 1 Prendete il chiodo, il tappo di sughero, la candela e un oggetto di pongo presenti nel kit, immergeteli in una bacinella d acqua. Chiara Incerpi IIA Vi ringraziamo per aver scelto il nostro kit. Qui imparerete il segreto del galleggiamento attraverso una serie di esperimenti che potrete eseguire con i diversi materiali. ESPERIMENTO

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

PROGETTO. SID - Scientiam Inquirendo Discere IBSE - Inquiry Based Science. Education

PROGETTO. SID - Scientiam Inquirendo Discere IBSE - Inquiry Based Science. Education PROGETTO SID - Scientiam Inquirendo Discere IBSE - Inquiry Based Science Education 1 Anno scolastico 2013 2014 Classe I A ottici Modulo: Affonda o galleggia? Agata Conti 2 Sintesi Il modulo offre l'opportunità

Dettagli

PICCOLI EINSTEIN. Il liceo Einstein apre le porte dei propri laboratori per le classi delle scuole medie

PICCOLI EINSTEIN. Il liceo Einstein apre le porte dei propri laboratori per le classi delle scuole medie PICCOLI EINSTEIN Il liceo Einstein apre le porte dei propri laboratori per le classi delle scuole medie DESCRIZIONE DEL PROGETTO: Il liceo scientifico Einstein, sito in via Pacini 28, propone alle singole

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

MASSA VOLUMICA o DENSITA

MASSA VOLUMICA o DENSITA MASSA VOLUMICA o DENSITA Massa volumica di una sostanza: è la massa di sostanza, espressa in kg, che occupa un volume pari a 1 m 3 1 m 3 di aria ha la massa di 1,2 kg 1 m 3 di acqua ha la massa di 1000

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Progetto Laboratori Saperi Scientifici (2 anno)

Progetto Laboratori Saperi Scientifici (2 anno) IC «M. L. Niccolini» Ponsacco (PI) a.s. 2014-15 Progetto Laboratori Saperi Scientifici (2 anno) «Il Peso Specifico il Principio di Archimede Il Galleggiamento» Classe 3 Scuola Secondaria di 1 grado Docente

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

LIQUIDI. I esperimento

LIQUIDI. I esperimento LIQUIDI I esperimento TITOLO: Peso specifico dei liquidi OBIETTIVO: calcolare il peso specifico dei liquidi contenuti nelle bottigliette per capire di quale liquido si tratta. - 1 bilancia - 5 bottigliette

Dettagli

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete immaginare

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

MISURE CON IL MANOMETRO E DETERMINAZIONE DI DENSITA RELATIVE

MISURE CON IL MANOMETRO E DETERMINAZIONE DI DENSITA RELATIVE MISURE CON IL MANOMETRO E DETERMINAZIONE DI DENSITA RELATIVE Materiali -Manometro: tubo a U fissato verticalmente ad un sostegno, con un braccio libero e l altro collegato ad un tubo flessibile di plastica

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

GLI ANGOLI. Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo.

GLI ANGOLI. Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo. GLI ANGOLI Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo. A. Osserva questa linea spezzata aperta e continua tu a colorare gli angoli, come

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

FENOMENI DI SUPERFICIE 1 Un possibile percorso: LA TENSIONE SUPERFICIALE Scheda esperienza 1

FENOMENI DI SUPERFICIE 1 Un possibile percorso: LA TENSIONE SUPERFICIALE Scheda esperienza 1 PIANO ISS P r e s i d i o M I L A N O I s t i t u t o T e c n i c o I n d u s t r i a l e S t a t a l e L i c e o S c i e n t i f i c o T e c n o l o g i c o E t t o r e M o l i n a r i Via Crescenzago,

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo Scientifico Pascal Merano (BZ) Classe 2 Liceo Scientifico Tecnologico Insegnante di riferimento: Maria Elena Zecchinato Ricercatrice: Ester Dalvit Partecipanti: Jacopo Bottonelli,

Dettagli

ANDREA FARALLI 2 C IL BARICENTRO

ANDREA FARALLI 2 C IL BARICENTRO ANDREA FARALLI 2 C IL BARICENTRO Domenica dieci febbraio siamo andati al laboratorio di fisica della nostra scuola per fare accoglienza ai ragazzi di terza media. Questa accoglienza consisteva nell illustrare

Dettagli

Verifica sperimentale del carattere vettoriale delle forze

Verifica sperimentale del carattere vettoriale delle forze Classe 4^ AC a.s. 2013/2014 Verifica sperimentale del carattere vettoriale delle forze Obiettivo dell esperimento: dimostrare che la somma di due forze è ottenuta attraverso la regola del parallelogramma,

