Q 1 = C carica numero 1 Q 2 = C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita"

Transcript

1 Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 = C e Q 2 = C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = C carica numero 1 Q 2 = C carica numero 2 F el = 200 N r =? forza esercitata tra le cariche distanza tra le cariche, incognita Problema semplice che si risolve, partendo dalla forza di Coulomb, e ricavandone la formula inversa esplicitando r. Problema n 2 A che distanza, un protone potrebbe tenere sollevato un elettrone contro la forza di gravità? e = 1, C m elettrone = 9, kg r =? carica elementare massa dell'elettrone distanza tra elettrone e protone necessaria per tenere sollevato l'elettrone affinché l'elettrone resti sollevato (ovvero, sia in equilibrio) la forza elettrica attrattiva deve essere uguale, in modulo, alla forza peso, agire lungo la verticale e verso l'alto. La situazione fisica è, quindi, la seguente: un protone fermo in una posizione dello spazio; un elettrone, libero di muoversi, che si trova lungo la verticale, sotto il protone, ad una distanza r. Uguagliando il modulo della forza peso con quello della forza elettrica si ha, quindi: Problema proposto: scambiando i ruoli delle due particelle, che risultato si ottiene? (tenete conto che la massa del protone è diversa da quella dell'elettrone!!!!!!)

2 Problema n 3 Nel modello di Rutherford dell'atomo di idrogeno, l'elettrone ruota attorno al nucleo alla distanza di circa nm (nanometri). Qual è la frequenza della rotazione? r = nm = m distanza tra nucleo ed elettrone (1 nm = 10-9 m) e = 1, C m elettrone = 9, kg f =? carica elementare massa dell'elettrone distanza tra elettrone e protone necessaria per tenere sollevato l'elettrone la forza centripeta che mantiene in rotazione a distanza costante, con traiettoria circolare, l'elettrone, è dovuta alla forza di interazione elettrica; poiché la forza centripeta è: In cui m è la massa dell'elettrone, e è legato alla frequenza della relazione = 2 f da cui f = /2 Uguagliando il modulo della forza centrifuga con quello della forza elettrica si ha, quindi: Ricavandone il valore di : Sostituendo i valori numerici, si calcola e, di conseguenza, f Risolvere il seguente problema: Due sferette metalliche di massa 3,20 g sono appese, mediante due fili isolanti lunghi 20 cm, a uno stesso punto. Tenendo separate le sferette si pone la carica Q su una delle due che poi si lascia libera. La sferetta tocca l'altra e, a equilibrio raggiunto, i fili formano un angolo di 12. Calcola il valore della carica Q. Nel problema proposto, ancora una volta, vi è l'interazione tra forza elettrica e forza peso. Ad equilibrio raggiunto, le forze in gioco daranno risultante nulla; ovvero, la risultante della somma vettoriale della forza peso e di quella elettrica agirà lungo la direzione del filo, contrastata dalla tensione del filo stesso. Il rapporto tra F el e P è la tangente dell'angolo α/2. Fate attenzione al valore della carica Q, che si distribuisce su entrambe le sfere!!!!!

3 Problema n 4 Tre cariche elettriche sono poste su tre dei quattro vertici di un quadrato di lato L=20 cm, come in figura. Le cariche sono q 1 =1 nc, q 2 =4 nc e q 3 =2 nc. Si calcoli: a) l'energia elettrostatica U del sistema; b) le componenti cartesiane del vettore campo elettrico E nel vertice libero. [Costante dielettrica del vuoto: ε 0 = C 2 /(N m 2 )] q 1 = 1 nc = C carica 1 q 2 = 4 nc = C carica 2 q 3 = 2 nc = C carica 3 per il calcolo dell'energia potenziale del sistema, bisogna ragionare nel seguente modo: si determina il potenziale assoluto della carica q 3 dovuto al campo elettrico generato dalle cariche q 1 e q 2 ovvero il lavoro necessario per spostare la carica q 3 dalla posizione in cui si trova, fino all'infinito. Quindi: Allontanata la carica q 3, restando solo le cariche 1 e 2, si determina il potenziale assoluto della carica q 2 per effetto del campo generato dalla carica q 1 (ma si può anche pensare al potenziale di q 1 dovuto a q 2 poiché non muta la sostanza del discorso) ossia il lavoro necessario per spostare la carica q 2 (o q 1 ) dalla posizione in cui si trova, fino all'infinito. Quindi: In definitiva, l'energia potenziale del sistema è quella corrispondente al lavoro necessario per allontanare tutte le cariche fino all'infinito, ad eccezione di una delle cariche del sistema. Quindi: Effettuate i calcoli e verificate che il risultato è U = 6, J (potete usare anche k = 8, al posto di 1/(4 0 ) Relativamente al campo elettrico nel vertice libero, del quale si richiedono le componenti cartesiane x e y, si analizzano i campi generati in quel punto da ognuna delle tre cariche considerate separatamente (sovrapposizione degli effetti ); si può notare come il campo generato dalla carica q 1 ha la sola componente x; mentre il campo generato da q 3 ha la sola componente y; la carica q 2 genera un campo diretto lungo la diagonale del quadrato e, quindi, formante un angolo di 45 con entrambi gli assi. Ricordando che il campo elettrico si determina con la relazione: Procedete col calcolo del campo elettrico totale nel vertice libero.

