Statica e dinamica dei fluidi. A. Palano
|
|
|
- Maurizio Salvi
- 10 anni fa
- Visualizzazioni
Transcript
1 Statica e dinamica dei fluidi A. Palano
2 Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione delle molecole del fluido con una determinata superficie. La Figura mostra una particella che urta elasticamente una parete rigida. Una forza viene esercitata sulla parete. La pressione viene definita come: P = F/S La forza di pressione e sempre normale alla superficie. In ogni punto di un fluido in quiete la pressione e indipendente dall orientazione.
3 La Pressione La pressione si misura in Pascal: Una unita' largamente usata e' l'atmosfera: Una atmosfera e' la pressione esercitata da una colonna di mercurio alta 76 cm, a con un'accelerazione Altre unita' di misura:
4 Legge di Stevino Consideriamo un elemento di fluido in equilibrio di spessore e area A. Sia la densita' del fluido. La massa di questo elemento e': Il suo peso e': Le forze orizzontali hanno risultante nulla in quanto la pressione e' la stessa su tutto il piano orizzontale. L'elemento di fluido e' in equilibrio sotto l'azione della forza peso e delle due forze di pressione. Quindi: Semplificando A, otteniamo: La quantita' e' detta peso specifico. Integrando la (1):
5 Legge di Stevino Ponendo e g costanti: Indichiamo con la pressione alla superficie: Indicando con la profondita': La pressione aumenta quindi linearmente con la profondita'. Legge di Stevino: la differenza di pressione fra due punti e e' data dalla pressione esercitata alla base da una colonna di fluido di altezza uguale al dislivello dei due punti. Legge di Pascal: In un fluido in equilibrio la pressione e' costante in tutti i punti che si trovano alla stessa quota. Principio dei vasi comunicanti: le superfici libere si trovano allo stesso livello qualunque sia la forma dei vasi. Se vi sono due fluidi di densita' diverse, se le pressioni devono essere uguali: e sono le altezze dalla superficie di separazione,
6 Legge di Archimede Consideriamo un corpo immerso in un liquido. Le forze di pressione sulle facce laterali sono uguali e si equilibrano. Salla base inferiore vi e' una forza rivolta verso l'alto pari a, sulla faccia superiore una forza verso il basso. La risultante e' diretta verso l'alto: Se indichiamo con la massa del liquido spostato: Cioe' la spinta verso l'alto e' pari al peso del liquido spostato. F e' chiamata spinta di Archimede. Legge di Archimede: Un fluido esercita su un corpo immerso in esso una forza verticale diretta verso l'alto pari al peso del fluido spostato. Se la densita' del corpo immerso e' inferiore a quella del fluido, questo galleggia, altrimenti sprofonda. Per un corpo parzialmente immerso, il centro di spinta della forza di Archimede e' data dal centro di gravita' della parte sommersa. Sul corpo agisce un momento che puo' rovesciare la barca o riportarla in equilibrio.
7 Fluido in rotazione Un recipiente sia in rotazione attorno all'asse z con velocita' angolare. Un elemento di liquido sia nei pressi della superficie. Esso e' sottoposto alla forza peso e a una forza centrifuga: La forza totale deve essere normale alla superficie altrimenti l'elemento di liquido scorrerebbe. Quindi il lavoro fatto dalla forza lungo tale superficie e' nullo. La superficie e' quindi equipotenziale. Calcoliamo l'energia potenziale dovuta alla forza centrifuga. Se r e' la distanza dall'asse, il lavoro infinitesimo e': Quindi: L'energia potenziale totale e' quindi:
8 Fluido in rotazione Tale superficie e' equipotenziale quindi: e infine: Quindi la superficie del liquido e' rappresentata da una parabola. Consideriamo una particella di fluido in rotazione. Questa e' sottoposta ad una forza centrifuga verso l'esterno: e una forza di pressione verso l'interno: Se il corpicciolo viene spinto verso l'esterno, se viene spinto verso l'asse di rotazione. Centrifughe
9 Tensione superficiale Forze di coesione molecolari producono effetti in cui le molecole sono attratte verso l interno del sistema. Le forze risultanti producono effetti di coesione. Un ago puo galleggiare sull acqua a causa di tali forze. Fenomeni di tensione superficiale nelle zone di separazione fra due diversi materiali. Tensione superficiale definita come: Tangente alla superficie. Nell esempio: T= F/2l in quanto vi sono due facce.