Dettagli

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO v 23 CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO Un campione di terreno viene considerato come un sistema multifase,

Dettagli

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 3 e 4

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 3 e 4 Facoltà di Scienze Politiche Corso di Economia Politica Esercitazione di Microeconomia sui capitoli 3 e 4 Domanda 1 Nel modello di domanda e offerta l equilibrio si verifica quando: A) Tutti i compratori

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

Giuseppe Ruffo. Fisica: lezioni e

Giuseppe Ruffo. Fisica: lezioni e Giuseppe Ruffo Fisica: lezioni e problemi Unità A2 - La rappresentazione di dati e fenomeni 1. Le rappresentazioni di un fenomeno 2. I grafici cartesiani 3. Le grandezze direttamente proporzionali 4. Altre

Dettagli

LEGGE DI STEVINO. La pressione non dipende dalla superficie della base del recipiente

LEGGE DI STEVINO. La pressione non dipende dalla superficie della base del recipiente LA PRESSIONE NEI LIQUIDI DOVUTA ALLA FORZA PESO In condizioni di equilibrio la superficie libera di un liquido pesante deve essere piana ed orizzontale. Liquido di densitàρ Ogni strato orizzontale di liquido

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE

Dettagli

LA GRAFICA E LA GEOMETRIA OPERATIVA

LA GRAFICA E LA GEOMETRIA OPERATIVA LA GRAFICA E LA GEOMETRIA OPERATIVA La geometria operativa, contrariamente a quella descrittiva basata sulle regole per la rappresentazione delle forme geometriche, prende in considerazione lo spazio racchiuso

Dettagli

GAS. I gas si assomigliano tutti

GAS. I gas si assomigliano tutti I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata

Dettagli

Modulo didattico sulla misura di grandezze fisiche: la lunghezza

Modulo didattico sulla misura di grandezze fisiche: la lunghezza Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

Lunghezza Massa Peso Volume Capacità Densità Peso specifico Superficie Pressione Forza Lavoro Potenza

Lunghezza Massa Peso Volume Capacità Densità Peso specifico Superficie Pressione Forza Lavoro Potenza Misurare una grandezza La Grandezza 1. La grandezza è una caratteristica misurabile. Lunghezza Massa Peso Volume Capacità Densità Peso specifico Superficie Pressione Forza Lavoro Potenza 2. Misurare una

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Simulazione della Prova Nazionale. Matematica

Simulazione della Prova Nazionale. Matematica VERSO LA QUARTA PROVA scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 2 17 maggio 2010 Scuola..................................................................................................................................................

Dettagli

lo 2 2-1 - PERSONALIZZARE LA FINESTRA DI WORD 2000

lo 2 2-1 - PERSONALIZZARE LA FINESTRA DI WORD 2000 Capittol lo 2 Visualizzazione 2-1 - PERSONALIZZARE LA FINESTRA DI WORD 2000 Nel primo capitolo sono state analizzate le diverse componenti della finestra di Word 2000: barra del titolo, barra dei menu,

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico Capitolo 4 4.1 Il foglio elettronico Le più importanti operazioni richieste dall analisi matematica dei dati sperimentali possono essere agevolmente portate a termine da un comune foglio elettronico. Prenderemo

Dettagli

SCHEDA TECNICA PER IL MONTAGGIO DELLE COPERTURE LA COPERTURA TOSCANA.

SCHEDA TECNICA PER IL MONTAGGIO DELLE COPERTURE LA COPERTURA TOSCANA. SCHEDA TECNICA PER IL MONTAGGIO DELLE COPERTURE LA COPERTURA TOSCANA. La COPERTURATOSCANA, prodotta da COTTOREF, è composta da tre articoli fondamentali: tegole, coppi e colmi, oltre ad una serie di pezzi

Dettagli

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. Energia potenziale elettrica e potenziale 0. Premessa In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. 1. La forza elettrostatica è conservativa Una o più cariche ferme

Dettagli

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti?

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti? Dov'è Moriart? Cerchiamo la via più breve con Mathcad Potete determinare la distanza più breve da tre punti e trovare Moriart? Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai

Dettagli

Il galleggiamento. Attività n.1 Storie di pesci, bambini e zattere. Attività n.2 Il gioco del galleggia non galleggia

Il galleggiamento. Attività n.1 Storie di pesci, bambini e zattere. Attività n.2 Il gioco del galleggia non galleggia Il Approccio fenomenologico, prima parte Ipotesi di lavoro per il laboratorio di didattica della fisica nella formazione primaria 1 2 Attività n.1 Storie di pesci, bambini e zattere Richiamo di esperienze

Dettagli

Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato

Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato Firenze, 5 maggio 2013 Scuola Città Pestalozzi 8 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE Classe prima e seconda Paola Bertini, Antonio

