CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà"

Transcript

1 CCS - Biologia CCS - Fisica I gas e loro proprietà 1 I liquidi e loro proprietà

2 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito. I gas occupano i loro contenitori uniformemente e completamente. I gas diffondono e si miscelano rapidamente.

3 3 Proprietà dei Gas Le proprietà dei sistemi gassosi possono essere descritte con equazioni matematiche. Le equazioni mettono in relazione V = volume del gas (L) T = temperatura (K) n = quantità di sostanza (mol) P = pressione (atmosfere) 1 atm = 765 mm Hg Gas: H 2 N 2 O 2 F 2 Cl 2 He Ne Ar CO CO 2 NO 2 SO 2 CH 4

4 PRESSIONE 4 La pressione si definisce come la forza esercitata per unità di superficie Forza Pressione = = Area F A moneta su un piano F peso della moneta A area della moneta

5 Barometro e Manometro 5 Il barometro viene impiegato per la misura della pressione atmosferica. Un manometro viene impiegato per la misura della pressione di un campione di gas. L altezza della colonna misura la P atmosferica 1 atm standard = 760 mm Hg L unità SI della pressione è il PASCAL, Pa, 1 atm = kpa La Pressione viene misurata in relazione alla differenza di altezza, Δh, del mercurio nei due rami del manometro.

6 P 1 V La legge di Boyle PV cost. (quando n e T sono costanti) per una data quantità di gas a temperatura costante, il volume del gas è inversamente proporzionale alla sua pressione 6 P 1 V 1 cost. P 2 V 2 (n e T costanti)

7 Legge di Charles 7 V T V b T Il volume di una data quantità di gas a pressione costante è direttamente proporzionale alla temperatura Kelvin (assoluta) V(T) V 0 x (1 αt); V volume del gas alla T 0 C

8 La legge di Avogadro 8 Il volume molare, V m è il volume occupato da una mole di molecole V m V/n Volumi molari Gas ideale Argon Biossido di carbonio Azoto Ossigeno Idrogeno mol gas L gas (a STP) Ad una data temperatura e pressione, il volume di un gas è direttamente proporzionale alla sua quantità V n e V c n

9 Legge di Boyle Legge di Charles Ipotesi di Avogadro 9 Legge dei Gas Ideali P V = n R T R (costante universale dei gas) = 0,082 L atm/k mol Può essere derivata da dati sperimentali o ricavata teoricamente (teoria cinetica dei gas).

10 Uso di PV = nrt 10 Quanto N 2 è necessario per riempire un pallone del volume di L a P = 745 mm Hg e T = 25 o C? R = L atm/k mol V = L T = 25 o C = 298 K P = 745 mm Hg (1 atm/760 mm Hg) = 0.98 atm n = PV / RT n = (0.98 atm)(2.7 x 10 4 L) ( L atm/k mol)(298 K) n = 1.1 x 10 3 mol (o circa 30 kg di gas)

11 Densità dei gas 11 La densità è definita come massa d = = volume m V Per un gas ideale PV=n R T dove massa n = = massa molare m M m Quindi P V = m M m R T da cui P M m = m V R T = d R T e si ottiene d = P M R T m

12 I Gas nelle reazioni 12 2 H 2 O 2 (liq) 2 H 2 O(g) + O 2 (g) 1.1 g di H 2 O 2 si decompongono in un pallone da 2.50 L. Quale è la pressione di O 2 a 25 o C? Quale quella di H 2 O? Strategia: Calcolare le moli di H 2 O 2 dai dati forniti, e poi le moli di O 2 ed H 2 O tenendo conto del fattore stechiometrico Successivamente, calcolare P da n, R, T, e V.

13 Soluzione g H 2 O 2 1 mol 34.0 g = mol mol H 2 O 2 1 mol O 2 2 mol H 2 O 2 = mol O 2 P of O 2 = nrt/v = (0.016 mol)( L atm/k mol)(298 K) 2.50 L P di O 2 = 0,016 atm Vi sono il doppio di moli di H 2 O rispetto ad O 2. P è proporzionale ad n. Perciò, P di H 2 O è il doppio di quella di O 2. P di H 2 O = atm

14 14 Gas e Stechiometria Volume Molare Il volume molare è il volume occupato da una mole di gas. Per un gas ideale in condizioni standard (STP) (273,15 K, 1 atm) il volume molare vale 22,414 L PV = nrt 1atm x V M = 1 mol x 0,082 (L atm/mol K) x 273,1 K V M = 22,414 L

15 Miscele di gas 15 Ciascun gas in una miscela, contribuisce con la sua pressione parziale alla pressione totale come se agisse indipendentemente da tutti gli altri La legge delle pressioni parziali (o di Dalton) stabilisce che la pressione totale di una miscela di gas è uguale alla somma delle pressioni parziali dei singoli componenti la miscela: P TOT = P A + P B + P C +

16 16 Le singole pressioni parziali seguono la legge dei gas ideali: PA V = n A R T da cui PA = n La pressione totale può essere scritta: P = A RT V RT RT PA + PB +... = n A + n B +... = (n A + n B + V V...) RT V numero totale di moli= n P = n RT V

17 Nota la pressione totale e la composizione di una miscela di gas le pressioni parziali sono 17 PA = X A P PB = X B P... da cui PA PB X A = X B = XC = P P P C P La somma di tutte le frazioni molari dei componenti di una miscela è pari a 1