10 Tensione superficiale. Il lavoro compiuto dalla forza per aumentare il volume del liquido e : Quindi: La tensione superficiale rappresenta quindi il lavoro compiuto per aumentare la superficie della lamina liquida.
11 Una goccia di liquido in equilibrio. Linee di contatto La somma delle forze deve essere nulla. Diseguaglianze triangolari: Nel caso dell olio, la tensione acqua-olio supera la somma delle altre due tensioni, per cui la goccia d olio si espande sull acqua.
12 Presenza di una fase solida In presenza di un mezzo solido, occorre aggiungere la reazione vincolare R normale alla superficie. La somma delle forze deve essere nulla. La somma Deve essere perpendicolare alla parete. Questo si ottiene solo per un valore particolare dell angolo di raccordo. Quindi: Si deve quindi verificare che: Se questo non si verifica allora: Liquido che bagna o non bagna la parete.
13 Fenomeni capillari. Legge di Borelli Un capillare sia immerso in un liquido. Il livello di tale liquido nel capillare puo essere piu alto o piu basso della superficie del liquido. Il liquido nel capillare e in equilibrio sotto l azione della Tensione superficiale e la forza peso. Ricavando h: Legge di Borelli: le differenze di livello nei tubi immersi in un liquido sono inversamente proporzionali al raggio del tubo.
14 Dinamica dei fluidi: equazione di continuita Fluidi perfetti. Assenza di attrito. Fluido non viscoso. Moto laminare. In regime stazionario le particelle seguono le linee di corrente. In ogni punto la velocita' e' tangente alle linee di corrente. Linea di flusso o linea di corrente. Tubo di flusso insieme di tutte le linee di flusso passanti per una curva chiusa. Un tubo di flusso avente in due punti sezioni e e velocita' e. Se e sono le densita', nel tempo dt passa nella sezione 1 una massa di fluido: nel punto 2: Se Equazione di continuita'. Se il fluido e' incomprimibile: La velocita' del fluido aumenta se diminuisce la sezione.
15 Portata In generale, se la velocita' forma un angolo con la normale n alla superficie: Si definisce portata ( ): Per un tubo di sezione finita: dove S e' la superficie normale alla corrispondente linea di flusso. Se definiamo velocita' media: allora: Legge di Leonardo. In un condotto la velocita' media su una sezione S normale al condotto e' inversamente proporzionale all'aerea della sezione.
16 Barometro di Torricelli Tubo pieno di mercurio chiuso con un dito. Si immerge in una bacinella piena di mercurio. Il mercurio scende ad un'altezza di 76 cm. Poiche' nella parte superiore vi e' il vuoto, la pressione in A e' nulla. Per la legge di Pascal la pressione in C e B e' la stessa. La pressione in C e' quella atmosferica, in B e' quella della colonna di liquido. Quindi: La densita' del mercurio e':
17 Leve idrauliche Per la legge di Pascal la pressione e' uguale su entrambi i lati: Quindi: L'abbassamento di un tratto del pistone si traduce in uno spostamento di fluido di volume. Poiche' il fluido e' incomprimibile: Per cui: Lo spostamento del pistone maggiore e' quindi molto piu' piccolo.
18 Teorema di Bernoulli Consideriamo un tubo di flusso di sezione infinitesima. Le forze esercitate sul fluido contenuto fra le due sezioni e sono: o La forza di pressione esercitata sulla faccia : o La forza di pressione esercitata sulla faccia. o o Le forze sulle superfici laterali. Poiche' non vi e' attrito, le forze sono normali a tali superfici. La forza peso del fluido. Utilizziamo il teorema delle forze vive. Calcoliamo il lavoro fatto dalle tre forze e per spostare il fluido di un tratto infinitesimo. In un tempo dt il fluido si sara' spostato di un tratto dl=v dt, quindi: dove nella (2) si e' fatto uso dell'equazione di continuita' : Il lavoro compiuto dalla forza peso lo possiamo calcolare dalla variazione di energia potenziale del fluido. Si puo' interpretare il movimento del fluido come quello di una porzione A che si sposta in C rimanendo B in quiete.