4 PROBLEMI SVOLTI TRATTI DAL LIBRO DI TESTO Esercizio n 2 di pagina 72 q 1 = -e = C q 2 = e = C V = 3.0 V L' AYB =? carica dell'elettrone carica del protone differenza di potenziale della batteria lavoro richiesto per spostare l'elettrone dal polo positivo a quello negativo L'' AYB =? lavoro richiesto per spostare il protone dal polo positivo a quello negativo In entrambi i casi il lavoro è quello per spostare la carica dal polo positivo a quello negativo, che si determina ricordando che: In cui il punto A (per entrambi i casi) è il punto iniziale e il punto B è il punto finale, in questo caso il polo positivo (iniziale) e il polo negativo (finale). Poiché il potenziale è più elevato nel polo positivo rispetto a quello negativo, e, quindi, V B è più basso di V A, la differenza (V B - V A ) è negativa; quindi = -3.0 V e il lavoro sarà: Nel secondo caso, l'unica differenza è che la carica (il protone) è positiva, mentre la differenza (V B - V A ) è sempre negativa, quindi = V e il lavoro sarà: N.B. Le considerazioni sui segni sono le stesse del precedente problema.

5 Esercizio n 8 di pagina 73 q = e = C d = 4 cm E = 250 N/C L' AYB =? carica del protone spostamento imposto al protone intensità del campo elettrico lavoro da compiere per spostare il protone di 4 cm lungo la direzione del campo Il lavoro si determina con la relazione già nota: Tra la d.d.p. (differenza di potenziale) e il campo elettrico vi è la seguente relazione: Quindi la precedente relazione diventa: il lavoro sarà:

6 Esercizio n 9 di pagina 73 q = -e = C E y = 2800 V/m = 2800 N/C v f = m/s t =? y =? carica dell'elettrone intensità del campo elettrico lungo l'asse y velocità raggiunta dall'elettrone tempo impiegato per raggiungere la velocità v f spazio percorso nel tempo t sull'asse y per rispondere al primo quesito si deve ragionare partendo dalla grandezza incognita: il tempo "t". Poiché si conosce la velocità finale dell'elettrone e, considerando che quella iniziale e 0 (all'inizio l'elettrone è fermo, infatti il testo del problema ci dice che " è liberato dall'origine degli assi"), si potrà agire per via cinematica mettendo in relazione "velocità", "tempo" e "accelerazione"; infatti: Nella formula precedente non è nota l'accelerazione, che verrà determinata dalla relazione tra forza elettrica (che è la responsabile del movimento dell'elettrone) e massa dell'elettrone, applicando il 2 principio della dinamica: Il segno meno indica che l'accelerazione è diretta nel verso opposto a quello del campo elettrico ovvero nel verso negativo dell'asse y. In effetti anche la velocità finale sarà nel verso negativo dell'esse y, in quanto la forza elettrica dovuta al campo elettrico, agisce su una carica negativa e, quindi, avrà verso opposto a quello del campo. Quindi, riprendendo al prima relazione si ha: il secondo quesito è immediatamente risolto, facendo riferimento all'equazione oraria di un moto accelerato lungo l'asse y (con velocità iniziale nulla e y 0 nulla): L'elettrone si troverà a 5.24 cm di distanza dall'origine dell'asse y lungo il semi-asse negativo.