18 Legge di Dalton delle Pressioni Parziali 18 2 H 2 O 2 (liq) 2 H 2 O(g) + O 2 (g) atm atm Qual è la pressione totale nel pallone? P totale nella miscela gassosa = P A + P B +... Perciò, P totale = P(H 2 O) + P(O 2 ) = atm

19 COMPOSIZIONE DELL ARIA SECCA 19 N 2 O 2 Ar CO 2 Ne He Kr H 2 Xe O 3 Vol % 78,09 % 20,95 % 0,93 % 0,03 % 0,0018 % 0,0005 % 0,0001 % 0,00005 % 0, % 0, % 563 mmhg 149 mmhg 0,3 mmhg

20 Deviazioni dalla Legge dei Gas Ideali 20 Le molecole reali possiedono un volume proprio e interagiscono. Altrimenti un gas non potrebbe liquefare. Gas ideale La molecola blu NON interagendo con le altre urta la parete con notevole forza. Le forze di attrazione che esistono tra la molecola blu e quelle rosse rallentano il moto delle molecole; la molecola blu urta la parete con minore forza; la pressione è minore. Gas reale 2009 Brooks/Cole - Cengage

21 Deviazioni dalla Legge dei Gas Ideali 21 L EQUAZIONE di VAN DER WAALS tiene conto del volume delle molecole, e delle forze intermolecolari. P misurata V misurato = V(ideale) ( n 2 a ) P V 2 V - nb nrt 2009 Brooks/Cole - Cengage Correzione per le forze intermolecolari Per Cl 2 gassoso a = 6.49, b = Correzione per il volume Per 4.0 mol Cl 2 in un serbatoio di 4.0 L a o C. P (ideale) = nrt/v = 30.6 atm P (van der Waals) = 26.0 atm

22 22 DIFFUSIONE ed EFFUSIONE dei GAS Bromo(l) DIFFUSIONE: mescolamento di due o più gas dovuto ai movimenti molecolari 2009 Brooks/Cole - Cengage

23 EFFUSIONE: movimento di un gas attraverso una fessura per effetto di una differenza di pressione. 23 Viene espressa come una velocità: mol/tempo ed è proporzionale alla T ed inversamente alla Massa molare del gas 2009 Brooks/Cole - Cengage

24 Proprietà dei Liquidi Brooks/Cole - Cengage I liquidi hanno volume proprio ed assumono la forma del contenitore I liquidi sono quasi incomprimibili le molecole sono in moto continuo vi sono apprezzabili forze intermolecolari le molecole sono vicine l una all altra

25 I Liquidi 25 Le due proprietà principali sono: L EVAPORAZIONE ed il suo processo opposto la CONDENSAZIONE LIQUIDO Evaporazione + energia Per rompere i legami Intermolecolari VAPORE 2009 Brooks/Cole - Cengage energia Formazione legami Intermolecolari Condensazione

26 26 Per evaporare, le molecole devono possedere una energia minima da poter rompere i legami intermolecolari 2009 Brooks/Cole - Cengage

27 La distribuzione delle energie molecolari in fase liquida 27 Energia minima necessaria per vincere le forze intermolecolari A Temperature più elevate un numero maggiore di molecole ha energia sufficiente per rompere i legami Intermolecolari e passare dallo stato liquido a vapore Brooks/Cole - Cengage

28 Pressione di vapore 28 In un recipiente chiuso, le molecole che evaporano esercitano una pressione che rimane costante quando la velocità di evaporazione e condensazione diventano uguali. La pressione di vapore aumenta con l aumentare della temperatura Brooks/Cole - Cengage

29 Pressione di Vapore Brooks/Cole - Cengage

30 1 atm Le curve mostrano tutte le condizioni di P e T in cui LIQ e VAP sono in EQUILIBRIO 2. La pressione di vapore (P Vap ) aumenta con T. 3. Quando P Vap P esterna, il liquido bolle Brooks/Cole - Cengage

31 Liquidi 31 Se P est = 760 mm Hg, T di ebollizione è il PUNTO di EBOLLIZIONE NORMALE La pressione di vapore di una data molecola ad una data T dipende dalle forze intermolecolari. ether O H 5 C 2 C 2 H 5 dipoledipole alcohol O H 5 C 2 H H-bonds water O H H extensive H-bonds Forza crescente delle interazioni IM 2009 Brooks/Cole - Cengage

32 Capillarità 32 La risultante delle forze di interazione molecolare su una molecola è denominata forza di coesione (se si sviluppa fra molecole identiche) o forza di adesione (se si sviluppa fra molecole diverse). forze di coesione tengono insieme le sostanze forze di adesione fanno attrarre sostanze diverse (acqua su vetro) 2009 Brooks/Cole - Cengage Effetti della capillarità sull acqua e mercurio

I gas e loro proprietà Cap , 9-12, 15-24, 27-28, 31-33, 37-40, 52, 93-96

I gas e loro proprietà Cap , 9-12, 15-24, 27-28, 31-33, 37-40, 52, 93-96 2016 2017 CCS - Biologia CCS Scienze Geologiche 1 I gas e loro proprietà Cap 11. 1-7, 9-12, 15-24, 27-28, 31-33, 37-40, 52, 93-96 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito.