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

ELEMENTI DI IDROSTATICA IDROSTATICA L'idrostatica (anche detta fluidostatica) è una branca della meccanica dei fluidi che studiailiquidi liquidiin instato statodi diquiete quiete. Grandezze caratteristiche

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un

Dettagli

Analisi e diagramma di Pareto

Analisi e diagramma di Pareto Analisi e diagramma di Pareto L'analisi di Pareto è una metodologia statistica utilizzata per individuare i problemi più rilevanti nella situazione in esame e quindi le priorità di intervento. L'obiettivo

Dettagli

Test d ingresso di Matematica per la secondaria di secondo grado Test d ingresso di matematica per la secondaria di 2 grado

Test d ingresso di Matematica per la secondaria di secondo grado Test d ingresso di matematica per la secondaria di 2 grado Test d ingresso di matematica per la secondaria di 2 grado Cognome e nome: Classe Data. Tra i numeri naturali da a 20, quali sono quelli pari e multipli di tre? A.2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 3, 6, 9,

Dettagli

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande Syllabus delle conoscenze per il modulo: matematica Esempi di domande Nelle pagine che seguono sono riportati, come esempio, quindici quesiti proposti nel 2008/09. Le risposte corrette (che si consiglia

Dettagli

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme )

COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme ) COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme ) 1. Caso dell'osservatore inerziale: l'analisi del problema procede in modo analogo a quanto fatto per la dinamica

Dettagli

I quesiti di Matematica per la classe di concorso A059

I quesiti di Matematica per la classe di concorso A059 I quesiti di Matematica per la classe di concorso A059 Prof. Michelangelo Di Stasio Liceo Scientifico Statale Galileo Galilei di Piedimonte Matese (CE) michelangelodistasio@tin.it SOMMARIO Si propone la

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

TEORIA CINETICA DEI GAS

TEORIA CINETICA DEI GAS TEORIA CINETICA DEI GAS La teoria cinetica dei gas è corrispondente con, e infatti prevede, le proprietà dei gas. Nella materia gassosa, gli atomi o le molecole sono separati da grandi distanze e sono

Dettagli

Sistemi di bloccaggio idraulici -- Mandrini idraulici

Sistemi di bloccaggio idraulici -- Mandrini idraulici Sistemi di bloccaggio idraulici -- Mandrini idraulici La tecnologia del serraggio idraulico ad espansione si è evoluto fino a raggiungere livelli di precisione e di affidabilità tali da poter soddisfare

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

Lo spessimetro ( a cura di Elena Pizzinini)

Lo spessimetro ( a cura di Elena Pizzinini) Lo spessimetro ( a cura di Elena Pizzinini) 1) Che cos è? Lo spessivetro è uno strumento (brevettato dalla ditta Saint Gobain) dal funzionamento piuttosto semplice che permette di misurare lo spessore

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

11. Le funzioni composte

11. Le funzioni composte . Le funzioni composte Definizione Date le due funzioni f A B e g D C, dove f[ A] D, si dice funzione composta di f e g la funzione h A C che ad ogni elemento a Afa corrispondere l elemento g(()) f a Ce

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,

Dettagli

PROCEDURA INVENTARIO DI MAGAZZINO di FINE ESERCIZIO (dalla versione 3.2.0)

PROCEDURA INVENTARIO DI MAGAZZINO di FINE ESERCIZIO (dalla versione 3.2.0) PROCEDURA INVENTARIO DI MAGAZZINO di FINE ESERCIZIO (dalla versione 3.2.0) (Da effettuare non prima del 01/01/2011) Le istruzioni si basano su un azienda che ha circa 1000 articoli, che utilizza l ultimo

Dettagli

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006 PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

G6. Studio di funzione

G6. Studio di funzione G6 Studio di funzione G6 Come tracciare il grafico di una funzione data Nei capitoli precedenti si sono svolti tutti gli argomenti necessari per tracciare il grafico di una funzione In questo capitolo

Dettagli

Istruzioni per leggere bene. Istruzioni per leggere bene

Istruzioni per leggere bene. Istruzioni per leggere bene Istruzioni per leggere bene A cura di Silvana Loiero 1 La lettura orientativa La prima: farsi un idea generale La seconda: identificare le parti La terza: scorrere indici e sintesi La quarta: leggere rapidamente

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Prof. Gian Piero Pugliese Lezioni di Fisica

Prof. Gian Piero Pugliese Lezioni di Fisica Prof. Gian Piero Pugliese Lezioni di Fisica Il miraggio Fin dai tempi più remoti, il miraggio è stato un fenomeno che ha destano nell uomo paura e al tempo stesso meraviglia, proprio perché non conosciuto