7 Esercizio n 60 di pagina 77 (problema non assegnato) q = +30 nc d = 4 cm V = 6000 V m =? T =? carica distribuita sulla pallina distanza tra le armature parallele differenza di potenziale tra le armature quesito a) massa incognita della pallina quesito b) tensione nel filo quando viene invertita la polarità delle armature Poiché la tensione nel filo è zero, vuol dire che le forze applicate alla pallina hanno risultante nulla; le forze agenti sono la forza Peso e la forza elettrica; quest'ultima, al fine di far equilibrio alla forza peso, non può che agire verso l'alto (in verso opposto al peso); per cui anche il campo elettrico agirà verso l'alto essendo la carica positiva. Quindi si può risolvere il problema dall'equilibrio tra forza elettrica e forza peso. Il campo elettrico lo determiniamo in funzione di dalla relazione Da cui: Affinché la risultante sia nulla, le forze avranno verso opposto e uguale modulo; per cui dalla relazione di uguaglianza dei moduli otterremo la massa della pallina: Quando si inverte la polarità delle cariche poste sulle armature, si invertirà anche il verso del campo elettrico che, adesso, punterà verso il basso concordemente con la forza peso; quindi la pallina sarà attratta verso il basso sia per effetto della forza peso che per effetto della forza elettrica. La forza elettrica sarà di modulo uguale a quello del caso precedente, che, a sua volta è uguale al modulo della forza peso; per cui il filo sarà sottoposto a una forza complessivamente uguale al doppio della forza peso.

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

CONDUTTORI, CAPACITA' E DIELETTRICI

CONDUTTORI, CAPACITA' E DIELETTRICI CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia

Dettagli

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Elettrostatica 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Prof. Giovanni Ianne 1 L ELETTRIZZAZIONE PER STROFINIO Un

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

CONSERVAZIONE DELL ENERGIA MECCANICA

CONSERVAZIONE DELL ENERGIA MECCANICA CONSERVAZIONE DELL ENERGIA MECCANICA L introduzione dell energia potenziale e dell energia cinetica ci permette di formulare un principio potente e universale applicabile alla soluzione dei problemi che

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 20/2 Appello del 29/0/203. Tempo a disposizione: 2h30. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

LAVORO. L= F x S L= F. S L= F. S cos ϑ. L= F. S Se F ed S hanno stessa direzione e verso. L= -F. S Se F ed S hanno stessa direzione e verso opposto

LAVORO. L= F x S L= F. S L= F. S cos ϑ. L= F. S Se F ed S hanno stessa direzione e verso. L= -F. S Se F ed S hanno stessa direzione e verso opposto LAVORO L= F x S L= F. S L= F. S cos ϑ CASI PARTICOLARI L= F. S Se F ed S hanno stessa direzione e verso L= -F. S Se F ed S hanno stessa direzione e verso opposto L= 0 Se F ed S sono perpendicolari L >0

Dettagli

differenza di potenziale della batteria lavoro richiesto per spostare la carica dal polo negativo a quello positivo

differenza di potenziale della batteria lavoro richiesto per spostare la carica dal polo negativo a quello positivo Esercizio n 1 di pagina 72 q = +6µC V = 9.0 V carica spostata differenza di potenziale della batteria lavoro richiesto per spostare la carica dal polo negativo a quello positivo L'' AYB =? lavoro richiesto

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica La dipendenza dalle coordinate spaziali della forza elettrica è analoga a quella gravitazionale Il lavoro per andare da un punto all'altro è indipendente dal percorso fatto

Dettagli

COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme )

COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme ) COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme ) 1. Caso dell'osservatore inerziale: l'analisi del problema procede in modo analogo a quanto fatto per la dinamica

Dettagli

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo. Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Scientifico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Dettagli

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede associata Liceo-Ginnasio ''B.Russell" Verifica sommativa di Fisica

ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede associata Liceo-Ginnasio ''B.Russell Verifica sommativa di Fisica ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede associata Liceo-Ginnasio ''B.Russell" Verifica sommativa di Fisica Questionario a risposta multipla Prova di uscita di Fisica relativa al modulo DESCRIZIONE

Dettagli

Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti

Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 Un punto materiale di massa 5 kg si muove di moto circolare uniforme con velocità tangenziale 1 m/s. Quanto

Dettagli

Lavoro di una forza costante

Lavoro di una forza costante Lavoro ed energia Per spostare un oggetto o per sollevarlo dobbiamo fare un lavoro Il lavoro richiede energia sotto varie forme (elettrica, meccanica, ecc.) Se compio lavoro perdo energia Queste due quantità

Dettagli

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI Struttura dell'atomo (nucleo, protoni, neutroni, elettroni); cariche elettriche elementari (elettrone,

Dettagli

Carica positiva e carica negativa

Carica positiva e carica negativa Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi

Dettagli

Ragionamento spaziale visivo e percezione

Ragionamento spaziale visivo e percezione 2 Ragionamento spaziale visivo e percezione Serie e analogie figurali! In alcune batterie di test psicoattitudinali sono ampiamente rappresentati i quesiti che propongono un elenco di figure: in alcuni