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi LO STATO GASSOSO Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi STATO GASSOSO Un sistema gassoso è costituito da molecole

Dettagli

Stati di aggregazione della materia

Stati di aggregazione della materia SOLIDO: Forma e volume propri. Stati di aggregazione della materia LIQUIDO: Forma del recipiente in cui è contenuto, ma volume proprio. GASSOSO: Forma e volume del recipiente in cui è contenuto. Parametri

Dettagli

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO Lo Stato Gassoso Gas Vapore Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente MACROSCOPICO microscopico bassa densità molto comprimibile distribuzione

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

Stati di aggregazione della materia unità 2, modulo A del libro

Stati di aggregazione della materia unità 2, modulo A del libro Stati di aggregazione della materia unità 2, modulo A del libro Gli stati di aggregazione della materia sono tre: solido, liquido e gassoso, e sono caratterizzati dalle seguenti grandezze: Quantità --->

Dettagli

I GAS GAS IDEALI. PV=nRT. Pressione Volume numero di moli Temperatura Costante dei gas. P V n T R. n, T= cost Legge di Boyle

I GAS GAS IDEALI. PV=nRT. Pressione Volume numero di moli Temperatura Costante dei gas. P V n T R. n, T= cost Legge di Boyle I GAS Pressione Volume numero di moli Temperatura Costante dei gas GAS IDEALI P V n T R n = 1 Isoterma: pv = cost Isobara: V/T = cost. Isocora: P/t = cost. n, T= cost Legge di Boyle n, P = cost Legge di

Dettagli

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1

Dettagli

I GAS POSSONO ESSERE COMPRESSI.

I GAS POSSONO ESSERE COMPRESSI. I GAS Tutti i gas sono accomunati dalle seguenti proprietà: I GAS POSSONO ESSERE COMPRESSI. L aria compressa occupa un volume minore rispetto a quello occupato dall aria non compressa (Es. gomme dell auto

Dettagli

Lo Stato Gassoso: Alcune Caratteristiche

Lo Stato Gassoso: Alcune Caratteristiche Lo Stato Gassoso: Alcune Caratteristiche Sebbene possano avere proprietà chimiche distinte, le sostanze in fase gas hanno caratteristiche fisiche molto simili, in quanto le particelle (atomi o molecole)

Dettagli

L E L E G G I D E I G A S P A R T E I

L E L E G G I D E I G A S P A R T E I L E L E G G I D E I G A S P A R T E I Variabili di stato Equazioni di stato Legge di Boyle Pressione, temperatura, scale termometriche Leggi di Charles/Gay-Lussac Dispense di Chimica Fisica per Biotecnologie

Dettagli

STATO LIQUIDO. Si definisce tensione superficiale (γ) il lavoro che bisogna fare per aumentare di 1 cm 2 la superficie del liquido.

STATO LIQUIDO. Si definisce tensione superficiale (γ) il lavoro che bisogna fare per aumentare di 1 cm 2 la superficie del liquido. STTO LIQUIDO Una sostanza liquida è formata da particelle in continuo movimento casuale, come in un gas, tuttavia le particelle restano a contatto le une alle altre e risentono sempre delle notevoli forze

Dettagli

I gas. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

I gas. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 I gas Universita' di Udine Problema Un cubo di osmio ha lato di 0. m ed e appoggiato su una tavola. Al contatto tra la tavola ed il cubo, quanto vale la pressione (N/m )? Nota: le densita vi vengono date

Dettagli

TEORIA CINETICA DEI GAS

TEORIA CINETICA DEI GAS TEORIA CINETICA DEI GAS La teoria cinetica dei gas è corrispondente con, e infatti prevede, le proprietà dei gas. Nella materia gassosa, gli atomi o le molecole sono separati da grandi distanze e sono

Dettagli

PROPRIETÁ DEI LIQUIDI

PROPRIETÁ DEI LIQUIDI PROPRIETÁ DEI LIQUIDI Viscosità: resistenza di un fluido al flusso, ossia scorrimento relativo delle molecole Una semplice misura (indiretta) è il tempo di efflusso di un dato volume di liquido attraverso

Dettagli

Lo stato gassoso e le caratteristiche dei gas

Lo stato gassoso e le caratteristiche dei gas Lo stato gassoso e le caratteristiche dei gas 1. I gas si espandono fino a riempire completamente e ad assumere la forma del recipiente che li contiene 2. Igasdiffondonounonell altroesonoingradodimescolarsiintuttiirapporti

Dettagli

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 2 LO STATO GASSOSO

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 2 LO STATO GASSOSO Università degli studi di MILANO Facoltà di AGRARIA El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA Lezione 2 Anno Accademico 2010-2011 Docente: Dimitrios Fessas LO STATO GASSOSO Prof. Dimitrios

Dettagli

Gas perfetti e sue variabili

Gas perfetti e sue variabili Gas perfetti e sue variabili Un gas è detto perfetto quando: 1. è lontano dal punto di condensazione, e quindi è molto rarefatto 2. su di esso non agiscono forze esterne 3. gli urti tra le molecole del

Dettagli

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA Poiché è impossibile contare o pesare gli atomi o le molecole che formano una qualsiasi sostanza chimica, si ricorre alla grandezza detta quantità

Dettagli

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Solvente (componente presente in maggior quantità) SOLUZIONE Soluti

Dettagli

Diagramma di stato di H 2 O

Diagramma di stato di H 2 O Lezione 13 1. Pressione e temperatura 2. Leggi dei gas 3. Teoria cinetica ei gas 4. Gas ideali e gas reali 5. Miscele gassose: legge di Dalton 6. Frazioni molari Diagramma di stato di H 2 O Diagrammi di