Dettagli

Insegnamento di Progetto di Infrastrutture viarie

Insegnamento di Progetto di Infrastrutture viarie Insegnamento di Progetto di Infrastrutture viarie Opere in terra Caratteristiche di un terreno Compressibilità e costipamento delle terre Portanza sottofondi e fondazioni stradali Instabilità del corpo

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

1. LE REGOLE EDUCAZIONE ALLA LEGALITA OBIETTIVI

1. LE REGOLE EDUCAZIONE ALLA LEGALITA OBIETTIVI EDUCAZIONE ALLA LEGALITA 1. LE REGOLE OBIETTIVI Sapere: Che la convivenza tra soggetti diversi ha bisogno di regole. Conoscere il significato della parola Regola della forte connessione tra regole e valori.

Dettagli

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult SISTEM INRIO DI DUE IQUIDI OTII MENTE MISCIII che seguono Raoult Consideriamo due liquidi e totalmente miscibili di composizione χ e χ presenti in un contenitore ad una certa temperatura T=T 1. o strato

Dettagli

Anna Montemurro. 2Geometria. e misura

Anna Montemurro. 2Geometria. e misura Anna Montemurro Destinazione Matematica 2Geometria e misura GEOMETRIA E MISURA UNITÀ 11 Le aree dei poligoni apprendo... 11. 1 FIGURE PIANE EQUIVALENTI Consideriamo la figura A. A Le figure B e C

Dettagli

CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI

CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI ELISABETTA AVIZZANO NICOLETTA CAPOTORTO CHIARA CEROCCHI GIORGIO CICCARELLA IVAN COLAVITA EMANUELE DI CARO SERENA NUNZIATA AMANDA PISELLI ANDREA PIEPOLI

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

LE FORME GEOMETRICHE dalle scatole alle forme

LE FORME GEOMETRICHE dalle scatole alle forme LE FORME GEOMETRICHE dalle scatole alle forme CLASSE prima TEMPI due mesi OBIETTIVI distinguere e denominare le principali figure solide PREREQUISITI alfabetizzazione strumentale minima: prima autonomia

Dettagli

Verifica di Fisica- Energia A Alunno. II^

Verifica di Fisica- Energia A Alunno. II^ Verifica di Fisica- Energia A Alunno. II^!!!!!!!!!!!!!! NON SARANNO ACCETTATI PER NESSUN MOTIVO ESERCIZI SVOLTI SENZA L INDICAZIONE DELLE FORMULE E DELLE UNITA DI MISURA!!!!!!!!!! 1-Il 31 ottobre ti rechi

Dettagli

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE 1. Proporzionalità diretta e proporzionalità inversa Analizziamo le seguenti formule Peso Lordo = Peso Netto + Tara Ricavo = Utile + Costo Rata = Importo + Interesse

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

Blocco_A_2014 pag. 1

Blocco_A_2014 pag. 1 Blocco_A_2014 pag. 1 D1. Quattro amiche devono eseguire la seguente moltiplicazione: 25 (-30) Per trovare il risultato ognuna svolge il calcolo in modo diverso. Chi ha svolto il calcolo in modo NON corretto?

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Appunti sull orientamento con carta e bussola

Appunti sull orientamento con carta e bussola Appunti sull orientamento con carta e bussola Indice Materiale necessario... 2 Orientiamo la carta topografica con l'aiuto della bussola... 2 Azimut... 2 La definizione di Azimut... 2 Come misurare l azimut...

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

H1 Hrms Gestione eventi/scadenze automatiche

H1 Hrms Gestione eventi/scadenze automatiche Sintesi H1 Hrms Gestione eventi/scadenze automatiche Il presente documento nasce con lo scopo di illustrare la funzionalità all interno di H1 hrms relativa alla procedura di gestione degli eventi e delle

Dettagli

Determinazione del pka per un acido moderatamente debole per via potenziometrica C.Tavagnacco - versione 02.02.05

Determinazione del pka per un acido moderatamente debole per via potenziometrica C.Tavagnacco - versione 02.02.05 Determinazione del pka per un acido moderatamente debole per via potenziometrica C.Tavagnacco - versione 02.02.05 Dall equazione di Henderson-Hasselbalch (H-H), ph = pka + log ([A - ]/[HA]) si ricava che

Dettagli

RAPPRESENTAZIONI GRAFICHE

RAPPRESENTAZIONI GRAFICHE RAPPRESENTAZIONI GRAFICHE Prendiamo in considerazione altre rappresentazioni di dati che sono strumenti utili anche in altre discipline di studio o altri settori della vita quotidiana. Questi strumenti

Dettagli