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 1 Fisica 1. Un ciclista percorre 14.4km in mezz ora. La sua velocità media è a. 3.6

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia Seminario didattico Ingegneria Elettronica Lezione 5: Dinamica del punto materiale Energia 1 Esercizio n 1 Un blocco di massa m = 2 kg e dimensioni trascurabili, cade da un altezza h = 0.4 m rispetto all

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico

Dettagli

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. Energia potenziale elettrica e potenziale 0. Premessa In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. 1. La forza elettrostatica è conservativa Una o più cariche ferme

Dettagli

DINAMICA, LAVORO, ENERGIA. G. Roberti

DINAMICA, LAVORO, ENERGIA. G. Roberti DINAMICA, LAVORO, ENERGIA G. Roberti 124. Qual è il valore dell'angolo che la direzione di una forza applicata ad un corpo deve formare con lo spostamento affinché la sua azione sia frenante? A) 0 B) 90

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Energia potenziale elettrica Potenziale elettrico Superfici equipotenziali

Energia potenziale elettrica Potenziale elettrico Superfici equipotenziali Energia potenziale elettrica Potenziale elettrico Superfici euipotenziali Energia potenziale elettrica Può dimostrarsi che le forze elettriche, come uelle gravitazionali, sono conservative. In altre parole

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

I poli magnetici isolati non esistono

I poli magnetici isolati non esistono Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero

Dettagli

Condensatore elettrico

Condensatore elettrico Condensatore elettrico Sistema di conduttori che possiedono cariche uguali ma di segno opposto armature condensatore La presenza di cariche crea d.d.p. V (tensione) fra i due conduttori Condensatore piano

Dettagli

Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1.

Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1. L accelerazione iniziale di un ascensore in salita è 5.3 m/s 2. La forza di contatto normale del pavimento su un individuo di massa 68 kg è: a) 2.11 10 4 N b) 150 N c) 1.03 10 3 N Un proiettile viene lanciato

Dettagli

(c) dipende linearmente dalla distanza dal centro della sfera. Domanda n5: Il campo elettrico all'interno di un conduttore sferico di raggio R e'

(c) dipende linearmente dalla distanza dal centro della sfera. Domanda n5: Il campo elettrico all'interno di un conduttore sferico di raggio R e' FISICA per BIOLOGIA Esercizi: Elettricita' e Magnetismo Indicare la lettera corrispondente alla risposta corretta. Domanda n1: La carica elettrica e' quantizzata, cioe' la carica piu' piccola misurata

Dettagli

MODELLI ATOMICI. Modello Atomico di Dalton

MODELLI ATOMICI. Modello Atomico di Dalton MODELLI ATOMICI Gli atomi sono i piccoli mattoni che compongono la materia. Circa 2500 anni fa, il filosofo DEMOCRITO credeva che tutta la materia fosse costituita da piccole particelle che chiamò atomi.

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Verifica sperimentale del principio di conservazione dell'energia meccanica totale

Verifica sperimentale del principio di conservazione dell'energia meccanica totale Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Questionario. figura il filo si rompe. Quale traiettoria segue la boccia?

Questionario. figura il filo si rompe. Quale traiettoria segue la boccia? Questionario 1) Due palline metalliche hanno le stesse dimensioni, ma una pesa il doppio dell altra. Le due palline vengono lasciate cadere contemporaneamente dal tetto di un edificio di due piani. Il

Dettagli

FAM. 1. Sistema composto da quattro PM come nella tabella seguente

FAM. 1. Sistema composto da quattro PM come nella tabella seguente Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Circuito di pilotaggio ON OFF con operazionale

Circuito di pilotaggio ON OFF con operazionale PREMESSA Circuito di pilotaggio ON OFF con operazionale A cura del Prof. Marco Chirizzi www.marcochirizzi.it Si supponga di dovere progettare un circuito di pilotaggio ON OFF in grado di mantenere un fluido

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto.

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto. Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. Indice 1 Quantità di moto. 1 1.1 Quantità di moto di una particella.............................. 1 1.2 Quantità

Dettagli

Verifica di Fisica- Energia A Alunno. II^

Verifica di Fisica- Energia A Alunno. II^ Verifica di Fisica- Energia A Alunno. II^!!!!!!!!!!!!!! NON SARANNO ACCETTATI PER NESSUN MOTIVO ESERCIZI SVOLTI SENZA L INDICAZIONE DELLE FORMULE E DELLE UNITA DI MISURA!!!!!!!!!! 1-Il 31 ottobre ti rechi

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 3 Campi magnetici e forza

Dettagli

PROBLEMI SUL CAMPO ELETTROSTATICO

PROBLEMI SUL CAMPO ELETTROSTATICO POBLEMI SUL AMPO ELETTOSTATIO 1) Una sfera è stata elettrizzata per strofino e ha assunto la carica di + 10 µ. uanti elettroni ha perduto? ) Due cariche rispettivamente di +4 µ e -3 µ si trovano nel vuoto

Dettagli

Dinamica II Lavoro di una forza costante

Dinamica II Lavoro di una forza costante Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.