Dettagli

GAS. I gas si assomigliano tutti

GAS. I gas si assomigliano tutti I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle

Dettagli

I Gas e Loro Proprietà (II)

I Gas e Loro Proprietà (II) I Gas e Loro Proprietà (II) 2017 10 miles 0.2 atm 4 miles 0.5 atm Sea level 1 atm Dario Bressanini Gas e reazioni chimiche Determinare il volume di CO 2 prodotto a 37 0 C e 1.0 atm quando 5.6 g di glucosio

Dettagli

Lo stato gassoso. L atmosfera terrestre è il sistema gassoso in cui siamo immersi

Lo stato gassoso. L atmosfera terrestre è il sistema gassoso in cui siamo immersi Lo stato gassoso L atmosfera terrestre è il sistema gassoso in cui siamo immersi I gas sono comprimibili (ampi spazi vuoti tra le particelle?) I gas si espandono facilmente riempiendo rapidamente lo spazio

Dettagli

LEZIONE 1. Materia: Proprietà e Misura

LEZIONE 1. Materia: Proprietà e Misura LEZIONE 1 Materia: Proprietà e Misura MISCELE, COMPOSTI, ELEMENTI SOSTANZE PURE E MISCUGLI La materia può essere suddivisa in sostanze pure e miscugli. Un sistema è puro solo se è formato da una singola

Dettagli

Gas. Caratteristiche tipiche dei gas rispetto a solidi e liquidi. Leggi dei gas: legge di Boyle, legge di Charles, legge di Avogadro

Gas. Caratteristiche tipiche dei gas rispetto a solidi e liquidi. Leggi dei gas: legge di Boyle, legge di Charles, legge di Avogadro Gas Caratteristiche tipiche dei gas rispetto a solidi e liquidi Definizione di pressione Unità di misura della pressione Leggi dei gas: legge di Boyle, legge di Charles, legge di Avogadro Equazione di

Dettagli

See more about www.scienzaescuola.it

See more about www.scienzaescuola.it See more about www.scienzaescuola.it ESERCIZI SUI GAS ORDINATI PER TIPOLOGIA E RISOLTI: Prof. Gabrielli Luciano (Lic. Scientifico L. da Vinci Sora FR) Charles, Boyle, Gay-Lussac, Eq. Stato, Eq. Stato e

Dettagli

Fisiologia della Respirazione 1.Introduzione-Leggi dei Gas. FGE aa.2015-16

Fisiologia della Respirazione 1.Introduzione-Leggi dei Gas. FGE aa.2015-16 Fisiologia della Respirazione 1.Introduzione-Leggi dei Gas FGE aa.2015-16 Obiettivi Trasporto ventilatorio convettivo dei gas integrato con trasporto convettivo circolatorio e respirazione cellulare Cenni

Dettagli

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato I GAS PERFETTI GAS Forze di legame intermolecolari ridotte Stato altamente disordinato Principali caratteristiche: Bassa viscosità Assenza di volume e forma propri Comprimibilità Miscibilità Pressione:

Dettagli

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult SISTEM INRIO DI DUE IQUIDI OTII MENTE MISCIII che seguono Raoult Consideriamo due liquidi e totalmente miscibili di composizione χ e χ presenti in un contenitore ad una certa temperatura T=T 1. o strato

Dettagli

Elementi che esistono come gas a 25 0 C and 1 atmosfera 5.1

Elementi che esistono come gas a 25 0 C and 1 atmosfera 5.1 I gas Capitolo 5 Elementi che esistono come gas a 25 0 C and 1 atmosfera 5.1 Tabella 5.1 Alcune sostanze che si trovano allo stato gassoso a 1 atm e 25 C Elementi H 2 (idrogeno molecolare) N 2 (azoto molecolare)

Dettagli

MASSA VOLUMICA o DENSITA

MASSA VOLUMICA o DENSITA MASSA VOLUMICA o DENSITA Massa volumica di una sostanza: è la massa di sostanza, espressa in kg, che occupa un volume pari a 1 m 3 1 m 3 di aria ha la massa di 1,2 kg 1 m 3 di acqua ha la massa di 1000

Dettagli

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

Legge di stato dei gas ideali

Legge di stato dei gas ideali Legge di stato dei gas ideali Le leggi di Boyle e Charles/Gay Lussac possono essere riunite, insieme al principio di Avogadro, in un'unica equazione che correla fra loro P, V, T e numero di moli di un

Dettagli

Lo stato gassoso. Particelle con volume proprio trascurabile puntiformi

Lo stato gassoso. Particelle con volume proprio trascurabile puntiformi Lo stato gassoso Gas ideale (o perfetto) Particelle in movimento (casuale) Particelle con volume proprio trascurabile puntiformi Assenza di interazioni tra le particelle trasformazioni fisiche e non chimiche

Dettagli

Proprieta meccaniche dei fluidi

Proprieta meccaniche dei fluidi Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.

Dettagli

Ripasso sulla temperatura, i gas perfetti e il calore

Ripasso sulla temperatura, i gas perfetti e il calore Ripasso sulla temperatura, i gas perfetti e il calore Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia La temperatura Fenomeni non interpretabili con le leggi della meccanica Dilatazione

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013 Preparazione alle gare di II livello delle Olimpiadi della Fisica 01 Incontro su temi di termodinamica 14/1/01 Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti

Dettagli

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti Unità di misura Le unità di misura sono molto importanti 1000 è solo un numero 1000 lire unità di misura monetaria 1000 unità di misura monetaria ma il valore di acquisto è molto diverso 1000/mese unità

Dettagli

LE PROPRIETA DEI GAS

LE PROPRIETA DEI GAS LE PROPRIETA DEI GAS Per definire lo stato di un gas, bisogna definire le tre grandezze fisiche, chiamate variabili di stato, che lo caratterizzano: volume, pressione e temperatura. E' possibile descrivere

Dettagli

= cost a p costante V 1 /T 1 =V 2 /T 2 LEGGE DI GAY-LUSSAC: Un sistema allo stato gassoso è definito da 4. mmhg (torr), bar.

= cost a p costante V 1 /T 1 =V 2 /T 2 LEGGE DI GAY-LUSSAC: Un sistema allo stato gassoso è definito da 4. mmhg (torr), bar. GAS IDEALI Un sistema allo stato gassoso è definito da 4 parametri: OLUME () l, m 3 PRESSIONE (p) Pa, atm, mmhg (torr), bar QUANTITA DI SOSTANZA (n) mol TEMPERATURA (T) K Sperimentalmente sono state determinate

Dettagli

LA MATERIA ED I SUOI STATI

LA MATERIA ED I SUOI STATI LA MATERIA ED I SUOI STATI GAS COMPOSIZIONE DELL ARIA 1. I gas ideali e la teoria cineticomolecolare Nel modello del gas ideale le particelle 1. l energia cinetica media delle particelle è proporzionale

Dettagli

Capitolo 03 LA PRESSIONE ATMOSFERICA. 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni

Capitolo 03 LA PRESSIONE ATMOSFERICA. 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni Capitolo 03 LA PRESSIONE ATMOSFERICA 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni 12 3.1 Peso dell aria I corpi solidi hanno un loro peso, ma anche i corpi gassosi e quindi l aria,

Dettagli

Sistemi Gassosi. GAS = specie che occupa tutto lo spazio disponibile. VOLUME = spazio occupato si misura in: m 3, L (1L = 1dm 3 )

Sistemi Gassosi. GAS = specie che occupa tutto lo spazio disponibile. VOLUME = spazio occupato si misura in: m 3, L (1L = 1dm 3 ) Sistemi Gassosi GAS = specie che occupa tutto lo spazio disponibile VOLUME = spazio occupato si misura in: m 3, L (1L = 1dm 3 ) PRESSIONE = forza per unità di superficie Unità di misura: Forza Newton (N)

Dettagli

L H 2 O nelle cellule vegetali e

L H 2 O nelle cellule vegetali e L H 2 O nelle cellule vegetali e il suo trasporto nella pianta H 2 O 0.96 Å H O 105 H 2s 2 2p 4 tendenza all ibridizzazione sp 3 H δ+ O δ- δ+ 1.75 Å H legame idrogeno O δ- H H δ+ δ+ energia del legame

Dettagli

Lo stato gassoso e le sue proprietà

Lo stato gassoso e le sue proprietà Lo stato gassoso e le sue proprietà Dr. Gabriella Giulia Pulcini Ph.D. Student, Development of new approaches to teaching and learning Natural and Environmental Sciences University of Camerino, ITALY 1

Dettagli

FISICA-TECNICA Miscela di gas e vapori. Igrometria

FISICA-TECNICA Miscela di gas e vapori. Igrometria FISICA-TECNICA Miscela di gas e vapori. Igrometria Katia Gallucci Spesso è necessario variare il contenuto di vapore presente in una corrente gassosa. Lo studio di come si possono realizzare queste variazioni

Dettagli

Cenni di Teoria Cinetica dei Gas

Cenni di Teoria Cinetica dei Gas Cenni di Teoria Cinetica dei Gas Introduzione La termodinamica descrive i sistemi termodinamici tramite i parametri di stato (p, T,...) Sufficiente per le applicazioni: impostazione e progettazione di

Dettagli

Esercizi sui Gas. Insegnamento di Chimica Generale CCS CHI e MAT

Esercizi sui Gas. Insegnamento di Chimica Generale CCS CHI e MAT Insegnamento di Chimica Generale 083424 - CCS CHI e MAT Esercizi sui Gas Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio/education/general-chemistry-exercises/ Esercizio 1 Un

Dettagli

La combustione ed i combustibili

La combustione ed i combustibili La combustione ed i combustibili Concetti di base Potere calorifico Aria teorica di combustione Fumi: volume e composizione Temperatura teorica di combustione Perdita al camino Combustibili Gassosi Solidi

Dettagli

Meccanica e Macchine

Meccanica e Macchine Introduzione alle macchine Meccanica e Macchine La statica tratta lo studio dell equilibrio dei corpi, si occupa delle forze, dei baricentri delle leve e delle travi. La cinematica tratta lo studio del

Dettagli

STATO GASSOSO. nel 1766 nel 1772 nel 1774

STATO GASSOSO. nel 1766 nel 1772 nel 1774 STATO GASSOSO 1 STATO GASSOSO I gas furono le ultime sostanze ad essere identificate dal punto di vista chimico; infatti l idea dell esistenza di diversi tipi di gas si affermò solo lentamente. Scoperta

Dettagli

Applicazioni della Termochimica: Combustioni

Applicazioni della Termochimica: Combustioni CHIMICA APPLICATA Applicazioni della Termochimica: Combustioni Combustioni Il comburente più comune è l ossigeno dell aria Aria secca:! 78% N 2 21% O 2 1% gas rari Combustioni Parametri importanti:! 1.Potere

Dettagli

Il prodotto della pressione per il volume di una determinata massa gassosa è direttamente proporzionale alla temperatura assoluta: PV = KT

Il prodotto della pressione per il volume di una determinata massa gassosa è direttamente proporzionale alla temperatura assoluta: PV = KT ESERCITAZIONE 5 LEGGI DEI GAS Le leggi che governano i rapporti che si stabiliscono tra massa, volume, temperatura e pressione di un gas, sono leggi limite, riferite cioè ad un comportamento ideale, cui

Dettagli

Le forze intermolecolari ed i liquidi Brooks/Cole - Cengage

Le forze intermolecolari ed i liquidi Brooks/Cole - Cengage 2018 Le forze intermolecolari ed i liquidi 1 2009 Brooks/Cole - Cengage Forze Intermolecolari 2 Forze intermolecolari sono forze che si esercitano fra molecole, fra ioni, o fra molecole e ioni. Forze intramolecolari

Dettagli

Statica e dinamica dei fluidi. A. Palano

Statica e dinamica dei fluidi. A. Palano Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione

Dettagli

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV.

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV. Problemi Una mole di molecole di gas ideale a 292 K e 3 atm si espandono da 8 a 20 L e a una pressione finale di 1,20 atm seguendo 2 percorsi differenti. Il percorso A è un espansione isotermica e reversibile;

Dettagli

3. Stato gassoso. Al termine dell unità didattica si dovranno raggiungere i seguenti obiettivi:

3. Stato gassoso. Al termine dell unità didattica si dovranno raggiungere i seguenti obiettivi: 3. Stato gassoso. Al termine dell unità didattica si dovranno raggiungere i seguenti obiettivi:. Descrivere le caratteristiche e il comportamento del gas a livello microscopico.. Definire pressione temperatura

Dettagli

Leggi ricavate da osservazioni sperimentali : mantenendo costante due dei 4 parametri, come variano gli altri due?

Leggi ricavate da osservazioni sperimentali : mantenendo costante due dei 4 parametri, come variano gli altri due? Le leggi dei gas Lo stato gassoso è caratterizzato da mancanza di forma e volume propri, e dalla tendenza a occupare tutto il volume disponibile. Lo stato di un gas dipende da 4 parametri: Volume (V) Pressione

Dettagli

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante IDRAULICA LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante 2 LEGGE DI STEVIN Z = ALTEZZA GEODETICA ENERGIA POTENZIALE PER UNITA DI PESO p /

Dettagli

Stati d aggregazione della materia

Stati d aggregazione della materia Stati d aggregazione della materia SOLIDO: Forma e volume propri. GASSOSO: Forma e volume del recipiente in cui è contenuto. LIQUIDO: Forma del recipiente in cui è contenuto, ma volume proprio. Parametri

Dettagli

Instructor: Maurizio Casarin

Instructor: Maurizio Casarin Instructor: Maurizio Casarin Address: Maurizio Casarin: Via Loredan 4, 35131 - Padova Phone number: +39 049-827 ext. 5164 E-mail address: maurizio.casarin@unipd.it http://www.chimica.unipd.it/maurizio.casarin/pubblica/casarin.htm

Dettagli

Stati di aggregazione della materia. dal microscopico al macroscopico: struttura. interazioni GASSOSO. proprietà SOLIDO LIQUIDO

Stati di aggregazione della materia. dal microscopico al macroscopico: struttura. interazioni GASSOSO. proprietà SOLIDO LIQUIDO Stati di aggregazione della materia GASSOSO dal microscopico al macroscopico: struttura interazioni proprietà SOLIDO LIQUIDO Lo stato gassoso È uno dei tre stati di aggregazione della materia, caratterizzato

Dettagli

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato I GAS PERFETTI GAS Forze di legame intermolecolari ridotte Stato altamente disordinato Principali caratteristiche: Bassa viscosità Assenza di volume e forma propri Comprimibilità Miscibilità Pressione:

Dettagli

Cap. 1 - Stati di aggregazione della materia.

Cap. 1 - Stati di aggregazione della materia. Cap. 1 - Stati di aggregazione della materia. Lo stato di aggregazione di un sistema è determinato dalla energia cinetica delle particelle e dall energia potenziale dovuta alle forze di coesione fra le

Dettagli

Le forze intermolecolari e i liquidi Brooks/Cole - Cengage

Le forze intermolecolari e i liquidi Brooks/Cole - Cengage Le forze intermolecolari e i liquidi 1 2017 2009 Brooks/Cole - Cengage 2 Forze Intermolecolari Forze attrattive che si esercitano fra molecole, fra ioni, o fra molecole e ioni. queste forze sono responsabili

Dettagli

Fondamenti di chimica Raymond Chang Copyright 2009 The McGraw-Hill Companies srl CAPITOLO 5 I GAS

Fondamenti di chimica Raymond Chang Copyright 2009 The McGraw-Hill Companies srl CAPITOLO 5 I GAS CAPITOLO 5 I GAS 5.13 5.14 Strategia: poiché 1 atm = 760 mmhg, è necessario il seguente fattore di conversione per ottenere la pressione in atmosfere. Per la seconda conversione, 1 atm = 101.325 kpa. Soluzione:

Dettagli

LEGGE DI STEVINO. La pressione non dipende dalla superficie della base del recipiente

LEGGE DI STEVINO. La pressione non dipende dalla superficie della base del recipiente LA PRESSIONE NEI LIQUIDI DOVUTA ALLA FORZA PESO In condizioni di equilibrio la superficie libera di un liquido pesante deve essere piana ed orizzontale. Liquido di densitàρ Ogni strato orizzontale di liquido

Dettagli

È una grandezza fisica FONDAMENTALE, SCALARE UNITÀ DI MISURA NEL S.I. : K (KELVIN)

È una grandezza fisica FONDAMENTALE, SCALARE UNITÀ DI MISURA NEL S.I. : K (KELVIN) È una grandezza fisica FONDAMENTALE, SCALARE UNITÀ DI MISURA NEL S.I. : K (KELVIN) È STRETTAMENTE LEGATA ALLA VELOCITÀ DI VIBRAZIONE DELLE MOLECOLE IN UN CORPO: SE LA TEMPERATURA DI UN CORPO AUMENTA LE

Dettagli

Quesiti e problemi. 10 Un gas viene compresso a temperatura costante. 11 Un cilindro con un pistone ha un volume di 250 ml. v f. v f.

Quesiti e problemi. 10 Un gas viene compresso a temperatura costante. 11 Un cilindro con un pistone ha un volume di 250 ml. v f. v f. SUL LIBRO DA PAG 110 A PAG 114 Quesiti e problemi ESERCIZI 1 I gas ideali e la teoria cinetico-molecolare 1 Che cosa si intende per gas ideale? Rispondi in cinque righe. 2 Vero o falso? a) Le molecole

Dettagli

1)Quale tra i seguenti elementi è un gas nobile? a. Si b. Mo c. Ge d. He. 2) L'acqua è:

1)Quale tra i seguenti elementi è un gas nobile? a. Si b. Mo c. Ge d. He. 2) L'acqua è: 1)Quale tra i seguenti elementi è un gas nobile? a. Si b. Mo c. Ge d. He 2) L'acqua è: a. una sostanza elementare b. un composto chimico c. una miscela omogenea d. una soluzione 3) Quale dei seguenti elementi

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

I.T.C.G.T T. Acerbo - Pescara LABORATORIO DI FISICA A. S. 2009/10

I.T.C.G.T T. Acerbo - Pescara LABORATORIO DI FISICA A. S. 2009/10 I.T.C.G.T T. Acerbo - Pescara LABORATORIO DI FISICA A. S. 2009/10 Cognome: D Ovidio Nome: Stefania Classe: 2 B Geometri Data: 04/12/2009 Gruppo: F. Illiceto; V. Ivanochko; M.C. Scopino; M.Terenzi N. pagine:

Dettagli

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Termodinamica Equazione di Stato: p = pressione ; V = volume ; T = temperatura assoluta ; n = numero di moli ; R = costante

Dettagli

LEGAMI INTERMOLECOLARI LEGAMI INTERMOLECOLARI

LEGAMI INTERMOLECOLARI LEGAMI INTERMOLECOLARI I legami (o forze) intermolecolari sono le forze attrattive tra particelle: molecola - molecola, molecola - ione, ione - ione In assenza di queste interazioni tutti i composti sarebbero gassosi NB: attenzione

Dettagli

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Termodinamica

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Termodinamica Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Termodinamica 1) In un recipiente di volume V = 20 l sono contenute 0.5 moli di N 2 (PM=28) alla temperatura di 27 0 C.

Dettagli

La materia. La materia è ogni cosa che occupa uno spazio (e possiamo percepire con i nostri sensi).

La materia. La materia è ogni cosa che occupa uno spazio (e possiamo percepire con i nostri sensi). La materia La materia è ogni cosa che occupa uno spazio (e possiamo percepire con i nostri sensi). Essa è costituita da sostanze, ciascuna delle quali è formata da un determinato tipo di particelle piccolissime,

Dettagli

Calcolo di integrali

Calcolo di integrali 7 Maggio 2012 - Lab. di Complementi di Matematica e Calcolo Numerico Calcolo di integrali Indice 1 Teoria cinetica dei gas: la distribuzione delle velocità di Maxwell [1] 1 2 Lavoro associato a una trasformazione

Dettagli

Liquidi, Solidi e Forze Intermolecolari

Liquidi, Solidi e Forze Intermolecolari Liquidi, Solidi e Forze Intermolecolari Distanze tra molecole Stati Fisici (Fase) Comportamento atipico La maggiore differenza tra liquidi e solidi consiste nella libertà di movimento delle loro molecole

Dettagli

GAS IDEALI (o gas perfetti )

GAS IDEALI (o gas perfetti ) GAS IDEALI (o gas perfetti ) TEORIA CINETICA DEI GAS (modello di gas ideale ) molecole puntiformi moto rettilineo ed urti elastici forze attrattive - repulsive intermolecolari nulle PARAMETRI DELLO STATO

Dettagli

13 La temperatura - 8. Il gas perfetto

13 La temperatura - 8. Il gas perfetto La mole e l equazione del gas perfetto Tutto ciò che vediamo intorno a noi è composto di piccolissimi grani, che chiamiamo «molecole». Per esempio, il ghiaccio, l acqua liquida e il vapore acqueo sono

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

Esercizi sui Gas. Insegnamento di Chimica Generale CCS CHI e MAT. A.A. 2015/2016 (I Semestre)

Esercizi sui Gas. Insegnamento di Chimica Generale CCS CHI e MAT. A.A. 2015/2016 (I Semestre) Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi sui Gas Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio Esercizio 1 Un campione

Dettagli

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro Cos è il calore? Per rispondere si osservino le seguenti immagini Temperatura e calore Il calore del termosifone fa girare una girandola Il calore del termosifone fa scoppiare un palloncino Il calore del

Dettagli

RICHIAMI DI TERMOCHIMICA

RICHIAMI DI TERMOCHIMICA CAPITOLO 5 RICHIAMI DI TERMOCHIMICA ARIA TEORICA DI COMBUSTIONE Una reazione di combustione risulta completa se il combustibile ha ossigeno sufficiente per ossidarsi completamente. Si ha combustione completa

Dettagli

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni).

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Gas, liquidi, solidi Tutti i gas raffreddati liquefano Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Sostanza T L ( C) T E ( C) He - -269 H 2-263

Dettagli

Chimica generale. Corsi di laurea in - Tecnologie alimentari per la ristorazione - Viticoltura ed enologia - Tecnologia agroalimentare PARTE 3

Chimica generale. Corsi di laurea in - Tecnologie alimentari per la ristorazione - Viticoltura ed enologia - Tecnologia agroalimentare PARTE 3 Chimica generale Corsi di laurea in - Tecnologie alimentari per la ristorazione - Viticoltura ed enologia - Tecnologia agroalimentare PARTE 3 1 GLI STATI DI AGGREGAZIONE DELLA MATERIA 2 I composti chimici

Dettagli

'RPDQGHFRQFHWWXDOL Alcuni interrogativi su fenomeni fisici e chimici

'RPDQGHFRQFHWWXDOL Alcuni interrogativi su fenomeni fisici e chimici ,OPDWHULDOHGLGDWWLFRFKHVHJXHqVWDWRVFHOWRWUDGRWWRHDGDWWDWRGDO*UXSSRGLFKLPLFD GHOO,7,60DMRUDQDGL*UXJOLDVFR7RULQR0DUFR)DODVFD$QJHOR&LPHQLV3DROD&RVFLD /RUHGDQD$QJHOHUL$QWRQHOOD0DUWLQL'DULR*D]]ROD*UD]LD5L]]R*LXVL'L'LR

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 6 Le leggi dei gas 1. I gas ideali e la teoria cinetico-molecolare 2. La pressione dei gas 3.

Dettagli

Il Gas Ideale. Il gas ideale é un'astrazione

Il Gas Ideale. Il gas ideale é un'astrazione Il Gas Ideale a) le particelle sono animate da moto perenne, ed occupano omogeneamente tutto lo spazio a loro disposizione b) il movimento delle particelle è casuale c) le particelle hanno volume proprio

Dettagli

H 2 SO 4 : mol : 3 = mol REAGENTE LIMITANTE Ca 3 (PO 4 ) 2 : mol : 1 = mol

H 2 SO 4 : mol : 3 = mol REAGENTE LIMITANTE Ca 3 (PO 4 ) 2 : mol : 1 = mol 1) Partendo da 100.0 g di H 2 SO 4 e 300.0 g di Ca 3 (PO 4 ) 2, calcolare quanti grammi di prodotti si formano e quanti grammi di reagente in eccesso rimangono non reagiti. 3H 2 SO 4 + Ca 3 (PO 4 ) 2 3CaSO

Dettagli

Gas Ideale: Legge di Charles. V t =V 0 (1+αT)

Gas Ideale: Legge di Charles. V t =V 0 (1+αT) Gas Ideale: Legge di Charles V t =V 0 (1+αT) Gas Ideale: Legge di Charles Repeating the experiment with different gases or different starting V, we can observe different linear curves, but the intercept

Dettagli

Queste proprietà derivano dalla grande distanza che separa le molecole che compongono un gas.

Queste proprietà derivano dalla grande distanza che separa le molecole che compongono un gas. Stato Gassoso Lo stato gassoso I gas hanno tre proprietà caratteristiche: 1.sono facilmente comprimibili 2. si espandono per riempire il loro contenitore 3. occupano molto più spazio dei solidi e liquidi

Dettagli

Leggi dei gas ideali. P V = n R T (1)

Leggi dei gas ideali. P V = n R T (1) Leggi dei gas ideali ( a cura di Raffaella Gianferri e Giuliano Moretti) (In questa prima versione non sono state inserite le foto che illustrano gli apparati sperimentali impiegati.) 1. Derivazione dell

Dettagli

Corso di Chimica e Stechiometria per il corso di laurea in SCIENZE AMBIENTALI

Corso di Chimica e Stechiometria per il corso di laurea in SCIENZE AMBIENTALI Corso di Chimica e Stechiometria per il corso di laurea in SCIENZE AMBIENTALI Dott.ssa DANIELA DE VITA Orario ricevimento (previo appuntamento):lunedì 17.30-18.30 E-mail danidvd@hotmail.it daniela.devita@uniroma1.it

Dettagli

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1 LEGGI DEI GAS / CALORI SPECIFICI Introduzione 1 1 - TRASFORMAZIONE ISOBARA (p = costante) LA PRESSIONE RIMANE COSTANTE DURANTE TUTTA LA TRASFORMAZIONE V/T = costante (m, p costanti) Q = m c p (Tf - Ti)

Dettagli

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = + FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui

Dettagli

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione Foronomia In idrostatica era lecito trascurare l attrito interno o viscosità e i risultati ottenuti valevano sia per i liquidi

Dettagli