19 Teorema di Bernoulli L'energia potenziale del fluido in A e': Quello in C: Otteniamo quindi: dove si e' fatto ancora uso dell'equazione di continuita'. Il lavoro complessivo sara': Tale lavoro sara' uguale alla variazione di energia cinetica del fluido che passa da A a C: dove si e' fatto ancora uso dell'equazione di continuita'. Poiche': Otteniamo: Semplificando:
20 Teorema di Bernoulli Questa si puo' scrivere anche come: Teorema di Bernoulli: La somma della pressione, dell'energia potenziale per unita' di volume e dell'energia cinetica per unita' di volume e' una costante. La (3) si puo' anche scrivere: La somma dell'altezza piezometrica, geometrica e cinetica e' una costante.
21 Teorema di Torricelli Un fluido fuoriesca da un foro di sezione molto piccola rispetto alla superficie libera del serbatoio. Se il serbatoio e' molto grande, tale superficie libera ha velocita' trascurabile. Dal teorema di Bernoulli: Quindi: Teorema di Torricelli. Il liquido che fuoriesce da un piccolo foro si muove con la stessa velocita' che avrebbe un corpo che cade liberamente nel campo gravitazionale.
22 Tubo di Venturi Misura della portata di un condotto. Se consideriamo due sezioni: da cui: Dal teorema di Bernoulli, in cui, Quindi: Se colleghiamo due manomentri possiamo misurare la pressione e quindi la velocita' del fluido. Da questa otteniamo la portata: Carburatore. Benzina che si muove nella zona di bassa pressione.
Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI
Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata
Proprieta meccaniche dei fluidi
Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.
MASSA VOLUMICA o DENSITA
MASSA VOLUMICA o DENSITA Massa volumica di una sostanza: è la massa di sostanza, espressa in kg, che occupa un volume pari a 1 m 3 1 m 3 di aria ha la massa di 1,2 kg 1 m 3 di acqua ha la massa di 1000
LEGGE DI STEVINO. La pressione non dipende dalla superficie della base del recipiente
LA PRESSIONE NEI LIQUIDI DOVUTA ALLA FORZA PESO In condizioni di equilibrio la superficie libera di un liquido pesante deve essere piana ed orizzontale. Liquido di densitàρ Ogni strato orizzontale di liquido
Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia
Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione Foronomia In idrostatica era lecito trascurare l attrito interno o viscosità e i risultati ottenuti valevano sia per i liquidi
LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante
IDRAULICA LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante 2 LEGGE DI STEVIN Z = ALTEZZA GEODETICA ENERGIA POTENZIALE PER UNITA DI PESO p /
ELEMENTI DI IDROSTATICA IDROSTATICA L'idrostatica (anche detta fluidostatica) è una branca della meccanica dei fluidi che studiailiquidi liquidiin instato statodi diquiete quiete. Grandezze caratteristiche
Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ]
Idrogeologia Oltre alle proprietà indici del terreno che servono a classificarlo e che costituiscono le basi per utilizzare con facilità l esperienza raccolta nei vari problemi geotecnici, è necessario
CAPITOLO 5 IDRAULICA
CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'
Capitolo 03 LA PRESSIONE ATMOSFERICA. 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni
Capitolo 03 LA PRESSIONE ATMOSFERICA 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni 12 3.1 Peso dell aria I corpi solidi hanno un loro peso, ma anche i corpi gassosi e quindi l aria,
Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia
Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione
TEORIA CINETICA DEI GAS
TEORIA CINETICA DEI GAS La teoria cinetica dei gas è corrispondente con, e infatti prevede, le proprietà dei gas. Nella materia gassosa, gli atomi o le molecole sono separati da grandi distanze e sono
F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.
Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,
Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA
Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi
Modulo di Meccanica e Termodinamica
Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e
Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo
Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione
Possiamo vedere in azione questo principio nell impianto frenante delle automobili, o nei ponti idraulici delle officine.
La pressione Pressione: intensità della forza F che agisce perpendicolarmente alla superficie S. La formula diretta è: Nota bene che: 1. la pressione è una grandezza scalare, F p = S 2. la forza è espressa
ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica
1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio
L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI. Il punto materiale e il corpo rigido. L equilibrio del punto materiale
L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI Il punto materiale e il corpo rigido Un corpo è in equilibrio quando è fermo e continua a restare fermo. Si intende, per punto materiale, un oggetto così piccolo
19 Il campo elettrico - 3. Le linee del campo elettrico
Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,
Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1
Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1 COMPITO A Un blocco di massa m 1 = 1, 5 kg si muove lungo una superficie orizzontale priva di attrito alla velocità v 1 = 8,2 m/s.
PROBLEMA 1. Soluzione
PROBLEMA 1 Prendendo come riferimento la pressione atmosferica di 1013 mbar agente sulla superficie libera di un corso d acqua, risulta che la pressione idrostatica sott acqua raddoppia a una profondità
Esercitazione 5 Dinamica del punto materiale
Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal
Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti
Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 Un punto materiale di massa 5 kg si muove di moto circolare uniforme con velocità tangenziale 1 m/s. Quanto
. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d
Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche
a t Esercizio (tratto dal problema 5.10 del Mazzoldi)
1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2
Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.
Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento
DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi
DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato
Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:
1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al
Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.
Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.
Forze come grandezze vettoriali
Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due
Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.
Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un
MECCANICA dei FLUIDI
MECCNIC dei LUIDI La meccanica dei fluidi si occupa dello studio di liquidi e aeriformi in quiete o in movimento. L IDROTTIC studia le leggi che regolano lo stato dei liquidi in quiete. L IDRODINMIC studia
Lavoro di una forza costante
Lavoro ed energia Per spostare un oggetto o per sollevarlo dobbiamo fare un lavoro Il lavoro richiede energia sotto varie forme (elettrica, meccanica, ecc.) Se compio lavoro perdo energia Queste due quantità
9. Urti e conservazione della quantità di moto.
9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due
CONSERVAZIONE DELL ENERGIA MECCANICA
CONSERVAZIONE DELL ENERGIA MECCANICA L introduzione dell energia potenziale e dell energia cinetica ci permette di formulare un principio potente e universale applicabile alla soluzione dei problemi che
Cap 3.1- Prima legge della DINAMICA o di Newton
Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria
Energia potenziale elettrica
Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo
CAFFE` Il segreto è nel fisico
CAFFE` Il segreto è nel fisico Preparata la macchina del caffè, e messala sul fuoco: L acqua raggiunge rapidamente la temperatura di ebollizione (100 C). Lo spazio del serbatoio lasciato libero viene occupato
GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω
GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,
MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME
6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice
LA CORRENTE ELETTRICA CONTINUA
LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico
L H 2 O nelle cellule vegetali e
L H 2 O nelle cellule vegetali e il suo trasporto nella pianta H 2 O 0.96 Å H O 105 H 2s 2 2p 4 tendenza all ibridizzazione sp 3 H δ+ O δ- δ+ 1.75 Å H legame idrogeno O δ- H H δ+ δ+ energia del legame
FAM. 1. Sistema composto da quattro PM come nella tabella seguente
Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente
DINAMICA. 1. La macchina di Atwood è composta da due masse m
DINAMICA. La macchina di Atwood è composta da due masse m e m sospese verticalmente su di una puleggia liscia e di massa trascurabile. i calcolino: a. l accelerazione del sistema; b. la tensione della
Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.
Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,
LA FORZA. Il movimento: dal come al perché
LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1
I poli magnetici isolati non esistono
Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero
Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie
Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una
Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1.
L accelerazione iniziale di un ascensore in salita è 5.3 m/s 2. La forza di contatto normale del pavimento su un individuo di massa 68 kg è: a) 2.11 10 4 N b) 150 N c) 1.03 10 3 N Un proiettile viene lanciato
Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013
Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola
Verifica sperimentale del principio di conservazione dell'energia meccanica totale
Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone
F 2 F 1. r R F A. fig.1. fig.2
N.1 Un cilindro di raggio R = 10 cm e massa M = 5 kg è posto su un piano orizzontale scabro (fig.1). In corrispondenza del centro del cilindro è scavata una sottilissima fenditura in modo tale da ridurre
Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili
Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Angolo di risalita = 25 Altezza massima della salita = 25,87 m Altezza della salita nel tratto lineare (fino all ultimo pilone di metallo)
Esercitazione VIII - Lavoro ed energia II
Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito
POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA
1 POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA Per ogni punto del programma d esame vengono qui di seguito indicate le pagine corrispondenti nel testo G. Tonzig,
CENTRIFUGAZIONE. Centrifugazione. Forza centrifuga e caratteristiche costruttive. Forza centrifuga e caratteristiche costruttive. (v =!
CENTRIFUGAZIONE Prof.ssa Silvia Recchia Centrifugazione Alle sospensioni viene applicato un campo gravitazionale artificiale attraverso la rotazione ad alta velocità (campo centrifugo). Per la separazione
Una forza, per la fisica, compie un lavoro se provoca uno spostamento.
Lavoro La forza è la causa del cambiamento di moto di un corpo (dinamica). Se la risultante di puù forze applicate ad un corpo è nulla il corpo è in equilibrio stabile (statica). Una forza può causare
Fenomeni di superficie Tensione superficiale
enomeni di superficie Tensione superficiale Caratteristiche del potenziale di interazione fra due molecole. Assumiamo che le molecole siano a simmetria sferica, che r rappresenti la distanza fra due molecole
Energia potenziale elettrica
Energia potenziale elettrica La dipendenza dalle coordinate spaziali della forza elettrica è analoga a quella gravitazionale Il lavoro per andare da un punto all'altro è indipendente dal percorso fatto
percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.
Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra
Progetto La fisica nelle attrazioni Attrazione ISPEED
Progetto La fisica nelle attrazioni Attrazione ISPEED Dati utili Lunghezza del treno: 8,8 m Durata del percorso: 55 s Lunghezza del percorso: 1200 m Massa treno a pieno carico: 7000 kg Altezza della prima
ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN.
PIANO DI LAVORO DELLA DISCIPLINA: FISICA CLASSI: SECONDE CORSO: LICEO SCIENTIFICO AS 2014-2015 Linee generali dell insegnamento della fisica nel liceo scientifico, da indicazioni ministeriali In particolare
LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi
LO STATO GASSOSO Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi STATO GASSOSO Un sistema gassoso è costituito da molecole
2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà
2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà 1 I liquidi e loro proprietà 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito. I gas occupano i loro contenitori uniformemente
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di
Lezione 18. Magnetismo WWW.SLIDETUBE.IT
Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà
Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita
Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero
Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali
Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100
EQUILIBRIO DEI FLUIDI
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ EQUILIBRIO DEI FLUIDI CLASSI III A, III B E IV A Prof. Erasmo Modica [email protected] SOLIDI, LIQUIDI E GAS La divisione della materia nei suoi tre
Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia
Seminario didattico Ingegneria Elettronica Lezione 5: Dinamica del punto materiale Energia 1 Esercizio n 1 Un blocco di massa m = 2 kg e dimensioni trascurabili, cade da un altezza h = 0.4 m rispetto all
GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA
8. LA CONSERVAZIONE DELL ENERGIA MECCANICA IL LAVORO E L ENERGIA 4 GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA Il «giro della morte» è una delle parti più eccitanti di una corsa sulle montagne russe. Per
Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1
Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1
FENOMENI DI SUPERFICIE 1 Un possibile percorso: LA TENSIONE SUPERFICIALE Scheda esperienza 1
PIANO ISS P r e s i d i o M I L A N O I s t i t u t o T e c n i c o I n d u s t r i a l e S t a t a l e L i c e o S c i e n t i f i c o T e c n o l o g i c o E t t o r e M o l i n a r i Via Crescenzago,
bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo
Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.
La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:
Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo
GEOMETRIA DELLE MASSE
1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,
L E L E G G I D E I G A S P A R T E I
L E L E G G I D E I G A S P A R T E I Variabili di stato Equazioni di stato Legge di Boyle Pressione, temperatura, scale termometriche Leggi di Charles/Gay-Lussac Dispense di Chimica Fisica per Biotecnologie
Campo elettrico per una carica puntiforme
Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici
Oscillazioni: il pendolo semplice
Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per
2 R = mgr + 1 2 mv2 0 = E f
Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore
GIRO DELLA MORTE PER UN CORPO CHE ROTOLA
0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte
Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile
Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2015-2016 A. Ponno (aggiornato al 19 gennaio 2016) 2 Ottobre 2015 5/10/15 Benvenuto, presentazione
Cenni di Teoria Cinetica dei Gas
Cenni di Teoria Cinetica dei Gas Introduzione La termodinamica descrive i sistemi termodinamici tramite i parametri di stato (p, T,...) Sufficiente per le applicazioni: impostazione e progettazione di
Lezione 11: Forze e pressioni nei fluidi
Lezione 11 - pag.1 Lezione 11: Forze e pressioni nei fluidi 11.1. Dalla forza alla pressione Abbiamo visto che la Terra attrae gli oggetti solidi con una forza, diretta verso il suo centro, che si chiama
Programmazione modulare 2015-16
Programmazione modulare 2015-16 ndirizzo: BEO Disciplina: FS lasse: Prime 1 1B 1 1G Ore settimanali previste: 3 (2 ore eoria - 1 ora Laboratorio) OPEEZE itolo odulo POLO Ore previste per modulo Periodo
FISICA (modulo 1) PROVA SCRITTA 10/02/2014
FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie
2. L ENERGIA MECCANICA
. L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».
GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso
GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO
CLASSE PRIMA A. I..I.S. via Silvestri,301 Plesso A.Volta Programma di Fisica e Laboratorio Programma Attività Didattiche svolte A.S.
CLASSE PRIMA A I..I.S. via Silvestri,301 Plesso A.Volta Programma di Fisica e Laboratorio Programma Attività Didattiche svolte Materia A.S.2014/2015 FISICA e Laboratorio di Fisica Unità 2- Strumenti matematici:
GAS. I gas si assomigliano tutti
I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle
Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013
Preparazione alle gare di II livello delle Olimpiadi della Fisica 01 Incontro su temi di termodinamica 14/1/01 Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti
MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi?
MECCANICA Cinematica 1. Un oggetto che si muove di moto circolare uniforme, descrive una circonferenza di 20 cm di diametro e compie 2 giri al secondo. Qual è la sua accelerazione? 2. Un sasso cade da
Horae. Horae Software per la Progettazione Architettonica e Strutturale
1 IL MATERIALE X-LAM Nel programma CDSWin il materiale X-LAM pu ò essere utilizzato solo come elemento parete verticale. Quindi, dal punto di vista strutturale, il suo comportamento è prevalentemente a
2. La disequazione 9 (3x 2 + 2) > 16 (x - 3) è soddisfatta: A) sempre B) solo per x < 0 C) solo per x > 2/3 D) mai E) solo per x < 2/3
MATEMATICA 1. Per quali valori di x è x 2 > 36? A) x > - 6 B) x < - 6, x > 6 C) - 6 < x < 6 D) x > 6 E) Nessuno 2. La disequazione 9 (3x 2 + 2) > 16 (x - 3) è soddisfatta: A) sempre B) solo per x < 0 C)
LA CORRENTE ELETTRICA
L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso
v = 4 m/s v m = 5,3 m/s barca
SOLUZIONI ESERCIZI CAPITOLO 2 Esercizio n.1 v = 4 m/s Esercizio n.2 v m = 5,3 m/s = 7 minuti e 4 secondi Esercizio n.3 Usiamo la seguente costruzione grafica: fiume 1 km/h barca 7 km/h La velocità della
Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v.
Quantità di moto Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. La seconda legge di Newton può essere scritta con la quantità di moto: d Q F =