Dettagli

Tutti i campi sono obbligatori

Tutti i campi sono obbligatori Nome: lasse ognome: Tutti i campi sono obbligatori 1 La costante dielettrica del vuoto vale circa 2 Una sfera di raggio R è caricata uniformemente con densità volumetrica (quantità di carica per unità

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

F 2 F 1. r R F A. fig.1. fig.2

F 2 F 1. r R F A. fig.1. fig.2 N.1 Un cilindro di raggio R = 10 cm e massa M = 5 kg è posto su un piano orizzontale scabro (fig.1). In corrispondenza del centro del cilindro è scavata una sottilissima fenditura in modo tale da ridurre

Dettagli

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) 1.721 m (B) 0.387 m (C) 0.500 m (D) 0.613 m (E) 2.721 m

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) 1.721 m (B) 0.387 m (C) 0.500 m (D) 0.613 m (E) 2.721 m Fisica generale II, a.a. 01/013 L FORZ DI OULOM.1. Date le due cariche fisse della figura dove q 1 = 0. e q = 0.5 la posizione di equilibrio lungo l'asse di una terza carica mobile q 3 = 0.01 si trova

Dettagli

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio. LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO Esercizio Esercizio Esercizio Dati esercizio: I 1 =5,0 Kg m 2 I 2 =10 Kg m 2 ω i =10giri/sec

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro:

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: Fenomeni magnetici VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: proprietà non uniforme nel materiale; si manifesta in determinate parti. campioni cilindrici (magneti) nei quali tale

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Lezione 14: L energia

Lezione 14: L energia Lezione 4 - pag. Lezione 4: L energia 4.. L apologo di Feynman In questa lezione cominceremo a descrivere la grandezza energia. Per iniziare questo lungo percorso vogliamo citare, quasi parola per parola,

Dettagli

Appunti sul galleggiamento

Appunti sul galleggiamento Appunti sul galleggiamento Prof.sa Enrica Giordano Corso di Didattica della fisica 1B a.a. 2006/7 Ad uso esclusivo degli studenti frequentanti, non diffondere senza l autorizzazione della professoressa

Dettagli

I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2014/15

I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2014/15 I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2014/15 KIT RECUPERO SCIENZE INTEGRATE FISICA CLASSI PRIME TECNICO TURISTICO SUPPORTO DIDATTICO PER ALUNNI CON

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Concetto di forza. 1) Principio d inerzia

Concetto di forza. 1) Principio d inerzia LA FORZA Concetto di forza Pi Principi ii dll della Dinamica: i 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale i e forza peso Accelerazione di gravità Massa, peso,

Dettagli

GRANDEZZE FISICHE E UNITA DI MISURA. G. Roberti

GRANDEZZE FISICHE E UNITA DI MISURA. G. Roberti GRANDEZZE FISICHE E UNITA DI MISURA G. Roberti 1. Quale dei seguenti gruppi di grandezze fisiche comprende solo grandezze fondamentali (e non derivate) del Sistema Internazionale? A) Corrente elettrica,

Dettagli

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3)

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3) N. Tre particelle cariche sono poste come in gura ad una distanza d. Le cariche Q e Q 2 = 0 9 C sono tenute ferme mentre la carica Q 3, libera di muoversi, è in equilibrio. Calcolare il valore di Q Anchè

Dettagli

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE 1. Proporzionalità diretta e proporzionalità inversa Analizziamo le seguenti formule Peso Lordo = Peso Netto + Tara Ricavo = Utile + Costo Rata = Importo + Interesse

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

Statica e dinamica dei fluidi. A. Palano

Statica e dinamica dei fluidi. A. Palano Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione

Dettagli

Risultati questionario Forze

Risultati questionario Forze Risultati questionario Forze Media: 7.2 ± 3.3 Coeff. Alpha: 0.82 Frequenza risposte corrette Difficoltà domande 18 16 14 12 10 8 6 4 2 0 25% 42% 75% 92% 100% % corrette 100% 90% 80% 70% 60% 50% 40% 30%

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli